1
|
Zou Y, Yu S, Ma X, Ma C, Mao C, Mu D, Li L, Gao J, Qiu L. How far is the goal of applying β-amyloid in cerebrospinal fluid for clinical diagnosis of Alzheimer's disease with standardization of measurements? Clin Biochem 2023; 112:33-42. [PMID: 36473516 DOI: 10.1016/j.clinbiochem.2022.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cerebrospinal fluid (CSF) β-amyloid (Aβ) is important for early diagnosis of Alzheimer's disease (AD). However, the cohort distributions and cut-off values have large variation across different analytical assays, kits, and laboratories. In this review, we summarize the cut-off values and diagnostic performance for CSF Aβ1-42 and Aβ1-42/Aβ1-40, and explore the important effect factors. Based on the Alzheimer's Association external quality control program (AAQC program), the peer group coefficient of variation of manual ELISA assays for CSF Aβ1-42 was unsatisfied (>20%). Fully automated platforms with better performance have recently been developed, but still not widely applied. In 2020, the certified reference material (CRM) for CSF Aβ1-42 was launched; however, the AAQC 2021-round results did not show effective improvements. Thus, further development and popularization of CRM for CSF Aβ1-42 and Aβ1-40 are urgently required. Standardizing the diagnostic procedures of AD and related status and the pre-analytical protocols of CSF samples, improving detection performance of analytical assays, and popularizing the application of fully automated platforms are also important for the establishment of uniform cut-off values. Moreover, each laboratory should verify the applicability of uniform cut-off values, and evaluate whether it is necessary to establish its own population- and assay-specific cut-off values.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Martinez AE, Weissberger G, Kuklenyik Z, He X, Meuret C, Parekh T, Rees JC, Parks BA, Gardner MS, King SM, Collier TS, Harrington MG, Sweeney MD, Wang X, Zlokovic BV, Joe E, Nation DA, Schneider LS, Chui HC, Barr JR, Han SD, Krauss RM, Yassine HN. The small HDL particle hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:391-404. [PMID: 35416404 PMCID: PMC10563117 DOI: 10.1002/alz.12649] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/03/2023]
Abstract
We propose the hypothesis that small high-density lipoprotein (HDL) particles reduce the risk of Alzheimer's disease (AD) by virtue of their capacity to exchange lipids, affecting neuronal membrane composition and vascular and synaptic functions. Concentrations of small HDLs in cerebrospinal fluid (CSF) and plasma were measured in 180 individuals ≥60 years of age using ion mobility methodology. Small HDL concentrations in CSF were positively associated with performance in three domains of cognitive function independent of apolipoprotein E (APOE) ε4 status, age, sex, and years of education. Moreover, there was a significant correlation between levels of small HDLs in CSF and plasma. Further studies will be aimed at determining whether specific components of small HDL exchange across the blood, brain, and CSF barriers, and developing approaches to exploit small HDLs for therapeutic purposes.
Collapse
Affiliation(s)
- Ashley E. Martinez
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gali Weissberger
- The Interdisciplinary Department of Social Sciences, Bar Ilan University, Israel
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xulei He
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cristiana Meuret
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trusha Parekh
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jon C. Rees
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bryan A. Parks
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael S. Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah M. King
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | | | - Michael G. Harrington
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Joe
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Daniel A. Nation
- Irvine, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Lon S. Schneider
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. Duke Han
- Department of Family Medicine, University of Southern California, Los Angeles, California, USA
| | - Ronald M. Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | - Hussein N. Yassine
- Department of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Passage of exogeneous fine particles from the lung into the brain in humans and animals. Proc Natl Acad Sci U S A 2022; 119:e2117083119. [PMID: 35737841 PMCID: PMC9245667 DOI: 10.1073/pnas.2117083119] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Addressing the knowledge gaps regarding the access to and harmful effects of airborne fine particles on the central nervous system is critical. Various exogenous fine particles were found in human cerebrospinal fluids, including commonly found particles and others that have not been reported previously. Animal experiments provided mechanistic explanations and verifications of the translocation of inhaled particles into the brain. Moreover, retention of particles in the brain for longer durations than in other organs was demonstrated through isotope labeling–based biodistribution studies in mice, suggesting possible long-term effects on the brain. This work unravels indications and associations between inhalation and particle transport and adds evidence on the relationship between air pollution and detrimental effects of exogenous particles on the brain. There are still significant knowledge gaps in understanding the intrusion and retention of exogeneous particles into the central nervous system (CNS). Here, we uncovered various exogeneous fine particles in human cerebrospinal fluids (CSFs) and identified the ambient environmental or occupational exposure sources of these particles, including commonly found particles (e.g., Fe- and Ca-containing ones) and other compositions that have not been reported previously (such as malayaite and anatase TiO2), by mapping their chemical and structural fingerprints. Furthermore, using mouse and in vitro models, we unveiled a possible translocation pathway of various inhaled fine particles from the lung to the brain through blood circulation (via dedicated biodistribution and mechanistic studies). Importantly, with the aid of isotope labeling, we obtained the retention kinetics of inhaled fine particles in mice, indicating a much slower clearance rate of localized exogenous particles from the brain than from other main metabolic organs. Collectively, our results provide a piece of evidence on the intrusion of exogeneous particles into the CNS and support the association between the inhalation of exogenous particles and their transport into the brain tissues. This work thus provides additional insights for the continued investigation of the adverse effects of air pollution on the brain.
Collapse
|
4
|
Arakaki X, Hung SM, Rochart R, Fonteh AN, Harrington MG. Alpha desynchronization during Stroop test unmasks cognitively healthy individuals with abnormal CSF Amyloid/Tau. Neurobiol Aging 2022; 112:87-101. [PMID: 35066324 PMCID: PMC8976735 DOI: 10.1016/j.neurobiolaging.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023]
Abstract
Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.
