1
|
Oliver PJ, Civitelli L, Hu MT. The gut-brain axis in early Parkinson's disease: from prodrome to prevention. J Neurol 2025; 272:413. [PMID: 40394204 DOI: 10.1007/s00415-025-13138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder and fastest growing neurological condition worldwide, yet its etiology and progression remain poorly understood. This disorder is characterized pathologically by the prion-like spread of misfolded neuronal alpha-synuclein proteins in specific brain regions leading to Lewy body formation, neurodegeneration, and progressive neurological impairment. It is unclear what triggers Parkinson's and where α-synuclein protein aggregation begins, although proposed induction sites include the olfactory bulb and dorsal motor nucleus of the vagus nerve. Within the last 20 years, there has been increasing evidence that Parkinson's could be triggered by early microbiome changes and α-synuclein accumulation in the gastrointestinal system. Gut microbiota dysbiosis that alters gastrointestinal motility, permeability, and inflammation could enable prion-like spread of α-synuclein from the gut-to-brain via the enteric nervous system. Individuals with isolated rapid eye movement sleep behavior disorder have a high likelihood of developing Parkinson's and might represent a prodromal 'gut-first' subtype of the condition. The gut-first model of Parkinson's offers novel gut-based therapeutic avenues, such as anti-, pre-, and pro-biotic preparations and fecal microbiota transplants. Crucially, gut-based interventions offer an avenue to treat Parkinson's at early prodromal stages with the aim of mitigating evolution to clinically recognizable Parkinson's disease characterized by motor impairment.
Collapse
Affiliation(s)
- Patrick James Oliver
- Clinical Medical School, University of Oxford, Oxford, UK
- Green Templeton College, University of Oxford, Oxford, UK
| | - Livia Civitelli
- Nuffield Department of Clinical Neurosciences, Oxford Parkinsons' Disease Center, University of Oxford, Oxford, UK
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Neurology, West Wing, Level 3, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
2
|
Chatterjee T, Machado S, Cowen K, Miller M, Zhang Y, Volpicelli-Daley L, Fielding L, Pattanayak R, Rosenblum F, Potor L, Balla G, Balla J, Faul C, Zarjou A. Myeloid FtH Regulates Macrophage Response to Kidney Injury by Modulating Snca and Ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645219. [PMID: 40196511 PMCID: PMC11974884 DOI: 10.1101/2025.03.25.645219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This study explored the role of myeloid ferritin heavy chain (FtH) in coordinating kidney iron trafficking in health and disease. Synuclein-α (Snca) was the sole iron-binding protein upregulated in response to myeloid FtH deletion (FtH Δ/Δ ). Following kidney injury, FtH Δ/Δ mice showed worsened kidney function. Transcriptome analysis revealed coupling of FtH deficiency with ferroptosis activation, a regulated cell death associated with iron accumulation. Adverse effects of ferroptosis were evidenced by upregulation of ferroptosis-related genes, increased oxidative stress markers, and significant iron deposition in kidney tissues. This iron buildup in FtH Δ/Δ kidneys stemmed from macrophage reprogramming into an iron-recycling phenotype, driven by Spic induction. Mechanistically, we establish that monomeric Snca functions as a ferrireductase catalyst, intensifying oxidative stress and triggering ferroptosis. Additionally, Snca accumulates in kidney diseases distinguished by leukocyte expansion across species. These findings position myeloid FtH as a pivotal orchestrator of the FtH-Snca-Spic axis driving macrophage reprogramming and kidney injury. Highlights Myeloid FtH deficiency drives kidney injury via activation of ferroptosisMΦ FtH deficiency induces Snca, linking iron dysregulation to MΦ function and response to kidney injuryFerrireductase activity of monomeric Snca augments oxidative stress, promoting lipid peroxidation and ferroptosis. In brief MΦ FtH modulates Snca and Spic to coordinate the injury response, linking iron trafficking to ferroptosis-induced kidney injury.
Collapse
|
3
|
Almasi F, Abbasloo F, Soltani N, Dehbozorgi M, Moghadam Fard A, Kiani A, Ghasemzadeh N, Mesgari H, Zadeh Hosseingholi E, Payandeh Z, Rahmanpour P. Biology, Pathology, and Targeted Therapy of Exosomal Cargoes in Parkinson's Disease: Advances and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04788-7. [PMID: 39998798 DOI: 10.1007/s12035-025-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) involves the loss of dopamine neurons and accumulation of alpha-synuclein (α-syn), leading to Lewy bodies. While α-syn-targeting immunotherapies show promise, clinical application is challenging. Emerging strategies include nano-platforms for targeted delivery and imaging, and cell-based therapies with patient-specific dopaminergic neurons, aiming to enhance treatment effectiveness despite challenges. Exosome-based methodologies are emerging as a promising area of research in PD due to their role in the spread of α-syn pathology. Exosomes are small extracellular vesicles that can carry misfolded α-syn and transfer it between cells, contributing to the progression of PD. They can be isolated from biological fluids such as blood and cerebrospinal fluid, making them valuable biomarkers for the disease. Additionally, engineering exosomes to deliver therapeutic agents, including small molecules, RNA, or proteins, offers a novel approach for targeted therapy, capitalizing on their natural ability to cross the blood-brain barrier (BBB). Ongoing studies are evaluating the safety and efficacy of these engineered exosomes in clinical settings. This review explores the role of exosomes in PD, focusing on their potential for diagnosis, treatment, and understanding of pathology. It highlights advancements and future directions in using exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Faezeh Almasi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Faeze Abbasloo
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Soltani
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Masoud Dehbozorgi
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen), Aachen City, Germany
| | | | - Arash Kiani
- Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasim Ghasemzadeh
- School of Natural Sciences and Mathematics, University of Dallas, Richardson, TX, USA
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Zadeh Hosseingholi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| | | |
