1
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Karayel-Basar M, Uras I, Kiris I, Baykal AT. Detection of proteomic alterations at different stages in a Huntington's disease mouse model via matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging. Eur J Neurosci 2023; 58:2985-3002. [PMID: 37525529 DOI: 10.1111/ejn.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Huntington's disease (HD) is a progressive and irreversible neurodegenerative disease leading to the inability to carry out daily activities and for which no cure exists. The underlying mechanisms of the disease have not been fully elucidated yet. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) allows the spatial information of proteins to be obtained upon the tissue sections without homogenisation. In this study, we aimed to examine proteomic alterations in the brain tissue of an HD mouse model with MALDI-MSI coupled to LC-MS/MS system. We used 3-, 6- and 12-month-old YAC128 mice representing pre-stage, mild stage and pathological stage of the HD and their non-transgenic littermates, respectively. The intensity levels of 89 proteins were found to be significantly different in YAC128 in comparison to their control mice in the pre-stage, 83 proteins in the mild stage, and 82 proteins in the pathological stage. Among them, Tau, EF2, HSP70, and NogoA proteins were validated with western blot analysis. In conclusion, the results of this study have provided remarkable new information about the spatial proteomic alterations in the HD mouse model, and we suggest that MALDI-MSI is an excellent technique for identifying such regional proteomic changes and could offer new perspectives in examining complex diseases.
Collapse
Affiliation(s)
- Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irep Uras
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
3
|
Kiris I, Kukula-Koch W, Karayel-Basar M, Gurel B, Coskun J, Baykal AT. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer's disease mouse model: Alleviating effect of palmatine. Biomed Pharmacother 2023; 158:114111. [PMID: 36502756 DOI: 10.1016/j.biopha.2022.114111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent diseases that lead to memory deficiencies, severe behavioral abnormalities, and ultimately death. The need for more appropriate treatment of AD continues, and remains a sought-after goal. Previous studies showed palmatine (PAL), an isoquinoline alkaloid, might have the potential for combating AD because of its in vitro and in vivo activities. In this study, we aimed to assess PAL's therapeutic potential and gain insights into the working mechanism on protein level in the AD mouse model brain, for the first time. To this end, PAL was administered to 12-month-old 5xFAD mice at two doses after its successful isolation from the Siberian barberry shrub. PAL (10 mg/kg) showed statistically significant improvement in the memory and learning phase on the Morris water maze test. The PAL's ability to pass through the blood-brain barrier was verified via Multiple Reaction Monitoring (MRM). Label-free proteomics analysis revealed PAL administration led to changes most prominently in the cerebellum, followed by the hippocampus, but none in the cortex. Most of the differentially expressed proteins in PAL compared to the 5xFAD control group (ALZ) were the opposite of those in ALZ in comparison to healthy Alzheimer's littermates (ALM) group. HS105, HS12A, and RL12 were detected as hub proteins in the cerebellum. Collectively, here we present PAL as a potential therapeutic candidate owing to its alleviating effect in 5xFAD mice on not only cognitive impairment but also proteomes in the cerebellum and hippocampus.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Busra Gurel
- Sabanci University Nanotechnology Research and Application Center, SUNUM, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
4
|
Karayel-Basar M, Uras I, Kiris I, Sahin B, Akgun E, Baykal AT. Spatial proteomic alterations detected via MALDI-MS imaging implicate neuronal loss in a Huntington's disease mouse (YAC128) brain. Mol Omics 2022; 18:336-347. [PMID: 35129568 DOI: 10.1039/d1mo00440a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that occurs with the increase of CAG trinucleotide repeats in the huntingtin gene. To understand the mechanisms of HD, powerful proteomics techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed. However, one major drawback of these methods is loss of the region-specific quantitative information of the proteins due to analysis of total tissue lysates. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a MS-based label-free technique that works directly on tissue sections and gathers m/z values with their respective regional information. In this study, we established a data processing protocol that includes several software programs and methods to determine spatial protein alterations between the brain samples of a 12 month-old YAC128 HD mouse model and their non-transgenic littermates. 22 differentially expressed proteins were revealed with their respective regional information, and possible relationships of several proteins were discussed. As a validation of the MALDI-MSI analysis, a differentially expressed protein (GFAP) was verified using immunohistochemical staining. Furthermore, since several proteins detected in this study have previously been associated with neuronal loss, neuronal loss in the cortical region was demonstrated using an anti-NeuN immunohistochemical staining method. In conclusion, the findings of this research have provided insights into the spatial proteomic changes between HD transgenic and non-transgenic littermates and therefore, we suggest that MALDI-MSI is a powerful technique to determine spatial proteomic alterations between biological samples, and the data processing that we present here can be employed as a complementary tool for the data analysis.