Collapse
|
5
|
Solomon V, Hafez M, Xian H, Harrington M, Fonteh A, Yassine H. An Association Between Saturated Fatty Acid-Containing Phosphatidylcholine in Cerebrospinal Fluid with Tau Phosphorylation. J Alzheimers Dis 2022; 87:609-617. [DOI: 10.3233/jad-215643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Mechanistic studies in animal models implicate a role for saturated fatty acids in neurodegeneration, but validation of this finding in human studies is still lacking. Objective: We investigated how cerebrospinal levels of sphingomyelins (SM) and phosphatidylcholine (PC)-containing saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids associate with total tau and phosphorylated tau (p-tau). Methods: Cerebrospinal fluid (CSF) lipids were measured in two cohorts, a discovery and a confirmation cohort of older non-demented individuals from University of Southern California and Huntington Medical Research Institutes cohorts. Lipid analysis was performed using hydrophilic interaction liquid chromatography, and individual PC and SM lipid species were measured using tandem mass spectrometry. In addition, CSF levels of Aβ 42, total tau, and p-tau-181 were measured using an MSD multiplex assay. Results: The discovery cohort (n = 47) consisted of older individuals and more females compared to the confirmation cohort (n = 46). Notwithstanding the age and gender differences, and a higher p-tau, Aβ 42, and LDL-cholesterol in the discovery cohort, CSF concentrations of dipalmitoyl-PC (PC32a:0) were significantly associated with p-tau in both cohorts. Similarly, total saturated PC but not mono or polyunsaturated PCs correlated with p-tau concentrations in both cohorts. Conclusion: Saturated PC species in CSF associate with early markers of neurodegeneration and are potential early disease progression biomarkers. We propose mechanisms by which saturated PC may promote tau hyperphosphorylation.
Collapse
Affiliation(s)
- Victoria Solomon
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Madonna Hafez
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Haotian Xian
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Michael Harrington
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Alfred Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Hussein Yassine
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Barisano G, Montagne A, Kisler K, Schneider JA, Wardlaw JM, Zlokovic BV. Blood-brain barrier link to human cognitive impairment and Alzheimer's Disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:108-115. [PMID: 35450117 PMCID: PMC9017393 DOI: 10.1038/s44161-021-00014-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023]
Abstract
Vascular dysfunction is frequently seen in disorders associated with cognitive impairment, dementia and Alzheimer's disease (AD). Recent advances in neuroimaging and fluid biomarkers suggest that vascular dysfunction is not an innocent bystander only accompanying neuronal dysfunction. Loss of cerebrovascular integrity, often referred to as breakdown in the blood-brain barrier (BBB), has recently shown to be an early biomarker of human cognitive dysfunction and possibly underlying mechanism of age-related cognitive decline. Damage to the BBB may initiate or further invoke a range of tissue injuries causing synaptic and neuronal dysfunction and cognitive impairment that may contribute to AD. Therefore, better understanding of how vascular dysfunction caused by BBB breakdown interacts with amyloid-β and tau AD biomarkers to confer cognitive impairment may lead to new ways of thinking about pathogenesis, and possibly treatment and prevention of early cognitive impairment, dementia and AD, for which we still do not have effective therapies.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- These authors contributed equally: Giuseppe Barisano and Axel Montagne
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- These authors contributed equally: Giuseppe Barisano and Axel Montagne
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie A. Schneider
- Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Shaffer RM, Sheppard L, Peskind ER, Zhang J, Adar SD, Li G. Fine Particulate Matter Exposure and Cerebrospinal Fluid Markers of Vascular Injury. J Alzheimers Dis 2020; 71:1015-1025. [PMID: 31476158 DOI: 10.3233/jad-190563] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cerebrovascular diseases play an important role in dementia. Air pollution is associated with cardiovascular disease, with growing links to neurodegeneration. Prior studies demonstrate associations between fine particulate matter (PM2.5) and biomarkers of endothelial injury in the blood; however, no studies have evaluated these biomarkers in cerebrospinal fluid (CSF). OBJECTIVE We evaluate associations between short-term and long-term PM2.5 exposure with CSF vascular cell adhesion molecule-1 (VCAM-1) and e-selectin in cognitively normal and mild cognitive impairment (MCI)/Alzheimer's disease (AD) individuals. METHODS We collected CSF from 133 community volunteers at VA Puget Sound between 2001-2012. We assigned short-term PM2.5 from central monitors and long-term PM2.5 based on annual average exposure predictions linked to participant addresses. We performed analyses stratified by cognitive status and adjusted for key covariates with tiered models. Our primary exposure windows for the short-term and long-term analyses were 7-day and 1-year averages, respectively. RESULTS Among cognitively normal individuals, a 5 μg/m3 increase in 7-day and 1-year average PM2.5 was associated with elevated VCAM-1 (7-day: 35.4 (9.7, 61.1) ng/ml; 1-year: 51.8 (6.5, 97.1) ng/ml). A 5 μg/m3 increase in 1-year average PM2.5, but not 7-day average, was associated with elevated e-selectin (53.3 (11.0, 95.5) pg/ml). We found no consistent associations among MCI/AD individuals. CONCLUSIONS We report associations between short-term and long term PM2.5 and CSF biomarkers of vascular damage in cognitively normal adults. These results are aligned with prior research linking PM2.5 to vascular damage in other biofluids as well as emerging evidence of the role of PM2.5 in neurodegeneration.
