1
|
Mora N, Slot EJ, Lewandowski V, Menafra M, Mallik M, van Lith P, Sijlmans C, van Bakel N, Ignatova Z, Storkebaum E. Glycyl-tRNA sequestration is a unifying mechanism underlying GARS1-associated peripheral neuropathy. Nucleic Acids Res 2025; 53:gkaf201. [PMID: 40119731 PMCID: PMC11928938 DOI: 10.1093/nar/gkaf201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Dominantly inherited mutations in eight cytosolic aminoacyl-tRNA synthetase genes cause hereditary motor and sensory neuropathy, characterized by degeneration of peripheral motor and sensory axons. We previously identified a pathogenic gain-of-toxic function mechanism underlying peripheral neuropathy (PN) caused by heterozygous mutations in the GARS1 gene, encoding glycyl-tRNA synthetase (GlyRS). Specifically, PN-mutant GlyRS variants sequester tRNAGly, which depletes the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly available to the ribosome and consequently ribosome stalling at glycine codons. Given that GlyRS functions as a homodimer, a subset of PN-GlyRS mutations might alternatively cause peripheral neuropathy through a dominant negative loss-of-function mechanism. To explore this possibility, we here generated three novel PN-GlyRS Drosophila models expressing human PN-GlyRS (hGlyRS) variants that do not alter the overall GlyRS protein charge (S211F and H418R) or the single reported PN-GlyRS variant that renders the GlyRS protein charge more negative (K456Q). High-level expression of hGlyRS-K456Q did not induce peripheral neuropathy and the K456Q variant does not affect aminoacylation activity, suggesting that K456Q is not a pathogenic mutation. Expression of hGlyRS-S211F or hGlyRS-H418R in Drosophila did induce peripheral neuropathy and de novo protein synthesis defects. Genetic and biochemical evidence indicates that these phenotypes were attributable to tRNAGly sequestration rather than a dominant negative mechanism. Our data identify tRNAGly sequestration as a unifying pathogenic mechanism underlying PN-GlyRS. Thus, elevating tRNAGly levels may constitute a therapeutic approach for all PN-GlyRS patients, irrespective of their disease-causing mutation.
Collapse
Affiliation(s)
- Natalia Mora
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Erik F J Slot
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Vanessa Lewandowski
- Department of Biochemistry and Molecular Biology, Hamburg University, 20146 Hamburg, Germany
| | - Maria P Menafra
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Pascal van Lith
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Céline Sijlmans
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Nick van Bakel
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| | - Zoya Ignatova
- Department of Biochemistry and Molecular Biology, Hamburg University, 20146 Hamburg, Germany
| | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525AJ Nijmegen, the Netherlands
| |
Collapse
|
2
|
Jiménez‐Jiménez J, Navarrete I, Azorín I, Martí P, Vílchez R, Muelas N, Cabello‐Murgui J, Millet E, Vázquez‐Costa JF, Vílchez JJ, Sevilla T, Sivera R. Insights into phenotypic variability caused by GARS1 pathogenic variants. Eur J Neurol 2024; 31:e16416. [PMID: 39051710 PMCID: PMC11414817 DOI: 10.1111/ene.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND PURPOSE Pathogenic variants of the glycyl-tRNA synthetase 1 (GARS1) gene have been described as a cause of Charcot-Marie-Tooth disease type 2D, motor axonal neuropathy with upper limb predominance (distal hereditary motor neuropathy [dHMN] type V), and infantile spinal muscular atrophy. METHODS This cross-sectional, retrospective, observational study was carried out on 12 patients harboring the c.794C>T (p.Ser265Phe) missense pathogenic variant in GARS1. The patients' clinical data, nerve conduction studies, magnetic resonance imaging (MRI), and intraepidermal nerve fiber density in skin biopsies were reviewed. RESULTS The mean age at onset was 9.5 years; the intrinsic hand muscles were affected before or at the same time as the distal leg musculature. The clinical examination revealed greater weakness of the distal muscles, with a more pronounced involvement of the thenar complex and the first dorsal interosseous in upper limbs. Electrophysiological studies were concordant with an exclusively motor axonal neuropathy. A pathologic split hand index was found in six patients. Muscle MRI showed predominant fatty infiltration and atrophy of the anterolateral and superficial posterior compartment of the legs. Most patients reported distal pinprick sensory loss. A reduced intraepidermal nerve fiber density was evident in skin biopsies from proximal and distal sites in nine patients. CONCLUSIONS GARS1 variants may produce a dHMN phenotype with "split hand" and sensory disturbances, even when sensory nerve conduction studies are normal. This could be explained by a dysfunction of sensory neurons in the dorsal ganglion that is reflected as a reduction of dermal nerve endings in skin biopsies without a distal gradient.