Collapse
Affiliation(s)
- Merve Karayel-Basar
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irep Uras
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kiris
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
5
|
Low molecular weight chondroitin sulfate ameliorates pathological changes in 5XFAD mice by improving various functions in the brain. Neuropharmacology 2021; 199:108796. [PMID: 34543632 DOI: 10.1016/j.neuropharm.2021.108796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
Our previous study found that low molecular weight chondroitin sulfate (LMWCS) had neuroprotective effects against the toxicity of amyloid-β (Aβ) peptides both in vitro and in vivo, and we speculated that the effects might be related with its anti-oxidative activities. In this study, the anti-Alzheimer's disease (AD) activity of LMWCS was further studied in 5XFAD transgenic mice. After 4-month gavage, the levels of Aβ1-42 level, amyloid precursor protein (APP) and presenilin 1 (PS1) were significantly decreased in the brains of 5XFAD mice, indicating the alteration of APP metabolism by LMWCS. Besides, LMWCS inhibited the secretions of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6. Furthermore, the suppression of neuroinflammation by LMWCS was supported by the decreased expressions of glial fibrillary acidic protein (GFAP) and toll-like receptor 2 (TLR2) in the brains. LMWCS also reduced the production of reactive oxygen species (ROS) and the level of phospho-tau (Ser404) in the brains. Nevertheless, the changes in the behavior tests were moderate. In conclusion, LMWCS administration ameliorated APP metabolism, neuroinflammation, ROS production and tau protein abnormality in the brains of 5XFAD mice, displaying the potential to improve the pathological changes of AD mouse brain. LMWCS could be considered as a promising anti-AD drug candidate, nonetheless, the therapy regimen need to be optimized to improve its pharmacotherapy efficacy.
Collapse
|
6
|
Kiris I, Skalicka-Wozniak K, Basar MK, Sahin B, Gurel B, Baykal AT. Molecular Effects of Pteryxin and Scopoletin in the 5xFAD Alzheimer's Disease Mouse Model. Curr Med Chem 2021; 29:2937-2950. [PMID: 34455957 DOI: 10.2174/0929867328666210827152914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent diseases with rapidly increasing numbers, but there is still no medication to treat or stop the disease. Previous data on coumarins suggests that scopoletin may have potential benefits in AD. OBJECTIVE Evaluate the therapeutic potential of the coumarins with natural origin - scopoletin and pteryxin in a 5xFAD mouse model of AD Methods: Both compounds were administered at two doses to 12-month-old mice, which represent severe AD pathology. The effects of coumarins were assessed on cognition in mouse experiments. Changes in the overall brain proteome were evaluated using LC-MS/MS analyses. RESULTS The Morris water maze test implicated that a higher dose of pteryxin (16 mg/kg) significantly improved learning, and the proteome analysis showed pronounced changes of specific proteins upon pteryxin administration. The amyloid-β precursor protein, glial fibrillary acid protein, and apolipoprotein E protein which are highly associated with AD, were among the differentially expressed proteins at the higher dose of the pteryxin. CONCLUSION Overall, pteryxin may be evaluated further as a disease-modifying agent in AD pathology in the late stages of AD.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| | | | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul. Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul. Turkey
| |
Collapse
|
7
|
Belaya I, Kucháriková N, Górová V, Kysenius K, Hare DJ, Crouch PJ, Malm T, Atalay M, White AR, Liddell JR, Kanninen KM. Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168715. [PMID: 34445419 PMCID: PMC8395833 DOI: 10.3390/ijms22168715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.