Collapse
|
4
|
Sharma V, Sharma P, Singh TG. Emerging role of Nrf2 in Parkinson's disease therapy: a critical reassessment. Metab Brain Dis 2024; 40:70. [PMID: 39699763 DOI: 10.1007/s11011-024-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is the neurodegenerative disorder characterized by the progressive degeneration of nigrostriatal dopaminergic neurons, leading to the range of motor and non-motor symptoms. There is mounting evidence suggesting that oxidative stress, neuroinflammation and mitochondrial dysfunction play pivotal roles in the pathogenesis of PD. Current therapies only alleviate perturbed motor symptoms. Therefore, it is essential to find out new therapies that allow us to improve not only motor symptoms, but non-motor symptoms like cognitive impairment and modulate disease progression. Nuclear factor erythroid 2-related factor 2 (Nrf2) is transcription factor that regulates the expression of numerous anti-oxidants and cytoprotective genes can counteract oxidative stress, neuroinflammation and mitochondrial dysfunction, thereby potentially ameliorating PD-associated pathology. The current review discusses about the Nrf2 structure and function with special emphasis on various molecular signalling pathways involved in positive and negative modulation of Nrf2, namely Glycogen synthase kinase-3β, Phosphoinositide-3-kinase, AMP-activated protein kinase, Mitogen activated protein kinase, nuclear factor-κB and P62. Furthermore, this review highlights the various Nrf2 activators as promising therapeutic agents for slowing down the progression of PD.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
5
|
Kanimozhi, Aishwarya K, Yadav S, Chandy AA, Muralikrishna R, Shinkre R. Exploring the Link between Periodontal Disease and Systemic Conditions: Implications for Alzheimer's, Parkinson's, and Rheumatoid Arthritis. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S3775-S3777. [PMID: 39926786 PMCID: PMC11805256 DOI: 10.4103/jpbs.jpbs_975_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 02/11/2025] Open
Abstract
Background There is a growing correlation between periodontal disease, a common inflammatory disorder that affects the tissues supporting the teeth, and several systemic diseases. Materials and Methods Two hundred patients from a tertiary care hospital, ages 50-75, participated in this cross-sectional research. The subjects were split up into four groups: 50 individuals with rheumatoid arthritis, 50 with Alzheimer's disease, 50 with Parkinson's disease, and 50 with periodontal disease. To evaluate periodontal condition, including clinical attachment loss and pocket depth, thorough oral exams were performed. Measurements were made of serum biomarkers for inflammation, such as interleukin-6 (IL-6) and C-reactive protein (CRP). Multivariate regression models were used to examine correlations between the severity of periodontal disease and the underlying systemic diseases. Results In all groups, there were significant relationships between higher levels of indicators of systemic inflammation and the severity of periodontal disease. In comparison to healthy controls (CRP mean value: 2.1 mg/L; IL-6 mean value: 6.4 pg/mL), participants with periodontal disease had higher mean levels of CRP (5.6 mg/L) and IL-6 (mean value: 12.8 pg/mL). Furthermore, compared to those with rheumatoid arthritis, those with Alzheimer's and Parkinson's disorders showed higher levels of pocket depth and periodontal attachment loss. Conclusion In conclusion, the results point to a possible connection between systemic diseases such rheumatoid arthritis, Parkinson's disease, and Alzheimer's.
Collapse
Affiliation(s)
- Kanimozhi
- Assistant Professor, DEIC, (District Early Intervention Centre) Government Kilpauk Medical College and Hospital, Kilpauk, Chennai, Tamil Nadu, India
| | - K. Aishwarya
- BDS, Government Dental College and Hospital, Vijayawada, Andhra Pradesh, India
| | - Sweta Yadav
- Department of Periodontology, Theerthanker Mahaveer Dental College and Research Centre, Delhi Moradabad, Uttar Pradesh, India
| | - Ajith A. Chandy
- BDS (JSS Dental College and Hospital) Diploma in Dental Hygiene, Confederation College, Canada
| | | | - Rohan Shinkre
- Department of Public Health Dentistry, Research Consultant, Central Research Wing, K.L.E Society’s Institute of Dental Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Aziz N, Wal P, Patel A, Prajapati H. A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: potential therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7307-7336. [PMID: 38734839 DOI: 10.1007/s00210-024-03109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Neurological disorders, including Alzheimer and Parkinson's, pose significant challenges to public health due to their complex etiologies and limited treatment options. Recent advances in research have highlighted the intricate bidirectional communication between the gut microbiome and the central nervous system (CNS), revealing a potential therapeutic avenue for neurological disorders. Thus, this review aims to summarize the current understanding of the pharmacological role of gut microbiome in neurological disorders. Mounting evidence suggests that the gut microbiome plays a crucial role in modulating CNS function through various mechanisms, including the production of neurotransmitters, neuroactive metabolites, and immune system modulation. Dysbiosis, characterized by alterations in gut microbial composition and function, has been observed in many neurological disorders, indicating a potential causative or contributory role. Pharmacological interventions targeting the gut microbiome have emerged as promising therapeutic strategies for neurological disorders. Probiotics, prebiotics, antibiotics, and microbial metabolite-based interventions have shown beneficial effects in animal models and some human studies. These interventions aim to restore microbial homeostasis, enhance microbial diversity, and promote the production of beneficial metabolites. However, several challenges remain, including the need for standardized protocols, identification of specific microbial signatures associated with different neurological disorders, and understanding the precise mechanisms underlying gut-brain communication. Further research is necessary to unravel the intricate interactions between the gut microbiome and the CNS and to develop targeted pharmacological interventions for neurological disorders.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India.