Collapse
Affiliation(s)
- Jesús Jiménez‐Jiménez
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
| | - Irene Navarrete
- Department of Digestive DiseasesHospital Universitari i Politècnic La FeValenciaSpain
| | - Inmaculada Azorín
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
| | - Pilar Martí
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
| | - Roger Vílchez
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Javier Cabello‐Murgui
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
| | - Elvira Millet
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Department of NeurophysiologyHospital Universitari i Politècnic La FeValenciaSpain
| | - Juan Francisco Vázquez‐Costa
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Juan J. Vílchez
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Rafael Sivera
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
3
|
Jourdain J, Barasc H, Faraut T, Calgaro A, Bonnet N, Marcuzzo C, Suin A, Barbat A, Hozé C, Besnard F, Taussat S, Grohs C, Kuchly C, Iampietro C, Donnadieu C, Pinton A, Boichard D, Capitan A. Large-scale detection and characterization of interchromosomal rearrangements in normozoospermic bulls using massive genotype and phenotype data sets. Genome Res 2023; 33:957-971. [PMID: 37414574 PMCID: PMC10519396 DOI: 10.1101/gr.277787.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023]
Abstract
In this paper, we developed a highly sensitive approach to detect interchromosomal rearrangements in cattle by searching for abnormal linkage disequilibrium patterns between markers located on different chromosomes in large paternal half-sib families genotyped as part of routine genomic evaluations. We screened 5571 families of artificial insemination sires from 15 breeds and revealed 13 putative interchromosomal rearrangements, 12 of which were validated by cytogenetic analysis and long-read sequencing. These consisted of one Robertsonian fusion, 10 reciprocal translocations, and the first case of insertional translocation reported in cattle. Taking advantage of the wealth of data available in cattle, we performed a series of complementary analyses to define the exact nature of these rearrangements, investigate their origins, and search for factors that may have favored their occurrence. We also evaluated the risks to the livestock industry and showed significant negative effects on several traits in the sires and in their balanced or aneuploid progeny compared with wild-type controls. Thus, we present the most comprehensive and thorough screen for interchromosomal rearrangements compatible with normal spermatogenesis in livestock species. This approach is readily applicable to any population that benefits from large genotype data sets, and will have direct applications in animal breeding. Finally, it also offers interesting prospects for basic research by allowing the detection of smaller and rarer types of chromosomal rearrangements than GTG banding, which are interesting models for studying gene regulation and the organization of genome structure.