Collapse
Affiliation(s)
- Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Veronika Górová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Dominic J. Hare
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peter J. Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Anthony R. White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Jeffrey R. Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
- Correspondence:
| |
Collapse
|
8
|
Kiris I, Basar MK, Sahin B, Gurel B, Coskun J, Mroczek T, Baykal AT. Evaluation of the Therapeutic Effect of Lycoramine on Alzheimer's Disease in Mouse Model. Curr Med Chem 2021; 28:3449-3473. [PMID: 33200692 DOI: 10.2174/0929867327999201116193126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is one of the leading health problems characterized by the accumulation of Aβ and hyperphosphorylated tau that account for the senile plaque formations causing extensive cognitive decline. Many of the clinical diagnoses of Alzheimer's disease are made in the late stages, when the pathological changes have already progressed. OBJECTIVE The objective of this study is to evaluate the promising therapeutic effects of a natural compound, lycoramine, which has been shown to have therapeutic potential in several studies and to understand its mechanism of action on the molecular level via differential protein expression analyses. METHODS Lycoramine and galantamine, an FDA approved drug used in the treatment of mild to moderate AD, were administered to 12 month-old 5xFAD mice. Effects of the compounds were investigated by Morris water maze, immunohistochemistry and label- free differential protein expression analyses. RESULTS Here we demonstrated the reversal of cognitive decline via behavioral testing and the clearance of Aβ plaques. Proteomics analysis provided in-depth information on the statistically significant protein perturbations in the cortex, hippocampus and cerebellum sections to hypothesize the possible clearance mechanisms of the plaque formation and the molecular mechanism of the reversal of cognitive decline in a transgenic mouse model. Bioinformatics analyses showed altered molecular pathways that can be linked with the reversal of cognitive decline observed after lycoramine administration but not with galantamine. CONCLUSION Lycoramine shows therapeutic potential to halt and reverse cognitive decline at the late stages of disease progression, and holds great promise for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Tomasz Mroczek
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
9
|
Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021; 10:antiox10010061. [PMID: 33419006 PMCID: PMC7825317 DOI: 10.3390/antiox10010061] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), notably hepcidin and nitric oxide (·NO). Hepcidin is a small cationic peptide with a central role in regulating systemic iron homeostasis. Also present in the cerebrospinal fluid (CSF), hepcidin can reduce iron export from neurons and decreases iron entry through the blood-brain barrier (BBB) by binding to the iron exporter ferroportin 1 (Fpn1). Likewise, ·NO selectively converts cytosolic aconitase (c-aconitase) into the iron regulatory protein 1 (IRP1), which regulates cellular iron homeostasis through its binding to iron response elements (IRE) located in the mRNAs of iron-related proteins. Nitric oxide-activated IRP1 can impair cellular iron homeostasis during neuroinflammation, triggering iron accumulation, especially in the mitochondria, leading to neuronal death. In this review, we will summarize findings that connect neuroinflammation and iron accumulation, which support their causal association in the neurodegenerative processes observed in AD and PD.