| | - Aman Patel
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| |
Collapse
|
7
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Lau AA, Jin K, Beard H, Windram T, Xie K, O'Brien JA, Neumann D, King BM, Snel MF, Trim PJ, Mitrofanis J, Hemsley KM, Austin PJ. Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice. J Neurochem 2024; 168:2791-2813. [PMID: 38849324 DOI: 10.1111/jnc.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Sanfilippo syndrome results from inherited mutations in genes encoding lysosomal enzymes that catabolise heparan sulfate (HS), leading to early childhood-onset neurodegeneration. This study explores the therapeutic potential of photobiomodulation (PBM), which is neuroprotective and anti-inflammatory in several neurodegenerative diseases; it is also safe and PBM devices are readily available. We investigated the effects of 10-14 days transcranial PBM at 670 nm (2 or 4 J/cm2/day) or 904 nm (4 J/cm2/day) in young (3 weeks) and older (15 weeks) Sanfilippo or mucopolysaccharidosis type IIIA (MPS IIIA) mice. Although we found no PBM-induced changes in HS accumulation, astrocyte activation, CD206 (an anti-inflammatory marker) and BDNF expression in the brains of Sanfilippo mice, there was a near-normalisation of microglial activation in older MPS IIIA mice by 904 nm PBM, with decreased IBA1 expression and a return of their morphology towards a resting state. Immune cell immunophenotyping of peripheral blood with mass cytometry revealed increased pro-inflammatory signalling through pSTAT1 and p-p38 in NK and T cells in young but not older MPS IIIA mice (5 weeks of age), and expansion of NK, B and CD8+ T cells in older affected mice (17 weeks of age), highlighting the importance of innate and adaptive lymphocytes in Sanfilippo syndrome. Notably, 670 and 904 nm PBM both reversed the Sanfilippo-induced increase in pSTAT1 and p-p38 expression in multiple leukocyte populations in young mice, while 904 nm reversed the increase in NK cells in older mice. In conclusion, this is the first study to demonstrate the beneficial effects of PBM in Sanfilippo mice. The distinct reduction in microglial activation and NK cell pro-inflammatory signalling and number suggests PBM may alleviate neuroinflammation and lymphocyte activation, encouraging further investigation of PBM as a standalone, or complementary therapy in Sanfilippo syndrome.
Collapse
Affiliation(s)
- A A Lau
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Jin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - H Beard
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - T Windram
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Xie
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - J A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - D Neumann
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - B M King
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - M F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - P J Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - J Mitrofanis
- Fonds Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - K M Hemsley
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - P J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
9
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
10
|
Anwar MM, Pérez-Martínez L, Pedraza-Alva G. Exploring the Significance of Microglial Phenotypes and Morphological Diversity in Neuroinflammation and Neurodegenerative Diseases: From Mechanisms to Potential Therapeutic Targets. Immunol Invest 2024; 53:891-946. [PMID: 38836373 DOI: 10.1080/08820139.2024.2358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Studying various microglial phenotypes and their functions in neurodegenerative diseases is crucial due to the intricate nature of their phenomics and their vital immunological role. Microglia undergo substantial phenomic changes, encompassing morphological, transcriptional, and functional aspects, resulting in distinct cell types with diverse structures, functions, properties, and implications. The traditional classification of microglia as ramified, M1 (proinflammatory), or M2 (anti-inflammatory) phenotypes is overly simplistic, failing to capture the wide range of recently identified microglial phenotypes in various brain regions affected by neurodegenerative diseases. Altered and activated microglial phenotypes deviating from the typical ramified structure are significant features of many neurodegenerative conditions. Understanding the precise role of each microglial phenotype is intricate and sometimes contradictory. This review specifically focuses on elucidating recent modifications in microglial phenotypes within neurodegenerative diseases. Recognizing the heterogeneity of microglial phenotypes in diseased states can unveil novel therapeutic strategies for targeting microglia in neurodegenerative diseases. Moreover, the exploration of the use of healthy isolated microglia to mitigate disease progression has provided an innovative perspective. In conclusion, this review discusses the dynamic landscape of mysterious microglial phenotypes, emphasizing the need for a nuanced understanding to pave the way for innovative therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Leonor Pérez-Martínez
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| |
Collapse
|
11
|
Ghosh N, Sinha K, Sil PC. Pesticides and the Gut Microbiota: Implications for Parkinson's Disease. Chem Res Toxicol 2024; 37:1071-1085. [PMID: 38958636 DOI: 10.1021/acs.chemrestox.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Parkinson's disease (PD) affects more people worldwide than just aging alone can explain. This is likely due to environmental influences, genetic makeup, and changes in daily habits. The disease develops in a complex way, with movement problems caused by Lewy bodies and the loss of dopamine-producing neurons. Some research suggests Lewy bodies might start in the gut, hinting at a connection between these structures and gut health in PD patients. These patients often have different gut bacteria and metabolites. Pesticides are known to increase the risk of PD, with evidence showing they harm more than just dopamine neurons. Long-term exposure to pesticides in food might affect the gut barrier, gut bacteria, and the blood-brain barrier, but the exact link is still unknown. This review looks at how pesticides and gut bacteria separately influence PD development and progression, highlighting the harmful effects of pesticides and changes in gut bacteria. We have examined the interaction between pesticides and gut bacteria in PD patients, summarizing how pesticides cause imbalances in gut bacteria, the resulting changes, and their overall effects on the PD prognosis.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Assistant Professor in Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Assistant Professor in Zoology, Jhargram Raj College, Jhargram 721507 India
| | - Parames C Sil
- Professor, Division of Molecular Medicine, Bose Institute, Kolkata 700054 India
| |
Collapse
|
12
|