Collapse
Affiliation(s)
- Jeanlin Jourdain
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Harmonie Barasc
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Anne Calgaro
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Nathalie Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Camille Marcuzzo
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Chris Hozé
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
- Idele, 75012 Paris, France
| | - Sébastien Taussat
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Aurélien Capitan
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| |
Collapse
|
4
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
5
|
Turvey AK, Horvath GA, Cavalcanti ARO. Aminoacyl-tRNA synthetases in human health and disease. Front Physiol 2022; 13:1029218. [PMID: 36330207 PMCID: PMC9623071 DOI: 10.3389/fphys.2022.1029218] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Aminoacyl-tRNA Synthetases (aaRSs) are an evolutionarily ancient family of enzymes that catalyze the esterification reaction linking a transfer RNA (tRNA) with its cognate amino acid matching the anticodon triplet of the tRNA. Proper functioning of the aaRSs to create aminoacylated (or “charged”) tRNAs is required for efficient and accurate protein synthesis. Beyond their basic canonical function in protein biosynthesis, aaRSs have a surprisingly diverse array of non-canonical functions that are actively being defined. The human genome contains 37 genes that encode unique aaRS proteins. To date, 56 human genetic diseases caused by damaging variants in aaRS genes have been described: 46 are autosomal recessive biallelic disorders and 10 are autosomal dominant monoallelic disorders. Our appreciation of human diseases caused by damaging genetic variants in the aaRSs has been greatly accelerated by the advent of next-generation sequencing, with 89% of these gene discoveries made since 2010. In addition to these genetic disorders of the aaRSs, anti-synthetase syndrome (ASSD) is a rare autoimmune inflammatory myopathy that involves the production of autoantibodies that disrupt aaRS proteins. This review provides an overview of the basic biology of aaRS proteins and describes the rapidly growing list of human diseases known to be caused by genetic variants or autoimmune targeting that affect both the canonical and non-canonical functions of these essential proteins.
Collapse
Affiliation(s)
- Alexandra K. Turvey
- Department of Biology, Pomona College, Claremont, CA, United States
- *Correspondence: Alexandra K. Turvey,
| | - Gabriella A. Horvath
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children’s Hospital, Vancouver, BC, Canada
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Meyer AP, Forrest ME, Nicolau S, Wiszniewski W, Bland MP, Tsao CY, Antonellis A, Abreu NJ. Pathogenic missense variants altering codon 336 of GARS1 lead to divergent dominant phenotypes. Hum Mutat 2022; 43:869-876. [PMID: 35332613 PMCID: PMC9247498 DOI: 10.1002/humu.24372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/03/2023]
Abstract
Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D. Functional studies using yeast complementation assays support a loss-of-function effect for both variants; however, this did not reveal variable effects that might explain the phenotypic differences. These cases expand the mutational spectrum of GARS1-related disorders and demonstrate phenotypic variability based on the specific substitution at a single residue.
Collapse
Affiliation(s)
- Alayne P. Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Megan E. Forrest
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Stefan Nicolau
- The Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Wojciech Wiszniewski
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Mary Pat Bland
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Chang-Yong Tsao
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Division of Child Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Neurology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Nicolas J. Abreu
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Division of Child Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
7
|
Ozes B, Moss K, Myers M, Ridgley A, Chen L, Murrey D, Sahenk Z. AAV1.NT-3 gene therapy in a CMT2D model: phenotypic improvements in GarsP278KY/+ mice. Brain Commun 2021; 3:fcab252. [PMID: 34755111 PMCID: PMC8568849 DOI: 10.1093/braincomms/fcab252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.
Collapse
Affiliation(s)
- Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lei Chen
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Murrey
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
8
|
Zuko A, Mallik M, Thompson R, Spaulding EL, Wienand AR, Been M, Tadenev ALD, van Bakel N, Sijlmans C, Santos LA, Bussmann J, Catinozzi M, Das S, Kulshrestha D, Burgess RW, Ignatova Z, Storkebaum E. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 2021; 373:1161-1166. [PMID: 34516840 DOI: 10.1126/science.abb3356] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robin Thompson
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anne R Wienand
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | | | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarada Das
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
9
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
10
|
Sun B, He ZQ, Li YR, Bai JM, Wang HR, Wang HF, Cui F, Yang F, Huang XS. Screening for SH3TC2 variants in Charcot-Marie-Tooth disease in a cohort of Chinese patients. Acta Neurol Belg 2021; 122:1169-1175. [PMID: 33587240 DOI: 10.1007/s13760-021-01605-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
Mutations in the SH3TC2 gene cause Charcot-Marie-Tooth disease type 4C (CMT4C), characterized by inherited demyelinating peripheral neuropathy. CMT4C is a common form of CMT4/autosomal recessive (AR) CMT1. This study examined the SH3TC2 variants, investigated genotype-phenotype correlations and explored the frequency of CMT4C in Chinese patients. A total of 206 unrelated patients of Chinese Han descent clinically diagnosed with CMT were recruited. All patients underwent detailed history-taking, neurological examination, laboratory workups, and electrophysiological studies. Genetic analysis was performed via high-throughput target sequencing (NGS). Three patients, one male and two females, were found to carry five SH3TC2 mutations: patient 1 (c.3154C > T, p.R1054X; c.929G > A, p.G310E); Patient 2 (c.2872_2872del, p.S958fs; c.3710C > T, p.A1237V) and Patient 3 (c.2782C > T, p.Q928X; c.929G > A, p.G310E). The c.2872_2872del, c.3710C > T and c.2782C > T variants were not reported before. CMT4C caused by SH3TC2 mutation is a very common type of CMT4/AR CMT1. Three novel mutations, c.2872_2872del, c.3710C > T and c.2782C > T, were found in this study. Combination of clinical phenotype, nerve conduction studies, genetic analysis and bioinformatics analysis are of vital importance in patients suspected as CMT.