Collapse
Affiliation(s)
- Rachel M Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Elaine R Peskind
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Sara D Adar
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, WA, USA
| | - Ge Li
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
8
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|
9
|
Wiedrick JT, Phillips JI, Lusardi TA, McFarland TJ, Lind B, Sandau US, Harrington CA, Lapidus JA, Galasko DR, Quinn JF, Saugstad JA. Validation of MicroRNA Biomarkers for Alzheimer's Disease in Human Cerebrospinal Fluid. J Alzheimers Dis 2020; 67:875-891. [PMID: 30689565 DOI: 10.3233/jad-180539] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We previously discovered microRNAs (miRNAs) in cerebrospinal fluid (CSF) that differentiate Alzheimer's disease (AD) patients from Controls. Here we examined the performance of 37 candidate AD miRNA biomarkers in a new and independent cohort of CSF from 47 AD patients and 71 Controls on custom TaqMan arrays. We employed a consensus ranking approach to provide an overall priority score for each miRNA, then used multimarker models to assess the relative contributions of the top-ranking miRNAs to differentiate AD from Controls. We assessed classification performance of the top-ranking miRNAs when combined with apolipoprotein E4 (APOE4) genotype status or CSF amyloid-β42 (Aβ42):total tau (T-tau) measures. We also assessed whether miRNAs that ranked higher as AD markers correlate with Mini-Mental State Examination (MMSE) scores. We show that of 37 miRNAs brought forth from the discovery study, 26 miRNAs remained viable as candidate biomarkers for AD in the validation study. We found that combinations of 6-7 miRNAs work better to identify AD than subsets of fewer miRNAs. Of 26 miRNAs that contribute most to the multimarker models, 14 have higher potential than the others to predict AD. Addition of these 14 miRNAs to APOE4 status or CSF Aβ42:T-tau measures significantly improved classification performance for AD. We further show that individual miRNAs that ranked higher as AD markers correlate more strongly with changes in MMSE scores. Our studies validate that a set of CSF miRNAs serve as biomarkers for AD, and support their advancement toward development as biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Jack T Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Jay I Phillips
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Theresa A Lusardi
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Trevor J McFarland
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR, USA
| | - Babett Lind
- Department of Neurology, Layton Aging and Alzheimer's Center, Oregon Health & Science University, Portland, OR, USA
| | - Ursula S Sandau
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Jodi A Lapidus
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.,Oregon Health & Science University - Portland State University School of Public Health, Portland, OR, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Joseph F Quinn
- Department of Neurology, Layton Aging and Alzheimer's Center, Oregon Health & Science University, Portland, OR, USA.,Portland Veterans Affairs Medical Center, Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, Pachicano M, Joe E, Nelson AR, D'Orazio LM, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Reiman EM, Caselli RJ, Chui HC, Tcw J, Chen Y, Pa J, Conti PS, Law M, Toga AW, Zlokovic BV. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 2020; 581:71-76. [PMID: 32376954 PMCID: PMC7250000 DOI: 10.1038/s41586-020-2247-3] [Citation(s) in RCA: 780] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/01/2020] [Indexed: 01/13/2023]
Abstract
Vascular contributions to dementia and Alzheimer's disease are increasingly recognized1-6. Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction7, including the early clinical stages of Alzheimer's disease5,8-10. The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer's disease11-14, leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes15-19, which maintain BBB integrity20-22. It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-β or tau pathology measured in cerebrospinal fluid or by positron emission tomography23. High baseline levels of the BBB pericyte injury biomarker soluble PDGFRβ7,8 in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-β and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway19 in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer's disease pathology, and might be a therapeutic target in APOE4 carriers.
Collapse
Affiliation(s)
- Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Disorders and Neurological Impairments, University of California, Irvine, Irvine, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Barisano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ararat Chakhoyan
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maricarmen Pachicano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Joe
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy R Nelson
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lina M D'Orazio
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Anne M Fagan
- The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | | | | | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia Tcw
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yining Chen
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Judy Pa
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meng Law
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neuroscience and Radiology, Monash University, Alfred Health, Melbourne, Victoria, Australia
| | - Arthur W Toga
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Park JC, Han SH, Yi D, Byun MS, Lee JH, Jang S, Ko K, Jeon SY, Lee YS, Kim YK, Lee DY, Mook-Jung I. Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer's disease. Brain 2020; 142:771-786. [PMID: 30668647 DOI: 10.1093/brain/awy347] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/04/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022] Open
Abstract
One of the hallmarks of Alzheimer's disease is abnormal deposition of tau proteins in the brain. Although plasma tau has been proposed as a potential biomarker for Alzheimer's disease, a direct link to brain deposition of tau is limited. Here, we estimated the amount of in vivo tau deposition in the brain by PET imaging and measured plasma levels of total tau (t-tau), phosphorylated tau (p-tau, T181) and amyloid-β1-42. We found significant correlations of plasma p-tau, t-tau, p-tau/amyloid-β1-42, and t-tau/amyloid-β1-42 with brain tau deposition in cross-sectional and longitudinal manners. In particular, t-tau/amyloid-β1-42 in plasma was highly predictive of brain tau deposition, exhibiting 80% sensitivity and 91% specificity. Interestingly, the brain regions where plasma t-tau/amyloid-β1-42 correlated with brain tau were similar to the typical deposition sites of neurofibrillary tangles in Alzheimer's disease. Furthermore, the longitudinal changes in cerebral amyloid deposition, brain glucose metabolism, and hippocampal volume change were also highly associated with plasma t-tau/amyloid-β1-42. These results indicate that combination of plasma tau and amyloid-β1-42 levels might be potential biomarkers for predicting brain tau pathology and neurodegeneration.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Min Soo Byun
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sukjin Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Ko
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - So Yeon Jeon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Mehta PD, Patrick BA, Miller DL, Coyle PK, Wisniewski T. A Sensitive and Cost-Effective Chemiluminescence ELISA for Measurement of Amyloid-β 1-42 Peptide in Human Plasma. J Alzheimers Dis 2020; 78:1237-1244. [PMID: 33252086 PMCID: PMC7874530 DOI: 10.3233/jad-200861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Amyloid-β42 (Aβ42) is associated with plaque formation in the brain of patients with Alzheimer's disease (AD). Studies have suggested the potential utility of plasma Aβ42 levels in the diagnosis, and in longitudinal study of AD pathology. Conventional ELISAs are used to measure Aβ42 levels in plasma but are not sensitive enough to quantitate low levels. Although ultrasensitive assays like single molecule array or immunoprecipitation-mass spectrometry have been developed to quantitate plasma Aβ42 levels, the high cost of instruments and reagents limit their use. OBJECTIVE We hypothesized that a sensitive and cost-effective chemiluminescence (CL) immunoassay could be developed to detect low Aβ42 levels in human plasma. METHODS We developed a sandwich ELISA using high affinity rabbit monoclonal antibody specific to Aβ42. The sensitivity of the assay was increased using CL substrate to quantitate low levels of Aβ42 in plasma. We examined the levels in plasma from 13 AD, 25 Down syndrome (DS), and 50 elderly controls. RESULTS The measurement range of the assay was 0.25 to 500 pg/ml. The limit of detection was 1 pg/ml. All AD, DS, and 45 of 50 control plasma showed measurable Aβ42 levels. CONCLUSION This assay detects low levels of Aβ42 in plasma and does not need any expensive equipment or reagents. It offers a preferred alternative to ultrasensitive assays. Since the antibodies, peptide, and substrate are commercially available, the assay is well suited for academic or diagnostic laboratories, and has a potential for the diagnosis of AD or in clinical trials.