Limanaqi F, Zecchini S, Ogno P, Artusa V, Fenizia C, Saulle I, Vanetti C, Garziano M, Strizzi S, Trabattoni D, Clerici M, Biasin M. Alpha-synuclein shapes monocyte and macrophage cell biology and functions by bridging alterations of autophagy and inflammatory pathways. Front Cell Dev Biol 2024; 12:1421360. [PMID: 39035028 PMCID: PMC11257978 DOI: 10.3389/fcell.2024.1421360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction: Abnormal spreading of alpha-synuclein (αS), a hallmark of Parkinson's disease, is known to promote peripheral inflammation, which occurs in part via functional alterations in monocytes/macrophages. However, underlying intracellular mechanisms remain unclear. Methods: Herein we investigate the subcellular, molecular, and functional effects of excess αS in human THP-1 monocytic cell line, THP-1-derived macrophages, and at least preliminarily, in primary monocyte-derived macrophages (MDMs). In cells cultured w/wo recombinant αS (1 μM) for 4 h and 24 h, by Confocal microscopy, Western Blot, RT-qPCR, Elisa, and Flow Cytometry we assessed: i) αS internalization; ii) cytokine/chemokine expression/secretion, and C-C motif chemokine receptor 2 (CCR2) levels; iii) autophagy (LC3II/I, LAMP1/LysoTracker, p62, pS6/total S6); and iv) lipid droplets (LDs) accumulation, and cholesterol pathway gene expression. Transwell migration assay was employed to measure THP-1 cell migration/chemotaxis, while FITC-IgG-bead assay was used to analyze phagocytic capacity, and the fate of phagocytosed cargo in THP-1-derived macrophages. Results: Extracellular αS was internalized by THP-1 cells, THP-1-derived macrophages, and MDMs. In THP1 cells, αS induced a general pro-inflammatory profile and conditioned media from αS-exposed THP-1 cells potently attracted unstimulated cells. However, CCL2 secretion peaked at 4 h αS, consistent with early internalization of its receptor CCR2, while this was blunted at 24 h αS exposure, when CCR2 recycled back to the plasma membrane. Again, 4 h αS-exposed THP-1 cells showed increased spontaneous migration, while 24 h αS-exposed cells showed reduced chemotaxis. This occurred in the absence of cell toxicity and was associated with upregulation of autophagy/lysosomal markers, suggesting a pro-survival/tolerance mechanism against stress-related inflammation. Instead, in THP-1-derived macrophages, αS time-dependently potentiated the intracellular accumulation, and release of pro-inflammatory mediators. This was accompanied by mild toxicity, reduced autophagy-lysosomal markers, defective LDs formation, as well as impaired phagocytosis, and the appearance of stagnant lysosomes engulfed with phagocytosed cargo, suggesting a status of macrophage exhaustion reminiscent of hypophagia. Discussion: In summary, despite an apparently similar pro-inflammatory phenotype, monocytes and macrophages respond differently to intracellular αS accumulation in terms of cell survival, metabolism, and functions. Our results suggest that in periphery, αS exerts cell- and context-specific biological effects bridging alterations of autophagy, lipid dynamics, and inflammatory pathways.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Pasquale Ogno
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Valentina Artusa
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Micaela Garziano
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Frye BM, Negrey JD, Johnson CSC, Kim J, Barcus RA, Lockhart SN, Whitlow CT, Chiou KL, Snyder-Mackler N, Montine TJ, Craft S, Shively CA, Register TC. Mediterranean diet protects against a neuroinflammatory cortical transcriptome: Associations with brain volumetrics, peripheral inflammation, social isolation, and anxiety in nonhuman primates (Macaca fascicularis). Brain Behav Immun 2024; 119:681-692. [PMID: 38636565 PMCID: PMC12051215 DOI: 10.1016/j.bbi.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/17/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets; however, the underlying biology is poorly understood. We assessed the effects of Western versus Mediterranean-like diets on RNAseq-generated transcriptional profiles in lateral temporal cortex and their relationships with longitudinal changes in neuroanatomy, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques (Macaca fascicularis). Diet resulted in differential expression of seven transcripts (FDR < 0.05). Cyclin dependent kinase 14 (CDK14), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" (LFNG), mannose receptor C type 2 (MRC2), solute carrier family 3 member 2 (SLCA32), butyrophilin subfamily 2 member A1 (BTN2A1), katanin regulatory subunit B1 (KATNB1), and transmembrane protein 268 (TMEM268)] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14, LFNG, MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with peripheral monocyte transcript levels, neuroanatomical changes determined by MRI, and with social isolation and anxiety. These results provide important insights into the potential mechanistic processes linking diet, peripheral and central inflammation, and behavior. Collectively, our results provide evidence that, relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and socioemotional behavior. Ultimately, such protective effects may confer resilience to the development of neuropathology and associated disease.
Collapse
Affiliation(s)
- Brett M Frye
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Biology, Emory and Henry College, Emory, VA, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| | - Jacob D Negrey
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; School of Anthropology, University of Arizona, Tucson, AZ, USA
| | | | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard A Barcus
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher T Whitlow
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | | | - Suzanne Craft
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol A Shively
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA.
| | - Thomas C Register
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA.
| |
Collapse
|
14
|
Al-Musawi I, Dennis BH, Clowry GJ, LeBeau FEN. Evidence for prodromal changes in neuronal excitability and neuroinflammation in the hippocampus in young alpha-synuclein (A30P) transgenic mice. FRONTIERS IN DEMENTIA 2024; 3:1404841. [PMID: 39081599 PMCID: PMC11285622 DOI: 10.3389/frdem.2024.1404841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 08/02/2024]
Abstract
Introduction Neuronal hyperexcitability and neuroinflammation are thought to occur at early stages in a range of neurodegenerative diseases. Neuroinflammation, notably activation of microglia, has been identified as a potential prodromal marker of dementia with Lewy bodies (DLB). Using a transgenic mouse model of DLB that over-expresses human mutant (A30P) alpha-synuclein (hα-syn) we have investigated whether early neuroinflammation is evident in the hippocampus in young pre-symptomatic animals. Methods Previous studies have shown early hyperexcitability in the hippocampal CA3 region in male A30P mice at 2-4 months of age, therefore, in the current study we have immunostained this region for markers of neuronal activity (c-Fos), reactive astrocytes (glial fibrillary acidic protein, GFAP), microglia (ionizing calcium binding adapter protein 1, Iba-1) and reactive microglia (inducible nitric oxide synthase, iNOS). Results We found an interesting biphasic change in the expression of c-Fos in A30P mice with high expression at 1 month, consistent with early onset of hyperexcitability, but lower expression from 2-4 months in male A30P mice compared to wild-type (WT) controls, possibly indicating chronic hyperexcitability. Neuroinflammation was indicated by significant increases in the % area of GFAP and the number of Iba-1+ cells that expressed iNOS immunoreactivity in the CA3 region in 2-4 months A30P male mice compared to WT controls. A similar increase in % area of GFAP was observed in female A30P mice, however, the Iba-1 count was not different between female WT and A30P mice. In WT mice aged 2-4 months only 4.6% of Iba-1+ cells co-expressed iNOS. In contrast, in age matched A30P mice 87% of cells co-expressed Iba-1 and iNOS. Although there was no difference in GFAP immunoreactivity at 1 month, Iba-1/iNOS co-expression was also increased in a cohort of 1 month old A30P mice. Discussion Abnormal hα-syn expression in A30P mice caused early changes in network excitability, as indicated by c-Fos expression, and neuroinflammation which might contribute to disease progression.