Collapse
Affiliation(s)
- Bo Sun
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zheng-Qing He
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yan-Ran Li
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jiong-Ming Bai
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Hao-Ran Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Hong-Fen Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fang Cui
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fei Yang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xu-Sheng Huang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
11
|
Xie Y, Lin Z, Pakhrin PS, Li X, Wang B, Liu L, Huang S, Zhao H, Cao W, Hu Z, Guo J, Shen L, Tang B, Zhang R. Genetic and Clinical Features in 24 Chinese Distal Hereditary Motor Neuropathy Families. Front Neurol 2021; 11:603003. [PMID: 33381078 PMCID: PMC7767876 DOI: 10.3389/fneur.2020.603003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Distal hereditary motor neuropathy (dHMN) is a clinically and genetically heterogeneous group of inherited neuropathies. The objectives of this study were to report the clinical and genetic features of dHMN patients in a Chinese cohort. Aims and Methods: We performed clinical assessments and whole-exome sequencing in 24 dHMN families from Mainland China. We conducted a retrospective analysis of the data and investigated the frequency and clinical features of patients with a confirmed mutation. Results: Two novel heterozygous mutations in GARS, c.373G>C (p.E125Q) and c.1015G>A (p.G339R), were identified and corresponded to the typical dHMN-V phenotype. Together with families with WARS, SORD, SIGMAR1, and HSPB1 mutations, 29.2% of families (7/24) acquired a definite genetic diagnosis. One novel heterozygous variant of uncertain significance, c.1834G>A (p.G612S) in LRSAM1, was identified in a patient with mild dHMN phenotype. Conclusion: Our study expanded the mutation spectrum of GARS mutations and added evidence that GARS mutations are associated with both axonal Charcot-Marie-Tooth and dHMN phenotypes. Mutations in genes encoding aminoamide tRNA synthetase (ARS) might be a frequent cause of autosomal dominant-dHMN, and SORD mutation might account for a majority of autosomal recessive-dHMN cases. The relatively low genetic diagnosis yield indicated more causative dHMN genes need to be discovered.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pukar Singh Pakhrin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binghao Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Sleigh JN, Mech AM, Aktar T, Zhang Y, Schiavo G. Altered Sensory Neuron Development in CMT2D Mice Is Site-Specific and Linked to Increased GlyRS Levels. Front Cell Neurosci 2020; 14:232. [PMID: 32848623 PMCID: PMC7431706 DOI: 10.3389/fncel.2020.00232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Dominant, missense mutations in the widely and constitutively expressed GARS1 gene cause peripheral neuropathy that usually begins in adolescence and principally impacts the upper limbs. Caused by a toxic gain-of-function in the encoded glycyl-tRNA synthetase (GlyRS) enzyme, the