Collapse
Affiliation(s)
- Pankaj D. Mehta
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Bruce A. Patrick
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - David L. Miller
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Patricia K. Coyle
- Department of Neurology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Design and synthesis of a novel series of cyanoindole derivatives as potent γ-secretase modulators. Bioorg Med Chem Lett 2019; 29:1737-1745. [DOI: 10.1016/j.bmcl.2019.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
|
14
|
Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Chui HC, Law M, Toga AW, Zlokovic BV. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019; 25:270-276. [PMID: 30643288 PMCID: PMC6367058 DOI: 10.1038/s41591-018-0297-y] [Citation(s) in RCA: 1098] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel A Nation
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lina M D'Orazio
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maricarmen Pachicano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy R Nelson
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - John C Morris
- The Hope Center for Neurodegenerative Disorders, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meng Law
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Jedinak A, Loughlin KR, Moses MA. Approaches to the discovery of non-invasive urinary biomarkers of prostate cancer. Oncotarget 2018; 9:32534-32550. [PMID: 30197761 PMCID: PMC6126692 DOI: 10.18632/oncotarget.25946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. Prostate specific antigen (PSA) measured in blood has been used for decades as an aid for physicians to detect the presence of prostate cancer. However, the PSA test has limited sensitivity and specificity, leading to unnecessary biopsies, overdiagnosis and overtreatment of patients. For these reasons, there is an urgent need for more accurate PCa biomarkers that can detect PCa with high sensitivity and specificity. Urine is a unique source of potential protein biomarkers that can be measured in a non-invasive way. This review comprehensively summarizes state of the art approaches used in the discovery and validation of urinary biomarkers for PCa. Numerous strategies are currently being used in the discovery of urinary biomarkers for prostate cancer including gel-based separation techniques, mass spectrometry, activity-based proteomic assays and software approaches. Antibody-based approaches remain preferred method for validation of candidate biomarkers with rapidly advancing multiplex immunoassays and MS-based targeted approaches. In the last decade, there has been a dramatic acceleration in the development of new techniques and approaches in the discovery of protein biomarkers for prostate cancer including computational, statistical and data mining methods. Many urinary-based protein biomarkers have been identified and have shown significant promise in initial studies. Examples of these potential biomarkers and the methods utilized in their discovery are also discussed in this review.
Collapse
Affiliation(s)
- Andrej Jedinak
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Kevin R Loughlin
- Department of Surgery, Harvard Medical School, Boston, MA, USA.,Department of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Trombetta BA, Carlyle BC, Koenig AM, Shaw LM, Trojanowski JQ, Wolk DA, Locascio JJ, Arnold SE. The technical reliability and biotemporal stability of cerebrospinal fluid biomarkers for profiling multiple pathophysiologies in Alzheimer's disease. PLoS One 2018; 13:e0193707. [PMID: 29505610 PMCID: PMC5837100 DOI: 10.1371/journal.pone.0193707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is a complex neurodegenerative disease driven by multiple interacting pathophysiological processes that ultimately results in synaptic loss, neuronal death, and dementia. We implemented a fit-for-purpose modeled approach to qualify a broad selection of commercially available immunoassays and evaluate the biotemporal stability of analytes across five pathophysiological domains of interest in AD, including core amyloid-β (Aβ) and tau AD biomarkers, neurodegeneration, inflammation/immune modulation, neurovascular injury, and metabolism/oxidative stress. METHODS Paired baseline and eight-week CSFs from twenty participants in a clinical drug trial for mild cognitive impairment (MCI) or mild dementia due to AD were used to evaluate sensitivity, intra-assay precision, inter-assay replicability, and eight-week biotemporal stability for sixty unique analytes measured with commercially available single- and multi-plex ELISA assays. Coefficients of variation (CV) were calculated, and intraclass correlation and Wilcoxon signed rank tests were applied. RESULTS We identified 32 biomarker candidates with good to excellent performance characteristics according to assay technical performance and CSF analyte biotemporal stability cut-off criteria. These included: 1) the core AD biomarkers Aβ1-42, Aβ1-40, Aβ1-38, and total tau; 2) non-Aβ, non-tau neurodegeneration markers NfL and FABP3; 3) inflammation/immune modulation markers IL-6, IL-7, IL-8, IL-12/23p40, IL-15, IL-16, MCP-1, MDC, MIP-1β, and YKL-40; 4) neurovascular markers Flt-1, ICAM-1, MMP-1, MMP-2, MMP-3, MMP-10, PlGF, VCAM-1, VEGF, VEGF-C, and VEGF-D; and 5) metabolism/oxidative stress markers 24-OHC, adiponectin, leptin, soluble insulin receptor, and 8-OHdG. CONCLUSIONS Assays for these CSF analytes demonstrate consistent sensitivity, reliability, and biotemporally stability for use in a multiple pathophysiological CSF biomarker panel to profile AD. Their qualification enables further investigation for use in AD diagnosis, staging and progression, disease mechanism profiling, and clinical trials.