Collapse
Affiliation(s)
| | | | | | - Fiona E. N. LeBeau
- Biosciences Institute and Centre for Transformative Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Iba M, Kwon S, Kim C, Szabo M, Horan-Portelance L, Lopez-Ocasio M, Dagur P, Overk C, Rissman RA, Masliah E. Immunotherapy with an antibody against CD1d modulates neuroinflammation in an α-synuclein transgenic model of Lewy body like disease. J Neuroinflammation 2024; 21:93. [PMID: 38622654 PMCID: PMC11017481 DOI: 10.1186/s12974-024-03087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.
Collapse
Affiliation(s)
- Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marcell Szabo
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liam Horan-Portelance
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lopez-Ocasio
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pradeep Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
16
|
Parmasad JLA, Ricke KM, Nguyen B, Stykel MG, Buchner-Duby B, Bruce A, Geertsma HM, Lian E, Lengacher NA, Callaghan SM, Joselin A, Tomlinson JJ, Schlossmacher MG, Stanford WL, Ma J, Brundin P, Ryan SD, Rousseaux MWC. Genetic and pharmacological reduction of CDK14 mitigates synucleinopathy. Cell Death Dis 2024; 15:246. [PMID: 38575601 PMCID: PMC10994937 DOI: 10.1038/s41419-024-06534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.
Collapse
Affiliation(s)
- Jean-Louis A Parmasad
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Morgan G Stykel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Brodie Buchner-Duby
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Amanda Bruce
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Haley M Geertsma
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eric Lian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie A Lengacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alvin Joselin
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Julianna J Tomlinson
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - William L Stanford
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jiyan Ma
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Chinese Institute for Brain Research, Beijing, China
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Vandendriessche C, Bruggeman A, Foroozandeh J, Van Hoecke L, Dujardin P, Xie J, Van Imschoot G, Van Wonterghem E, Castelein J, Lucci C, De Groef L, Vandenbroucke RE. The Spreading and Effects of Human Recombinant α-Synuclein Preformed Fibrils in the Cerebrospinal Fluid of Mice. eNeuro 2024; 11:ENEURO.0024-23.2024. [PMID: 38383588 PMCID: PMC10925901 DOI: 10.1523/eneuro.0024-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Parkinson's disease (PD) patients harbor seeding-competent α-synuclein (α-syn) in their cerebrospinal fluid (CSF), which is mainly produced by the choroid plexus (ChP). Nonetheless, little is known about the role of the CSF and the ChP in PD pathogenesis. To address this question, we used an intracerebroventricular (icv) injection mouse model to assess CSF α-syn spreading and its short- and long-term consequences on the brain. Hereby, we made use of seeding-competent, recombinant α-syn preformed fibrils (PFF) that are known to induce aggregation and subsequent spreading of endogenous α-syn in stereotactic tissue injection models. Here, we show that icv-injected PFF, but not monomers (Mono), are rapidly removed from the CSF by interaction with the ChP. Additionally, shortly after icv injection both Mono and PFF were detected in the olfactory bulb and striatum. This spreading was associated with increased inflammation and complement activation in these tissues as well as leakage of the blood-CSF barrier. Despite these effects, a single icv injection of PFF didn't induce a decline in motor function. In contrast, daily icv injections over the course of 5 days resulted in deteriorated grip strength and formation of phosphorylated α-syn inclusions in the brain 2 months later, whereas dopaminergic neuron levels were not affected. These results point toward an important clearance function of the CSF and the ChP, which could mediate removal of PFF from the brain, whereby chronic exposure to PFF in the CSF may negatively impact blood-CSF barrier functionality and PD pathology.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Joyce Foroozandeh
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- VIB Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
- Department of Neurosciences, Brain Institute KU Leuven, 3000, Leuven, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Cristiano Lucci
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
18
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Zhang Q, Xu E, Li HF, Chan P, Zhao Z, Ma J. Parkinson's disease and comorbid myasthenia gravis: a case report and literature review. Front Neurol 2024; 14:1303434. [PMID: 38259657 PMCID: PMC10800518 DOI: 10.3389/fneur.2023.1303434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Myasthenia gravis (MG) is a rare autoimmune disease caused by antibodies against the neuromuscular junction. PD and comorbid MG are rarely seen. Case presentation Here we report on a patient who was diagnosed with PD and MG. A 74-year-old man had a 4-year history of bradykinesia and was diagnosed with PD. He subsequently developed incomplete palpebral ptosis, apparent dropped head, and shuffling of gait. The results of neostigmine tests were positive. Repetitive nerve stimulation (RNS) showed significant decremental responses at 3 and 5 Hz in the orbicularis oculi. The patient's anti-acetylcholine receptor (anti-AchR) antibody serum level was also elevated. Meanwhile, 9-[18F]fluoropropyl-(+)-dihydrotetrabenazine positron emission tomography-computed tomography (18F-AV133 PET-CT) scan revealed a significant decrease in uptake in the bilateral putamen. After addition of cholinesterase inhibitors, his symptoms of palpebral ptosis and head drop improved greatly and he showed a good response to levodopa. Conclusion Although PD with MG is rare, we still need to notice the possibility that a PD patient may have comorbid MG. The underlying mechanism of PD and comorbid MG remains unknown, but an imbalance between the neurotransmitters dopamine and acetylcholine and the immune system are likely to play significant roles in the pathogenesis. In this article, we present our case and a literature review on the co-occurrence of PD and MG, reviewing their clinical features, and discuss the underlying pathogenic mechanism of this comorbidity.
Collapse
Affiliation(s)
- Qihao Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Erhe Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai-Feng Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Zhao
- Department of Geriatrics Center, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Chen L, Mao L, Lu H, Liu P. Detecting ferroptosis and immune infiltration profiles in multiple system atrophy using postmortem brain tissue. Front Neurosci 2023; 17:1269996. [PMID: 38222105 PMCID: PMC10784378 DOI: 10.3389/fnins.2023.1269996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 01/16/2024] Open
Abstract
Background The importance of ferroptosis and the immune system has been mentioned in the pathogenesis of α-synucleinopathy. The α-synuclein-immunoreactive inclusions that primarily affect oligodendrocytes are the hallmark of multiple system atrophy (MSA). Limited evidence implicates that iron and immune responses are involved in the pathogenesis of MSA, which is associated with neurodegeneration and α-synuclein aggregation. Methods The RNA sequencing data were collected from the Gene Expression Omnibus database. MSA-C-related module genes were identified through weighted gene co-expression network analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict the potential molecular functions. The candidate ferroptosis-related genes associated with MSA-C were obtained using a machine-learning algorithm. CIBERSORT was used to estimate the compositional patterns of the 22 types of immune cells. Results The tissues for sequencing were extracted from postmortem cerebellar white matter tissues of 11 MSA-C patients and 47 healthy controls. The diagnostic ability of the six MSA-C-related ferroptosis-related genes in discriminating MSA-C from the healthy controls demonstrated a favorable diagnostic value, with the AUC ranging from 0.662 to 0.791. The proportion of CD8+ T cells in MSA-C was significantly higher than in the controls (P = 0.02). The proportion of NK cells resting in MSA-C was significantly higher than in the controls (P = 0.011). Conclusion Ferroptosis and T-cell infiltration may be important pathways of disease development in MSA-C, and targeting therapies for these pathways may be disease-modifying.