Collapse
Affiliation(s)
- Pamela J. Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Daniel A. Bórquez
- Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, 8370007 Santiago, Chile;
| | - Marco Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Correspondence: ; Tel.: +56-2-29787360
| |
Collapse
|
10
|
Gurel B, Cansev M, Koc C, Ocalan B, Cakir A, Aydin S, Kahveci N, Ulus IH, Sahin B, Basar MK, Baykal AT. Proteomics Analysis of CA1 Region of the Hippocampus in Pre-, Progression and Pathological Stages in a Mouse Model of the Alzheimer's Disease. Curr Alzheimer Res 2020; 16:613-621. [PMID: 31362689 DOI: 10.2174/1567205016666190730155926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND CA1 subregion of the hippocampal formation is one of the primarily affected structures in AD, yet not much is known about proteome alterations in the extracellular milieu of this region. OBJECTIVE In this study, we aimed to identify the protein expression alterations throughout the pre-pathological, progression and pathological stages of AD mouse model. METHODS The CA1 region perfusates were collected by in-vivo intracerebral push-pull perfusion from transgenic 5XFAD mice and their non-transgenic littermates at 3, 6 and 12 wereβmonths of age. Morris water maze test and immunohistochemistry staining of A performed to determine the stages of the disease in this mouse model. The protein expression differences were analyzed by label-free shotgun proteomics analysis. RESULTS A total of 251, 213 and 238 proteins were identified in samples obtained from CA1 regions of mice at 3, 6 and 12 months of age, respectively. Of these, 68, 41 and 33 proteins showed statistical significance. Pathway analysis based on the unique and common proteins within the groups revealed that several pathways are dysregulated during different stages of AD. The alterations in glucose and lipid metabolisms respectively in pre-pathologic and progression stages of the disease, lead to imbalances in ROS production via diminished SOD level and impairment of neuronal integrity. CONCLUSION We conclude that CA1 region-specific proteomic analysis of hippocampal degeneration may be useful in identifying the earliest as well as progressional changes that are associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Busra Gurel
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Cansev
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Cansu Koc
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Busra Ocalan
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Aysen Cakir
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sami Aydin
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Nevzat Kahveci
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ismail Hakki Ulus
- Department of Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed R&D Laboratory, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
11
|
Kamer AR, Craig RG, Niederman R, Fortea J, de Leon MJ. Periodontal disease as a possible cause for Alzheimer's disease. Periodontol 2000 2020; 83:242-271. [PMID: 32385876 DOI: 10.1111/prd.12327] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
Abstract
Approximately 47 million people worldwide have been diagnosed with dementia, 60%-80% of whom have dementia of the Alzheimer's disease type. Unfortunately, there is no cure in sight. Defining modifiable risk factors for Alzheimer's disease may have a significant impact on its prevalence. An increasing body of evidence suggests that chronic inflammation and microbial dysbiosis are risk factors for Alzheimer's disease. Periodontal disease is a chronic inflammatory disease that develops in response to response to microbial dysbiosis. Many studies have shown an association between periodontal disease and Alzheimer's disease. The intent of this paper was to review the existing literature and determine, using the Bradford Hill criteria, whether periodontal disease is causally related to Alzheimer's disease.