Collapse
Affiliation(s)
- Bianca A. Trombetta
- MGH Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Becky C. Carlyle
- MGH Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Aaron M. Koenig
- MGH Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Leslie M. Shaw
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - David A. Wolk
- Penn Memory Center, Department of Neurology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joseph J. Locascio
- MGH Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Steven E. Arnold
- MGH Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Teunissen CE, Verheul C, Willemse EAJ. The use of cerebrospinal fluid in biomarker studies. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:3-20. [PMID: 29110777 DOI: 10.1016/b978-0-12-804279-3.00001-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebrospinal fluid (CSF) is an extremely useful matrix for biomarker research for several purposes, such as diagnosis, prognosis, monitoring, and identification of prominent leads in pathways of neurologic diseases. Such biomarkers can be identified based on a priori hypotheses around prominent protein changes, but also by applying -omics technologies. Proteomics is widely used, but metabolomics and transcriptomics are rapidly revealing their potential for CSF studies. The basis of such studies is the availability of high-quality biobanks. Furthermore, profound knowledge and consequent optimization of all aspects in biomarker development are needed. Here we discuss current knowledge and recently developed protocols for successful biomarker studies, from collection of CSF by lumbar puncture, processing, and biobanking protocols, preanalytic confounding factors, and cost-efficient development and validation of assays for implementation into clinical practice or research.
Collapse
Affiliation(s)
- C E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.
| | - C Verheul
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - E A J Willemse
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Innes KE, Selfe TK, Brundage K, Montgomery C, Wen S, Kandati S, Bowles H, Khalsa DS, Huysmans Z. Effects of Meditation and Music-Listening on Blood Biomarkers of Cellular Aging and Alzheimer's Disease in Adults with Subjective Cognitive Decline: An Exploratory Randomized Clinical Trial. J Alzheimers Dis 2018; 66:947-970. [PMID: 30320574 PMCID: PMC6388631 DOI: 10.3233/jad-180164] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Telomere length (TL), telomerase activity (TA), and plasma amyloid-β (Aβ) levels have emerged as possible predictors of cognitive decline and dementia. OBJECTIVE To assess the: 1) effects of two 12-week relaxation programs on TL, TA, and Aβ levels in adults with subjective cognitive decline; and 2) relationship of biomarker changes to those in cognitive function, psychosocial status, and quality of life (QOL). METHODS Participants were randomized to a 12-week Kirtan Kriya meditation (KK) or music listening (ML) program and asked to practice 12 minutes/day. Plasma Aβ(38/40/42) and peripheral blood mononuclear cell TL and TA were measured at baseline and 3 months. Cognition, stress, sleep, mood, and QOL were assessed at baseline, 3 months, and 6 months. RESULTS Baseline blood samples were available for 53 participants (25 KK, 28 ML). The KK group showed significantly greater increases in Aβ40 than the ML group. TA rose in both groups, although increases were significant only among those with higher practice adherence and lower baseline TA. Changes in both TL and TA varied by their baseline values, with greater increases among participants with values ≤50th percentile (ps-interaction <0.006). Both groups improved in cognitive and psychosocial status (ps ≤0.05), with improvements in stress, mood, and QOL greater in the KK group. Rising Aβ levels were correlated with gains in cognitive function, mood, sleep, and QOL at both 3 and 6 months, associations that were particularly pronounced in the KK group. Increases in TL and TA were also correlated with improvements in certain cognitive and psychosocial measures. CONCLUSION Practice of simple mind-body therapies may alter plasma Aβ levels, TL, and TA. Biomarker increases were associated with improvements in cognitive function, sleep, mood, and QOL, suggesting potential functional relationships.