Collapse
Affiliation(s)
- Linxi Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
21
|
Sela M, Poley M, Mora-Raimundo P, Kagan S, Avital A, Kaduri M, Chen G, Adir O, Rozencweig A, Weiss Y, Sade O, Leichtmann-Bardoogo Y, Simchi L, Aga-Mizrachi S, Bell B, Yeretz-Peretz Y, Zaid Or A, Choudhary A, Rosh I, Cordeiro D, Cohen-Adiv S, Berdichevsky Y, Odeh A, Shklover J, Shainsky-Roitman J, Schroeder JE, Hershkovitz D, Hasson P, Ashkenazi A, Stern S, Laviv T, Ben-Zvi A, Avital A, Ashery U, Maoz BM, Schroeder A. Brain-Targeted Liposomes Loaded with Monoclonal Antibodies Reduce Alpha-Synuclein Aggregation and Improve Behavioral Symptoms in Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304654. [PMID: 37753928 PMCID: PMC7615408 DOI: 10.1002/adma.202304654] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Monoclonal antibodies (mAbs) hold promise in treating Parkinson's disease (PD), although poor delivery to the brain hinders their therapeutic application. In the current study, it is demonstrated that brain-targeted liposomes (BTL) enhance the delivery of mAbs across the blood-brain-barrier (BBB) and into neurons, thereby allowing the intracellular and extracellular treatment of the PD brain. BTL are decorated with transferrin to improve brain targeting through overexpressed transferrin-receptors on the BBB during PD. BTL are loaded with SynO4, a mAb that inhibits alpha-synuclein (AS) aggregation, a pathological hallmark of PD. It is shown that 100-nm BTL cross human BBB models intact and are taken up by primary neurons. Within neurons, SynO4 is released from the nanoparticles and bound to its target, thereby reducing AS aggregation, and enhancing neuronal viability. In vivo, intravenous BTL administration results in a sevenfold increase in mAbs in brain cells, decreasing AS aggregation and neuroinflammation. Treatment with BTL also improve behavioral motor function and learning ability in mice, with a favorable safety profile. Accordingly, targeted nanotechnologies offer a valuable platform for drug delivery to treat brain neurodegeneration.
Collapse
Affiliation(s)
- Mor Sela
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Patricia Mora-Raimundo
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Shaked Kagan
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Aviram Avital
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Kaduri
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Gal Chen
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Interdisciplinary Program for Biotechnology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Omer Adir
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Adi Rozencweig
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yfat Weiss
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Sade
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Lilach Simchi
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shlomit Aga-Mizrachi
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Batia Bell
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Yoel Yeretz-Peretz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Aviv Zaid Or
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Diogo Cordeiro
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Stav Cohen-Adiv
- The Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yevgeny Berdichevsky
- The Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Joshua E. Schroeder
- Spine Unit, Orthopedic Complex, Hadassah Hebrew University Medical Center, Kiryat Hadassah, POB 12000, Jerusalem 9190500, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Avraham Ashkenazi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Tal Laviv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Avi Avital
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ben M. Maoz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
22
|
Abdelmoaty MM, Lu E, Kadry R, Foster EG, Bhattarai S, Mosley RL, Gendelman HE. Clinical biomarkers for Lewy body diseases. Cell Biosci 2023; 13:209. [PMID: 37964309 PMCID: PMC10644566 DOI: 10.1186/s13578-023-01152-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders characterized by pathologic aggregates of neural and glial α-synuclein (α-syn) in the form of Lewy bodies (LBs), Lewy neurites, and cytoplasmic inclusions in both neurons and glia. Two major classes of synucleinopathies are LB disease and multiple system atrophy. LB diseases include Parkinson's disease (PD), PD with dementia, and dementia with LBs. All are increasing in prevalence. Effective diagnostics, disease-modifying therapies, and therapeutic monitoring are urgently needed. Diagnostics capable of differentiating LB diseases are based on signs and symptoms which might overlap. To date, no specific diagnostic test exists despite disease-specific pathologies. Diagnostics are aided by brain imaging and cerebrospinal fluid evaluations, but more accessible biomarkers remain in need. Mechanisms of α-syn evolution to pathologic oligomers and insoluble fibrils can provide one of a spectrum of biomarkers to link complex neural pathways to effective therapies. With these in mind, we review promising biomarkers linked to effective disease-modifying interventions.
Collapse
Affiliation(s)
- Mai M Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Eugene Lu
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rana Kadry
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emma G Foster
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaurav Bhattarai
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
Singh J, Habean ML, Panicker N. Inflammasome assembly in neurodegenerative diseases. Trends Neurosci 2023; 46:814-831. [PMID: 37633753 PMCID: PMC10530301 DOI: 10.1016/j.tins.2023.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Neurodegenerative disorders are characterized by the progressive dysfunction and death of selectively vulnerable neuronal populations, often associated with the accumulation of aggregated host proteins. Sustained brain inflammation and hyperactivation of inflammasome complexes have been increasingly demonstrated to contribute to neurodegenerative disease progression. Here, we review molecular mechanisms leading to inflammasome assembly in neurodegeneration. We focus primarily on four degenerative brain disorders in which inflammasome hyperactivation has been well documented: Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and the spectrum of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We discuss shared and divergent principles of inflammasome assembly across these disorders, and underscore the differences between neurodegeneration-associated inflammasome activation pathways and their peripheral-immune counterparts. We examine how aberrant assembly of inflammasome complexes may amplify pathology in neurodegeneration, including misfolded protein aggregation, and highlight prospects for neurotherapeutic interventions based on targeting inflammasome pathways.