neuropathology appears to be independent of the canonical role of GlyRS in aminoacylation. Patients display progressive, life-long weakness and wasting of muscles in hands followed by feet, with frequently associated deficits in sensation. When dysfunction is observed in motor and sensory nerves, there is a diagnosis of Charcot-Marie-Tooth disease type 2D (CMT2D), or distal hereditary motor neuropathy type V if the symptoms are purely motor. The cause of this varied sensory involvement remains unresolved, as are the pathomechanisms underlying the selective neurodegeneration characteristic of the disease. We have previously identified in CMT2D mice that neuropathy-causing Gars mutations perturb sensory neuron fate and permit mutant GlyRS to aberrantly interact with neurotrophin receptors (Trks). Here, we extend this work by interrogating further the anatomy and function of the CMT2D sensory nervous system in mutant Gars mice, obtaining several key results: (1) sensory pathology is restricted to neurons innervating the hindlimbs; (2) perturbation of sensory development is not common to all mouse models of neuromuscular disease; (3) in vitro axonal transport of signaling endosomes is not impaired in afferent neurons of all CMT2D mouse models; and (4) Gars expression is selectively elevated in a subset of sensory neurons and linked to sensory developmental defects. These findings highlight the importance of comparative neurological assessment in mouse models of disease and shed light on key proposed neuropathogenic mechanisms in GARS1-linked neuropathy.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - Aleksandra M. Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tahmina Aktar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yuxin Zhang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, United Kingdom
| |
Collapse
|
13
|
Manole A, Efthymiou S, O'Connor E, Mendes MI, Jennings M, Maroofian R, Davagnanam I, Mankad K, Lopez MR, Salpietro V, Harripaul R, Badalato L, Walia J, Francklyn CS, Athanasiou-Fragkouli A, Sullivan R, Desai S, Baranano K, Zafar F, Rana N, Ilyas M, Horga A, Kara M, Mattioli F, Goldenberg A, Griffin H, Piton A, Henderson LB, Kara B, Aslanger AD, Raaphorst J, Pfundt R, Portier R, Shinawi M, Kirby A, Christensen KM, Wang L, Rosti RO, Paracha SA, Sarwar MT, Jenkins D, Ahmed J, Santoni FA, Ranza E, Iwaszkiewicz J, Cytrynbaum C, Weksberg R, Wentzensen IM, Guillen Sacoto MJ, Si Y, Telegrafi A, Andrews MV, Baldridge D, Gabriel H, Mohr J, Oehl-Jaschkowitz B, Debard S, Senger B, Fischer F, van Ravenwaaij C, Fock AJM, Stevens SJC, Bähler J, Nasar A, Mantovani JF, Manzur A, Sarkozy A, Smith DEC, Salomons GS, Ahmed ZM, Riazuddin S, Riazuddin S, Usmani MA, Seibt A, Ansar M, Antonarakis SE, Vincent JB, Ayub M, Grimmel M, Jelsig AM, Hjortshøj TD, Karstensen HG, Hummel M, Haack TB, Jamshidi Y, Distelmaier F, Horvath R, Gleeson JG, Becker H, Mandel JL, Koolen DA, Houlden H. De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects. Am J Hum Genet 2020; 107:311-324. [PMID: 32738225 PMCID: PMC7413890 DOI: 10.1016/j.ajhg.2020.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.