Collapse
Affiliation(s)
- Kim E. Innes
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Terry Kit Selfe
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
- Department of Biomedical and Health Information Services, Health Science Center Libraries, University of Florida, Gainesville, FL, USA
| | - Kathleen Brundage
- Department of Microbiology, Flow Cytometry & Single Cell Core Facility, Immunology & Cell Biology, School of Medicine, WVU Morgantown, WV, USA
| | - Caitlin Montgomery
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, WVU, Morgantown, WV, USA
| | - Sahiti Kandati
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | - Hannah Bowles
- Department of Epidemiology, School of Public Health, West Virginia University (WVU) Morgantown, WV, USA
| | | | - Zenzi Huysmans
- College of Physical Activity and Sport Sciences, WVU, Morgantown, WV, USA
| |
Collapse
|
19
|
Janelidze S, Pannee J, Mikulskis A, Chiao P, Zetterberg H, Blennow K, Hansson O. Concordance Between Different Amyloid Immunoassays and Visual Amyloid Positron Emission Tomographic Assessment. JAMA Neurol 2017; 74:1492-1501. [PMID: 29114726 DOI: 10.1001/jamaneurol.2017.2814] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Importance Visual assessment of amyloid positron emission tomographic (PET) images has been approved by regulatory authorities for clinical use. Several immunoassays have been developed to measure β-amyloid (Aβ) 42 in cerebrospinal fluid (CSF). The agreement between CSF Aβ42 measures from different immunoassays and visual PET readings may influence the use of CSF biomarkers and/or amyloid PET assessment in clinical practice and trials. Objective To determine the concordance between CSF Aβ42 levels measured using 5 different immunoassays and visual amyloid PET analysis. Design, Setting, and Participants The study included 262 patients with mild cognitive impairment or subjective cognitive decline from the Swedish BioFINDER (Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably) cohort (recruited from September 1, 2010, through December 31, 2014) who had undergone flutemetamol F 18 ([18F]flutemetamol)-labeled PET. Levels of CSF Aβ42 were analyzed using the classic INNOTEST and the newer modified INNOTEST, fully automated Lumipulse (FL), EUROIMMUN (EI), and Meso Scale Discovery (MSD) assays. Concentrations of CSF Aβ were assessed using an antibody-independent mass spectrometry-based reference measurement procedure. Main Outcomes and Measures The concordance of CSF Aβ42 levels and Aβ42:Aβ40 and Aβ42:tau ratios with visual [18F]flutemetamol PET status. Results Of 262 participants (mean [SD] age, 70.9 [5.5] years), 108 were women (41.2%) and 154 were men (58.8%). The mass spectrometry-derived Aβ42 values showed higher correlations with the modified Aβ42-INNOTEST (r = 0.97), Aβ42-FL (r = 0.93), Aβ42-EI (r = 0.93), and Aβ42-MSD (r = 0.95) assays compared with the classic Aβ42-INNOTEST assay (r = 0.88; P ≤ .01). The signal in the classic Aβ42-INNOTEST assay was partly quenched by recombinant Aβ1-40 peptide. However, the classic Aβ42-INNOTEST assay showed better concordance with visual [18F]flutemetamol PET status (area under the receiver operating characteristic curve [AUC], 0.92) compared with the newer assays (AUCs, 0.87-0.89; P ≤ .01). The accuracies of the newer assays improved significantly when Aβ42:Aβ40 (AUCs, 0.93-0.95; P ≤ .01), Aβ42 to total tau (T-tau) (AUCs, 0.94; P ≤ .05), or Aβ42 to phosphorylated tau (P-tau) (AUCs, 0.94-0.95; P ≤ .001) ratios were used. A combination of the Aβ42:Aβ40 ratio and T-tau or P-tau level did not improve the accuracy compared with the ratio alone. Conclusions and Relevance Concentrations of CSF Aβ42 derived from the new immunoassays (modified INNOTEST, FL, EI, and MSD) may correlate better with the antibody-independent mass spectrometry-based reference measurement procedure and may show improved agreement with visual [18F]flutemetamol PET assessment when using the Aβ42:Aβ40 or Aβ42:tau ratios. These findings suggest the benefit of implementing the CSF Aβ42:Aβ40 or Aβ42:tau ratios as a biomarker of amyloid deposition in clinical practice and trials.
Collapse
Affiliation(s)
- Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Josef Pannee
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, England
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
20
|
Li G, Shofer JB, Petrie EC, Yu CE, Wilkinson CW, Figlewicz DP, Shutes-David A, Zhang J, Montine TJ, Raskind MA, Quinn JF, Galasko DR, Peskind ER. Cerebrospinal fluid biomarkers for Alzheimer's and vascular disease vary by age, gender, and APOE genotype in cognitively normal adults. ALZHEIMERS RESEARCH & THERAPY 2017; 9:48. [PMID: 28673336 PMCID: PMC5496132 DOI: 10.1186/s13195-017-0271-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/31/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study sought to evaluate gender and APOE genotype-related differences in the concentrations of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) and cerebrovascular injury across the life span of cognitively normal adults. METHODS CSF amyloid beta1-42 (Aβ42), phospho-tau-181 (p-tau181), and total tau were measured in 331 participants who were between the ages of 21 and 100. CSF E-selectin and vascular cell adhesion protein 1 (VCAM1) were measured in 249 participants who were between the ages of 50 and 100. RESULTS CSF total tau and p-tau181 increased with age over the adult life span (p < 0.01) with no gender differences in those increases. CSF Aβ42 concentration varied according to age, gender, and APOE genotype (interaction of age × gender × ε4, p = 0.047). CSF VCAM1, but not E-selectin, increased with age (p < 0.01), but both were elevated in men compared to women (p < 0.01). CONCLUSIONS Female APOE-ε4 carriers appear at higher risk for AD after age 50. In contrast, men may experience a relatively higher rate of cerebrovascular injury in middle and early old age.