Collapse
Affiliation(s)
- Jagjit Singh
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maria L Habean
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Biomedical Scientist Training Program (Department of Neurosciences), Case Western Reserve University, Cleveland, OH, USA
| | - Nikhil Panicker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA; Kent State University, Neurosciences, School of Biomedical Sciences, Cleveland, OH, USA.
| |
Collapse
|
24
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 370] [Impact Index Per Article: 185.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
25
|
Stauch KL, Totusek S, Trease AJ, Estrella LD, Emanuel K, Fangmeier A, Fox HS. Longitudinal in vivo metabolic labeling reveals tissue-specific mitochondrial proteome turnover rates and proteins selectively altered by parkin deficiency. Sci Rep 2023; 13:11414. [PMID: 37452120 PMCID: PMC10349111 DOI: 10.1038/s41598-023-38484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Our study utilizes a longitudinal isotopic metabolic labeling approach in vivo in combination with organelle fraction proteomics to address the role of parkin in mitochondrial protein turnover in mice. The use of metabolic labeling provides a method to quantitatively determine the global changes in protein half-lives whilst simultaneously assessing protein expression. Studying two diverse mitochondrial populations, we demonstrated the median half-life of brain striatal synaptic mitochondrial proteins is significantly greater than that of hepatic mitochondrial proteins (25.7 vs. 3.5 days). Furthermore, loss of parkin resulted in an overall, albeit modest, increase in both mitochondrial protein abundance and half-life. Pathway and functional analysis of our proteomics data identified both known and novel pathways affected by loss of parkin that are consistent with its role in both mitochondrial quality control and neurodegeneration. Our study therefore adds to a growing body of evidence suggesting dependence on parkin is low for basal mitophagy in vivo and provides a foundation for the investigation of novel parkin targets.
Collapse
Affiliation(s)
- K L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - L D Estrella
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Fangmeier
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - H S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Devi S, Garg DK, Bhat R. Kinetic control in amyloid polymorphism: Different agitation and solution conditions promote distinct amyloid polymorphs of alpha-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140917. [PMID: 37061153 DOI: 10.1016/j.bbapap.2023.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Aggregation of neuronal protein α-synuclein is implicated in synucleinopathies, including Parkinson's disease. Despite abundant in vitro studies, the mechanism of α-synuclein assembly process remains ambiguous. In this work, α-synuclein aggregation was induced by its constant mixing in two separate modes, either by agitation in a 96-well microplate reader (MP) or in microcentrifuge tubes using a shaker incubator (SI). Aggregation in both modes occurred through a sigmoidal growth pattern with a well-defined lag, growth, and saturation phase. The end-stage MP- and SI-derived aggregates displayed distinct differences in morphological, biochemical, and spectral signatures as discerned through AFM, proteinase-K digestion, FTIR, Raman, and CD spectroscopy. The MP-derived aggregates showed irregular morphology with a significant random coil conformation, contrary to SI-derived aggregates, which showed typical β-sheet fibrillar structures. The end-stage MP aggregates convert to β-rich SI-like aggregates upon 1) seeding with SI-derived aggregates and 2) agitating in SI. We conclude that end-stage MP aggregates were in a kinetically trapped conformation, whose kinetic barrier was bypassed upon either seeding by SI-derived fibrils or shaking in SI. We further show that MP-derived aggregates that form in the presence of sorbitol, an osmolyte, displayed a β-rich signature, indicating that the preferential exclusion effect of osmolytes helped overcome the kinetic barrier. Our findings help in unravelling the kinetic origin of different α-synuclein aggregated polymorphs (strains) that encode diverse variants of synucleinopathies. We demonstrate that kinetic control shapes the polymorphic landscape of α-synuclein aggregates, both through de novo generation of polymorphs, and by their interconversion.
Collapse
Affiliation(s)
- Santosh Devi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dushyant Kumar Garg
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
27
|
Khot M, Sood A, Pushpa Tryphena K, Pinjala P, Srivastava S, Bala Singh S, Kumar Khatri D. Dimethyl fumarate ameliorates Parkinsonian pathology by modulating autophagy and apoptosis via Nrf2-TIGAR-LAMP2/Cathepsin D axis. Brain Res 2023; 1815:148462. [PMID: 37315723 DOI: 10.1016/j.brainres.2023.148462] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Mounting evidence suggests a role for oxidative stress and accumulation of dysfunctional organelle and misfolded proteins in PD. Autophagosomes mediate the clearance of these cytoplasmic proteins via delivery to lysosomes to form autophagolysosomes, followed by degradation of the protein by lysosomal enzymes. In PD, autophagolysosome accumulation occurs initiating a plethora of events resulting in neuronal death by apoptosis. This study evaluated the effect of Dimethylfumarate (DMF), an Nrf2 activator in the rotenone-induced mouse PD model. In PD mice, there was decreased expression of LAMP2 and LC3, which resulted in inhibition of autophagic flux and increased expression of cathepsin D, which mediated apoptosis. The role of Nrf2 activation in alleviating oxidative stress is well known. Our study elucidated the novel mechanism underlying the neuroprotective effect of DMF. The loss of dopaminergic neurons induced by rotenone was lessened to a significant extent by pre-treatment with DMF. DMF promoted autophagosome formation and inhibited apoptosis by removing the inhibitory effect of p53 on TIGAR. TIGAR expression upregulated LAMP2 expression and downregulated Cathepsin D, promoting autophagy and inhibiting apoptosis. Thus, it was proved that DMF confers neuroprotection against rotenone-induced dopaminergic neurodegeneration and could be used as a potential therapeutic agent for PD and its progression.