Collapse
Affiliation(s)
- Angela R Kamer
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA
| | - Ronald G Craig
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA.,Department of Basic Sciences and Craniofacial Biology, New York University, College of Dentistry, New York, New York, USA
| | - Richard Niederman
- Department of Epidemiology and Health Promotion, New York University, College of Dentistry, New York, New York, USA
| | - Juan Fortea
- Alzheimer Down Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona and Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Luo Z, Su R, Wang W, Liang Y, Zeng X, Shereen MA, Bashir N, Zhang Q, Zhao L, Wu K, Liu Y, Wu J. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathog 2019; 15:e1008142. [PMID: 31730654 PMCID: PMC6932824 DOI: 10.1371/journal.ppat.1008142] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/26/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023] Open
Abstract
As a neurotropic virus, human Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease (HFMD) and may develop severe neurological disorders in infants. Toll-like receptor 7 (TLR7) acts as an innate immune receptor and is also a death receptor in the central nervous system (CNS). However, the mechanisms underlying the regulation of TLR7-mediated brain pathogenesis upon EV71 infection remain largely elusive. Here we reveal a novel mechanism by which EV71 infects astrocytes in the brain and induces neural pathogenesis via TLR7 and interleukin-6 (IL-6) in C57BL/6 mice and in human astroglioma U251 cells. Upon EV71 infection, wild-type (WT) mice displayed more significant body weight loss, higher clinical scores, and lower survival rates as compared with TLR7-/- mice. In the cerebral cortex of EV71-infected mice, neurofilament integrity was disrupted, and inflammatory cell infiltration and neurodegeneration were induced in WT mice, whereas these were largely absent in TLR7-/- mice. Similarly, IL-6 production, Caspase-3 cleavage, and cell apoptosis were significantly higher in EV71-infected WT mice as compared with TLR7-/- mice. Moreover, EV71 preferentially infected and induced IL-6 in astrocytes of mice brain. In U251 cells, EV71-induced IL-6 production and cell apoptosis were suppressed by shRNA-mediated knockdown of TLR7 (shTLR7). Moreover, in the cerebral cortex of EV71-infected mice, the blockade of IL-6 with anti-IL-6 antibody (IL-6-Ab) restored the body weight loss, attenuated clinical scores, improved survival rates, reduced the disruption of neurofilament integrity, decreased cell apoptotic induction, and lowered levels of Caspase-3 cleavage. Similarly, in EV71-infected U251 cells, IL-6-Ab blocked EV71-induced IL-6 production and cell apoptosis in response to viral infection. Collectively, it’s exhibited TLR7 upregulation, IL-6 induction and astrocytic cell apoptosis in EV71-infected human brain. Taken together, we propose that EV71 infects astrocytes of the cerebral cortex in mice and human and triggers TLR7 signaling and IL-6 release, subsequently inducing neural pathogenesis in the brain. Enterovirus 71 (EV71) infection causes aseptic meningitis, poliomyelitis-like paralysis and fatal encephalitis in infants. Besides an immune receptor, toll-like receptor 7 (TLR7) serves as a death receptor in central nervous system (CNS). However, the role of TLR7 in EV71-induced neural pathogenesis remains ambiguous. This study reveals a distinct mechanism by which EV71 induces neurodegeneration via TLR7 and interleukin-6 (IL-6). Upon EV71 infection, TLR7-/- mice displayed less body weight loss, lower clinical score, and higher survival rate as compared with wild-type (WT) mice. Meanwhile, a severer histopathologic neurofilaments disruption, neurodegeneration and cell apoptosis were observed in brain of EV71-infected WT mice. IL-6 release, cell apoptosis, and Caspase-3 cleavage were attenuated by shRNA targeting TLR7 (shTLR7) in EV71-infected U251 cells. Moreover, anti-IL-6 antibody (IL-6-Ab) suppressed EV71-induced body weight loss, clinical score increase, and survival rate decrease as well as neurofilaments disruption and neurodegeneration in mice, and it also attenuated EV71-induced cell apoptosis and Caspase-3 cleavage in U251 cells. It’s retrospectively observed that TLR7 upregulation, IL-6 induction and astrocytic cell apoptosis in EV71-infected human brain. Therefore, TLR7 is required for neural pathogenesis by IL-6 induction upon EV71 infection.
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yicong Liang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nadia Bashir
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
13
|
Yagensky O, Kohansal-Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, Härtig W, Urlaub H, Chua JJ. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. eLife 2019; 8:47498. [PMID: 31453805 PMCID: PMC6739868 DOI: 10.7554/elife.47498] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease is the most prevalent neurodegenerative disorder leading to progressive cognitive decline. Despite decades of research, understanding AD progression at the molecular level, especially at its early stages, remains elusive. Here, we identified several presymptomatic AD markers by investigating brain proteome changes over the course of neurodegeneration in a transgenic mouse model of AD (3×Tg-AD). We show that one of these markers, heme-binding protein 1 (Hebp1), is elevated in the brains of both 3×Tg-AD mice and patients affected by rapidly-progressing forms of AD. Hebp1, predominantly expressed in neurons, interacts with the mitochondrial contact site complex (MICOS) and exhibits a perimitochondrial localization. Strikingly, wildtype, but not Hebp1-deficient, neurons showed elevated cytotoxicity in response to heme-induced apoptosis. Increased survivability in Hebp1-deficient neurons is conferred by blocking the activation of the mitochondrial-associated caspase signaling pathway. Taken together, our data highlight a role of Hebp1 in progressive neuronal loss during AD progression.