Collapse
Affiliation(s)
- Ge Li
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA. .,Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Box 356560, Seattle, WA, 98195, USA. .,Northwest Network (VISN-20) Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
| | - Jane B Shofer
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Box 356560, Seattle, WA, 98195, USA
| | - Eric C Petrie
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Box 356560, Seattle, WA, 98195, USA.,Northwest Network (VISN-20) Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Chang-En Yu
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Charles W Wilkinson
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Box 356560, Seattle, WA, 98195, USA
| | - Dianne P Figlewicz
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Box 356560, Seattle, WA, 98195, USA.,BSR&D Program, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Andrew Shutes-David
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.,Northwest Network (VISN-20) Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, 1959 NE Pacific St, Box 357470, Seattle, WA, 98195, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, 300 Pasteur Drive, Lane 235, Stanford, CA, 94305, USA
| | - Murray A Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Box 356560, Seattle, WA, 98195, USA.,Northwest Network (VISN-20) Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Joseph F Quinn
- Parkinson's Disease Research, Education, and Clinical Care Center, Portland VA Medical Center, 3710 SW Veterans Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L226, Portland, OR, 97239, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Elaine R Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Box 356560, Seattle, WA, 98195, USA.,Northwest Network (VISN-20) Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| |
Collapse
|
21
|
Li J, Zhang Q, Chen F, Meng X, Liu W, Chen D, Yan J, Kim S, Wang L, Feng W, Saykin AJ, Liang H, Shen L. Genome-wide association and interaction studies of CSF T-tau/Aβ 42 ratio in ADNI cohort. Neurobiol Aging 2017. [PMID: 28641921 DOI: 10.1016/j.neurobiolaging.2017.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathogenic relevance in Alzheimer's disease (AD) presents a decrease of cerebrospinal fluid amyloid-ß42 (Aß42) burden and an increase in cerebrospinal fluid total tau (T-tau) levels. In this work, we performed genome-wide association study (GWAS) and genome-wide interaction study of T-tau/Aß42 ratio as an AD imaging quantitative trait on 843 subjects and 563,980 single-nucleotide polymorphisms (SNPs) in ADNI cohort. We aim to identify not only SNPs with significant main effects but also SNPs with interaction effects to help explain "missing heritability". Linear regression method was used to detect SNP-SNP interactions among SNPs with uncorrected p-value ≤0.01 from the GWAS. Age, gender, and diagnosis were considered as covariates in both studies. The GWAS results replicated the previously reported AD-related genes APOE, APOC1, and TOMM40, as well as identified 14 novel genes, which showed genome-wide statistical significance. Genome-wide interaction study revealed 7 pairs of SNPs meeting the cell-size criteria and with bonferroni-corrected p-value ≤0.05. As we expect, these interaction pairs all had marginal main effects but explained a relatively high-level variance of T-tau/Aß42, demonstrating their potential association with AD pathology.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, Harbin, China
| | - Qiushi Zhang
- College of Automation, Harbin Engineering University, Harbin, China; College of Information Engineering, Northeast Dianli University, Jilin, China
| | - Feng Chen
- College of Automation, Harbin Engineering University, Harbin, China
| | - Xianglian Meng
- College of Automation, Harbin Engineering University, Harbin, China
| | - Wenjie Liu
- College of Automation, Harbin Engineering University, Harbin, China
| | - Dandan Chen
- College of Automation, Harbin Engineering University, Harbin, China; College of Information Engineering, Northeast Dianli University, Jilin, China
| | - Jingwen Yan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lei Wang
- College of Automation, Harbin Engineering University, Harbin, China
| | - Weixing Feng
- College of Automation, Harbin Engineering University, Harbin, China
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, China.
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, USA.
| | | |
Collapse
|
22
|
Llorens F, Kruse N, Karch A, Schmitz M, Zafar S, Gotzmann N, Sun T, Köchy S, Knipper T, Cramm M, Golanska E, Sikorska B, Liberski PP, Sánchez-Valle R, Fischer A, Mollenhauer B, Zerr I. Validation of α-Synuclein as a CSF Biomarker for Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:2249-2257. [PMID: 28321768 PMCID: PMC5840235 DOI: 10.1007/s12035-017-0479-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
The analysis of cerebrospinal fluid (CSF) biomarkers gains importance in the differential diagnosis of prion diseases. However, no single diagnostic tool or combination of them can unequivocally confirm prion disease diagnosis. Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve high diagnostic accuracy in a variety of sample types due to their high sensitivity and dynamic range. Quantification of CSF α-synuclein (a-syn) by an in-house ECL-based ELISA assay has been recently reported as an excellent approach for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD), the most prevalent form of human prion disease. In the present study, we validated a commercially available ECL-based a-syn ELISA platform as a diagnostic test for correct classification of sCJD cases. CSF a-syn was analysed in 203 sCJD cases with definite diagnosis and in 445 non-CJD cases. We investigated reproducibility and stability of CSF a-syn and made recommendations for its analysis in the sCJD diagnostic workup. A sensitivity of 98% and a specificity of 97% were achieved when using an optimal cut-off of 820 pg/mL a-syn. Moreover, we were able to show a negative correlation between a-syn levels and disease duration suggesting that CSF a-syn may be a good prognostic marker for sCJD patients. The present study validates the use of a-syn as a CSF biomarker of sCJD and establishes the clinical and pre-analytical parameters for its use in differential diagnosis in clinical routine. Additionally, the current test presents some advantages compared to other diagnostic approaches: it is fast, economic, requires minimal amount of CSF and a-syn levels are stable along disease progression.
Collapse
Affiliation(s)
- Franc Llorens
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.
| | - Niels Kruse
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - André Karch
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Schmitz
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Saima Zafar
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Nadine Gotzmann
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Ting Sun
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Silja Köchy
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Tobias Knipper
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Maria Cramm
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Raquel Sánchez-Valle
- Creutzfeldt-Jakob disease unit. Alzheimer's disease and other cognitive disorders unit. Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Brit Mollenhauer
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena Klinik, Center for Parkinsonism and Movement Disorders, Kassel, Germany.,Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| |
Collapse
|
23
|
Pottiez G, Yang L, Stewart T, Song N, Aro P, Galasko DR, Quinn JF, Peskind ER, Shi M, Zhang J. Mass-Spectrometry-Based Method To Quantify in Parallel Tau and Amyloid β 1-42 in CSF for the Diagnosis of Alzheimer's Disease. J Proteome Res 2017; 16:1228-1238. [PMID: 28112948 DOI: 10.1021/acs.jproteome.6b00829] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, afflicts about 50 million people worldwide. Currently, AD diagnosis is primarily based on psychological evaluation and can only be confirmed post-mortem. Reliable and objective biomarkers for prognosis and diagnosis have been sought for years. Together, tau and amyloid β 1-42 (Aβ42) in cerebrospinal fluid (CSF) have been shown to provide good diagnostic sensitivity and specificity. Additionally, phosphorylated forms of tau, such as tau pS181, have also shown promising results. However, the measurement of such markers currently relies on antibody-based immunoassays that have shown variability, leading to discrepant results across laboratories. To date, mass spectrometry methods developed to evaluate CSF tau and Aβ42 are not compatible. We present in this article the development of a mass-spectrometry-based method of quantification for CSF tau and Aβ42 in parallel. The absolute concentrations of tau and Aβ42 we measured are on average 50 ng/mL (7-130 ng/mL) and 7.1 ng/mL (3-13 ng/mL), respectively. Analyses of CSF tau and Aβ42, in a cohort of patients with AD, mild cognitive impairment, and healthy controls (30 subjects), provide significant group differences evaluated with ROC curves (AUC(control-AD) and AUC(control-MCI) = 1, AUC(MCI-AD) = 0.76), with at least equivalent diagnostic utility to immunoassay measurements in the same sample set. Finally, a significant and negative correlation was found between the tau and Aβ peptides ratio and the disease severity.