Collapse
Affiliation(s)
- Andreea Manole
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Emer O'Connor
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology and Metabolism, Amsterdam, 1081 the Netherlands
| | - Matthew Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Indran Davagnanam
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Maria Rodriguez Lopez
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London (UCL), London, WC1E 6BT, UK
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ricardo Harripaul
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, ON, M5T 1R8, Canada; Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Lauren Badalato
- Department of Pediatrics, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - Jagdeep Walia
- Department of Pediatrics, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - Christopher S Francklyn
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Alkyoni Athanasiou-Fragkouli
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Roisin Sullivan
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sonal Desai
- Department of Neurology and Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kristin Baranano
- Department of Neurology and Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Faisal Zafar
- Department of Pediatrics, Multan Hospital, Multan, 60000, Pakistan
| | - Nuzhat Rana
- Department of Pediatrics, Multan Hospital, Multan, 60000, Pakistan
| | | | - Alejandro Horga
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Majdi Kara
- Department of Pediatrics, Tripoli Children's Hospital, Tripoli, Libya
| | - Francesca Mattioli
- Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, 67404, France
| | - Alice Goldenberg
- Département de Génétique, centre de référence anomalies du développement et syndromes malformatifs, CHU de Rouen, Inserm U1245, UNIROUEN, Normandie Université, Centre Normand de Génomique et de Médecine Personnalisée, Rouen, 76031, France
| | - Helen Griffin
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Amelie Piton
- Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, 67404, France
| | | | | | | | - Joost Raaphorst
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Ruben Portier
- Department of Neurology, Medisch Spectrum Twente, 7512KZ Enschede, the Netherlands
| | - Marwan Shinawi
- Department of Pediatrics, Divisions of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amelia Kirby
- Division of Medical Genetics, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Katherine M Christensen
- Division of Medical Genetics, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Lu Wang
- Howard Hughes Medical Institute, University of California San Diego and Rady Children's Hospital, La Jolla, CA 92130, USA
| | - Rasim O Rosti
- Howard Hughes Medical Institute, University of California San Diego and Rady Children's Hospital, La Jolla, CA 92130, USA
| | - Sohail A Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Dagan Jenkins
- Institute of Child Health, Guilford Street and Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Department of Endocrinology, Diabetes, and Metabolism, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; Medigenome, The Swiss Institute of Genomic Medicine, Geneva, CH-1207, Switzerland
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, CH-1015, Switzerland
| | - Cheryl Cytrynbaum
- Hospital for Sick Children, Division of Clinical and Metabolic Genetics, 555 University Ave., Toronto, M5G 1X8, Canada
| | - Rosanna Weksberg
- Hospital for Sick Children, Division of Clinical and Metabolic Genetics, 555 University Ave., Toronto, M5G 1X8, Canada
| | | | | | - Yue Si
- GeneDx, 207 Perry Parkway Gaithersburg, MD 20877, USA
| | | | - Marisa V Andrews
- Department of Pediatrics, Divisions of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Divisions of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Heinz Gabriel
- CeGaT GmbH and Praxis für Humangenetik Tuebingen, Tuebingen, 72076, Germany
| | - Julia Mohr
- CeGaT GmbH and Praxis für Humangenetik Tuebingen, Tuebingen, 72076, Germany
| | | | - Sylvain Debard
- University of Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67083, France
| | - Bruno Senger
- University of Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67083, France
| | - Frédéric Fischer
- University of Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67083, France
| | - Conny van Ravenwaaij
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, 9713, the Netherlands
| | - Annemarie J M Fock
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, 9713, the Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, 6211, the Netherlands
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London (UCL), London, WC1E 6BT, UK
| | - Amina Nasar
- Department of Pediatrics, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - John F Mantovani
- Division of Child Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adnan Manzur
- Institute of Child Health, Guilford Street and Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Anna Sarkozy
- Institute of Child Health, Guilford Street and Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology and Metabolism, Amsterdam, 1081 the Netherlands
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology and Metabolism, Amsterdam, 1081 the Netherlands
| | - Zubair M Ahmed
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Shaikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College, University of Health Sciences, Lahore 54550, Pakistan
| | - Saima Riazuddin
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Muhammad A Usmani
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Annette Seibt
- Department of General Pediatrics, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, Basel Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, 1211 Geneva, Switzerland
| | - John B Vincent
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, ON, M5T 1R8, Canada; Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Muhammad Ayub
- Department of Pediatrics, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tübingen, Germany
| | - Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, 2100, Denmark
| | - Tina Duelund Hjortshøj
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, 2100, Denmark
| | - Helena Gásdal Karstensen
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, 2100, Denmark
| | - Marybeth Hummel
- Department of Pediatrics, Section of Medical Genetics, West Virginia University, Morgantown, WV 26506-9600, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tübingen, Germany; Centre for Rare Diseases, University of Tuebingen, 72076 Tübingen, Germany
| | - Yalda Jamshidi
- Genetics Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, SW17 0RE, UK
| | - Felix Distelmaier
- Department of General Pediatrics, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, University of California San Diego and Rady Children's Hospital, La Jolla, CA 92130, USA
| | - Hubert Becker
- University of Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67083, France
| | - Jean-Louis Mandel
- Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, 67404, France
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|