Collapse
Affiliation(s)
- Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Saravanan Gunaseelan
- Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tamara Rabe
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Saima Zafar
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.,Clinical Dementia Center, Department of Neurology, German Center for Neurodegenerative Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center, Department of Neurology, German Center for Neurodegenerative Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - John Je Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Vela D. The Dual Role of Hepcidin in Brain Iron Load and Inflammation. Front Neurosci 2018; 12:740. [PMID: 30374287 PMCID: PMC6196657 DOI: 10.3389/fnins.2018.00740] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022] Open
Abstract
Hepcidin is the major regulator of systemic iron metabolism, while the role of this peptide in the brain has just recently been elucidated. Studies suggest a dual role of hepcidin in neuronal iron load and inflammation. This is important since neuronal iron load and inflammation are pathophysiological processes frequently associated with neurodegeneration. Furthermore, manipulation of hepcidin activity has recently been used to recover neuronal damage due to brain inflammation in animal models and cultured cells. Therefore, understanding the mechanistic insights of hepcidin action in the brain is important to uncover its role in treating neuronal damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| |
Collapse
|
15
|
Griñán-Ferré C, Izquierdo V, Otero E, Puigoriol-Illamola D, Corpas R, Sanfeliu C, Ortuño-Sahagún D, Pallàs M. Environmental Enrichment Improves Cognitive Deficits, AD Hallmarks and Epigenetic Alterations Presented in 5xFAD Mouse Model. Front Cell Neurosci 2018; 12:224. [PMID: 30158856 PMCID: PMC6104164 DOI: 10.3389/fncel.2018.00224] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
Cumulative evidence shows that modifications in lifestyle factors constitute an effective strategy to modulate molecular events related to neurodegenerative diseases, confirming the relevant role of epigenetics. Accordingly, Environmental Enrichment (EE) represents an approach to ameliorate cognitive decline and neuroprotection in Alzheimer’s disease (AD). AD is characterized by specific neuropathological hallmarks, such as β-amyloid plaques and Neurofibrillary Tangles, which severely affect the areas of the brain responsible for learning and memory. We evaluated EE neuroprotective influence on 5xFAD mice. We found a better cognitive performance on EE vs. Control (Ct) 5xFAD mice, until being similar to Wild-Type (Wt) mice group. Neurodegenerative markers as β-CTF and tau hyperphosphorylation, reduced protein levels whiles APPα, postsynaptic density 95 (PSD95) and synaptophysin (SYN) protein levels increased protein levels in the hippocampus of 5xFAD-EE mice group. Furthermore, a reduction in gene expression of Il-6, Gfap, Hmox1 and Aox1 was determined. However, no changes were found in the gene expression of neurotrophins, such as Brain-derived neurotrophic factor (Bdnf), Nerve growth factor (Ngf), Tumor growth factor (Tgf) and Nerve growth factor inducible (Vgf) in mice with EE. Specifically, we found a reduced DNA-methylation level (5-mC) and an increased hydroxymethylation level (5-hmC), as well as an increased histone H3 and H4 acetylation level. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme, such as Dnmt3a/b, Hdac1, and Tet2. Extensive molecular analysis revealed a correlation between neuronal function and changes in epigenetic marks after EE that explain the cognitive improvement in 5xFAD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Eduard Otero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunomodulación Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de las Salud (CUCS), Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Kaya I, Zetterberg H, Blennow K, Hanrieder J. Shedding Light on the Molecular Pathology of Amyloid Plaques in Transgenic Alzheimer's Disease Mice Using Multimodal MALDI Imaging Mass Spectrometry. ACS Chem Neurosci 2018; 9:1802-1817. [PMID: 29648443 DOI: 10.1021/acschemneuro.8b00121] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Senile plaques formed by aggregated amyloid β