Collapse
Affiliation(s)
- Gwënaël Pottiez
- Department of Pathology, School of Medicine, University of Washington , Seattle, Washington 98104, United States
| | - Li Yang
- Department of Pathology, School of Medicine, University of Washington , Seattle, Washington 98104, United States
| | - Tessandra Stewart
- Department of Pathology, School of Medicine, University of Washington , Seattle, Washington 98104, United States
| | - Ning Song
- Department of Pathology, School of Medicine, University of Washington , Seattle, Washington 98104, United States
| | - Patrick Aro
- Department of Pathology, School of Medicine, University of Washington , Seattle, Washington 98104, United States
| | - Douglas R Galasko
- Department of Neurosciences, University of California at San Diego , San Diego, California 92093, United States
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University , Portland, Oregon 97239, United States.,Portland VA Medical Center , Portland, Oregon 97239, United States
| | - Elaine R Peskind
- Northwest Network VISN-20 Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System , Seattle, Washington 98108, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington , Seattle, Washington 98195, United States
| | - Min Shi
- Department of Pathology, School of Medicine, University of Washington , Seattle, Washington 98104, United States
| | - Jing Zhang
- Department of Pathology, School of Medicine, University of Washington , Seattle, Washington 98104, United States.,Department of Pathology, Peking University Health Science Centre and Third Hospital , Beijing 100083, China
| |
Collapse
|
24
|
Li G, Xiong K, Korff A, Pan C, Quinn JF, Galasko DR, Liu C, Montine TJ, Peskind ER, Zhang J. Increased CSF E-Selectin in Clinical Alzheimer's Disease without Altered CSF Aβ42 and Tau. J Alzheimers Dis 2016; 47:883-7. [PMID: 26401768 DOI: 10.3233/jad-150420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinically diagnosed Alzheimer's disease (AD) is pathologically heterogeneous. In this multicenter cohort of 215 clinically diagnosed AD patients and 249 controls, E-selectin and vascular cell adhesion molecule 1 (VACM-1) were measured along with amyloid-β peptide 1-42 (Aβ42) and tau. We discovered that E-selectin, a biomarker of endothelial function/vascular injury, was inversely correlated with cerebrospinal fluid (CSF) tau/Aβ42 ratio and significantly elevated in clinical AD patients without the typical AD CSF biomarker signature (i.e., low tau/Aβ42 ratio) compared to those with the signature. These findings suggest that E-selectin may be an objective biomarker related to vascular mechanisms contributing to dementia.
Collapse
Affiliation(s)
- Ge Li
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Kangping Xiong
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ane Korff
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Catherine Pan
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University and Portland VA Medical Center, Portland, OR, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Chunfeng Liu
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Thomas J Montine
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine R Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.,VA Northwest Network Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
25
|
A First Tetraplex Assay for the Simultaneous Quantification of Total α-Synuclein, Tau, β-Amyloid42 and DJ-1 in Human Cerebrospinal Fluid. PLoS One 2016; 11:e0153564. [PMID: 27116005 PMCID: PMC4846093 DOI: 10.1371/journal.pone.0153564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/31/2016] [Indexed: 01/17/2023] Open
Abstract
The quantification of four distinct proteins (α-synuclein, β-amyloid1-42, DJ-1, and total tau) in cerebrospinal fluid (CSF) has been proposed as a laboratory-based platform for the diagnosis of Parkinson’s disease (PD) and Alzheimer’s disease (AD). While there is some clinical utility in measuring these markers individually, their usage in routine clinical testing remains challenging, in part due to substantial overlap of concentrations between healthy controls and diseased subjects. In contrast, measurement of different analytes in a single sample from individual patients in parallel appears to considerably improve the accuracy of AD or PD diagnosis. Here, we report the development and initial characterization of a first, electrochemiluminescence-based multiplex immunoassay for the simultaneous quantification of all four proteins (‘tetraplex’) in as little as 50 μl of CSF. In analytical performance experiments, we assessed its sensitivity, spike-recovery rate, parallelism and dilution linearity as well as the intra- and inter-assay variability. Using our in-house calibrators, we recorded a lower limit of detection for α-synuclein, β-amyloid42, DJ-1, and t-tau of 1.95, 1.24, 5.63, and 4.05 pg/ml, respectively. The corresponding, linear concentration range covered >3 orders of magnitude. In diluted CSF samples (up to 1:4), spike-recovery rates ranged from a low of 55% for β-amyloid42 to a high of 98% for DJ-1. Hillslopes ranged from 1.03 to 1.30, and inter-assay variability demonstrated very high reproducibility. Our newly established tetraplex assay represents a significant technical advance for fluid-based biomarker studies in neurodegenerative disorders allowing the simultaneous measurement of four pivotal makers in single CSF specimens. It provides exceptional sensitivity, accuracy and speed.
Collapse
|
26
|
Llorens F, Kruse N, Schmitz M, Shafiq M, da Cunha JEG, Gotzman N, Zafar S, Thune K, de Oliveira JRM, Mollenhauer B, Zerr I. Quantification of CSF biomarkers using an electrochemiluminescence-based detection system in the differential diagnosis of AD and sCJD. J Neurol 2015; 262:2305-11. [DOI: 10.1007/s00415-015-7837-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 01/26/2023]
|