peptides are one of the major pathological hallmarks of Alzheimer's disease (AD) which have been suggested to be the primary influence triggering the AD pathogenesis and the rest of the disease process. However, neurotoxic Aβ aggregation and progression are associated with a wide range of enigmatic biochemical, biophysical and genetic processes. MALDI imaging mass spectrometry (IMS) is a label-free method to elucidate the spatial distribution patterns of intact molecules in biological tissue sections. In this communication, we utilized multimodal MALDI-IMS analysis on 18 month old transgenic AD mice (tgArcSwe) brain tissue sections to enhance molecular information correlated to individual amyloid aggregates on the very same tissue section. Dual polarity MALDI-IMS analysis of lipids on the same pixel points revealed high throughput lipid molecular information including sphingolipids, phospholipids, and lysophospholipids which can be correlated to the ion images of individual amyloid β peptide isoforms at high spatial resolutions (10 μm). Further, multivariate image analysis was applied in order to probe the multimodal MALDI-IMS data in an unbiased way which verified the correlative accumulations of lipid species with dual polarity and Aβ peptides. This was followed by the lipid fragmentation obtained directly on plaque aggregates at higher laser pulse energies which provided tandem MS information useful for structural elucidation of several lipid species. Majority of the amyloid plaque-associated alterations of lipid species are for the first time reported here. The significance of this technique is that it allows correlating the biological discussion of all detected plaque-associated molecules to the very same individual amyloid plaques which can give novel insights into the molecular pathology of even a single amyloid plaque microenvironment in a specific brain region. Therefore, this allowed us to interpret the possible roles of lipids and amyloid peptides in amyloid plaque-associated pathological events such as focal demyelination, autophagic/lysosomal dysfunction, astrogliosis, inflammation, oxidative stress, and cell death.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 405 30 Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V3, 43180 Mölndal, Sweden
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
- UK Dementia Research Institute at University College London, London WC1N 3AR, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V3, 43180 Mölndal, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, House V3, 43180 Mölndal, Sweden
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
17
|
No evidence in support of a prodromal respiratory control signature in the TgF344-AD rat model of Alzheimer's disease. Respir Physiol Neurobiol 2018; 265:55-67. [PMID: 29969703 DOI: 10.1016/j.resp.2018.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition disturbing major brain networks, including those pivotal to the motor control of breathing. The aim of this study was to examine respiratory control in the TgF344-AD transgenic rat model of AD. At 8-11 months of age, basal minute ventilation and ventilatory responsiveness to chemostimulation were equivalent in conscious wild-type (WT) and TgF344-AD rats. Under urethane anesthesia, basal diaphragm and genioglossus EMG activities were similar in WT and TgF344-AD rats. The duration of phenylbiguanide-induced apnoea was significantly shorter in TgF344-AD rats compared with WT. Following bilateral cervical vagotomy, diaphragm and genioglossus EMG responsiveness to chemostimulation were intact in TgF344-AD rats. Amyloid precursor protein C-terminal fragments were elevated in the TgF344-AD brainstem, in the absence of amyloid-β accumulation or alterations in tau phosphorylation. Brainstem pro-inflammatory cytokine concentrations were not increased in TgF344-AD rats. We conclude that neural control of breathing is preserved in TgF344-AD rats at this stage of the disease.
Collapse
|
18
|
Lane DJ, Ayton S, Bush AI. Iron and Alzheimer’s Disease: An Update on Emerging Mechanisms. J Alzheimers Dis 2018; 64:S379-S395. [DOI: 10.3233/jad-179944] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Darius J.R. Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I. Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|