Collapse
Affiliation(s)
- Mayuri Khot
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Poojitha Pinjala
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India.
| |
Collapse
|
28
|
Zhang H, D'Agostino C, Tulisiak C, Thorwald MA, Bergkvist L, Lindquist A, Meyerdirk L, Schulz E, Becker K, Steiner JA, Cacciottolo M, Kwatra M, Rey NL, Escobar Galvis ML, Ma J, Sioutas C, Morgan TE, Finch CE, Brundin P. Air pollution nanoparticle and alpha-synuclein fibrils synergistically decrease glutamate receptor A1, depending upon nPM batch activity. Heliyon 2023; 9:e15622. [PMID: 37128335 PMCID: PMC10148131 DOI: 10.1016/j.heliyon.2023.e15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Background Epidemiological studies have variably linked air pollution to increased risk of Parkinson's disease (PD). However, there is little experimental evidence for this association. Alpha-synuclein (α-syn) propagation plays central roles in PD and glutamate receptor A1 (GluA1) is involved in memory and olfaction function. Methods Each mouse was exposed to one of three different batches of nano-particulate matter (nPM) (300 μg/m3, 5 h/d, 3 d/week), collected at different dates, 2017-2019, in the same urban site. After these experiments, these nPM batches were found to vary in activity. C57BL/6 female mice (3 mo) were injected with pre-formed murine α-synuclein fibrils (PFFs) (0.4 μg), which act as seeds for α-syn aggregation. Two exposure paradigms were used: in Paradigm 1, PFFs were injected into olfactory bulb (OB) prior to 4-week nPM (Batch 5b) exposure and in Paradigm 2, PFFs were injected at 4th week during 10-week nPM exposure (Batches 7 and 9). α-syn pSer129, microglia Iba1, inflammatory cytokines, and Gria1 expression were measured by immunohistochemistry or qPCR assays. Results As expected, α-syn pSer129 was detected in ipsilateral OB, anterior olfactory nucleus, amygdala and piriform cortex. One of the three batches of nPM caused a trend for elevated α-syn pSer129 in Paradigm 1, but two other batches showed no effect in Paradigm 2. However, the combination of nPM and PFF significantly decreased Gria1 mRNA in both the ipsi- and contra-lateral OB and frontal cortex for the most active two nPM batches. Neither nPM nor PFFs alone induced responses of microglia Iba1 and expression of Gria1 in the OB and cortex. Conclusion Exposures to ambient nPM had weak effect on α-syn propagation in the brain in current experimental paradigms; however, nPM and α-syn synergistically downregulated the expression of Gria1 in both OB and cortex.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, USA
- Corresponding author.
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | - Max A. Thorwald
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | | | | | - Emily Schulz
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | | | - Mohit Kwatra
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | - Jiyan Ma
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | |
Collapse
|
29
|
Zong Q, Pan Y, Liu Y, Wu Z, Huang Z, Zhang Y, Ma K. pNaktide mitigates inflammation-induced neuronal damage and behavioral deficits through the oxidative stress pathway. Int Immunopharmacol 2023; 116:109727. [PMID: 36689848 DOI: 10.1016/j.intimp.2023.109727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Neuroinflammation is closely related to the etiology and progression of neurodegenerative diseases such as Parkinson disease and Alzheimer disease. pNaktide, an Src inhibitor, exerts antioxidant effects by mimicking Na/K-ATPase. It has been verified that its anti-inflammation and anti-oxidation ability could be embodied in obesity, steatohepatitis, uremic cardiomyopathy, aging, and prostate cancer. This study aimed to investigate the effects and mechanisms of pNaktide in lipopolysaccharide (LPS)-induced behavioral damage, neuroinflammation, and neuronal damage. We found that pNaktide improved anxiety, memory, and motor deficits. pNaktide inhibited MAPK and NF-κB pathways induced by TLR4 activation, inhibited the NLRP3 inflammasome complex, and reduced the expression of inflammatory factors, complement factors, and chemokines. pNaktide inhibited the activation of Nrf2 and HO-1 antioxidant stress pathways by LPS and reduced the level of oxidative stress. Inhibition of autophagy and enhancement of apoptosis induced by LPS were also alleviated by pNaktide, which restored LPS-induced injury to newborn neurons in the hippocampus region. In summary, pNaktide attenuates neuroinflammation, reduces the level of oxidative stress, has neuroprotective effects, and may be used for the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yongfang Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
30
|
Simons E, Fleming SM. Role of rodent models in advancing precision medicine for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:3-16. [PMID: 36803818 DOI: 10.1016/b978-0-323-85555-6.00002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With a current lack of disease-modifying treatments, an initiative toward implementing a precision medicine approach for treating Parkinson's disease (PD) has emerged. However, challenges remain in how to define and apply precision medicine in PD. To accomplish the goal of optimally targeted and timed treatment for each patient, preclinical research in a diverse population of rodent models will continue to be an essential part of the translational path to identify novel biomarkers for patient diagnosis and subgrouping, understand PD disease mechanisms, identify new therapeutic targets, and screen therapeutics prior to clinical testing. This review highlights the most common rodent models of PD and discusses how these models can contribute to defining and implementing precision medicine for the treatment of PD.
Collapse
Affiliation(s)
- Emily Simons
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
31
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
32
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
33
|
Gelain DP, Bittencourt RR, Bastos Mendes LF, Moreira JCF, Outeiro TF. RAGE Against the Glycation Machine in Synucleinopathies: Time to Explore New Questions. JOURNAL OF PARKINSON'S DISEASE 2023; 13:717-728. [PMID: 37270812 PMCID: PMC10473104 DOI: 10.3233/jpd-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson's disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Reykla Ramon Bittencourt
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz Filipe Bastos Mendes
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Claudio Fonseca Moreira
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Natural Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
34
|
Nolano M, Caporaso G, Manganelli F, Stancanelli A, Borreca I, Mozzillo S, Tozza S, Dubbioso R, Iodice R, Vitale F, Koay S, Vichayanrat E, da Silva FV, Santoro L, Iodice V, Provitera V. Phosphorylated α-Synuclein Deposits in Cutaneous Nerves of Early Parkinsonism. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2453-2468. [PMID: 36373295 DOI: 10.3233/jpd-223421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The role of peripheral phosphorylated-α-Synuclein (p-α-syn) deposition on nerve degeneration in synucleinopathies is still unknown. OBJECTIVE To assess the cutaneous neural distribution of p-α-Syn deposits and its correlation with clinical data and with morphology and function of cutaneous sensory and autonomic nerves in early Parkinson's disease (PD) and multiple system atrophy-parkinson type (MSA-p). METHODS We recruited 57 PD (F/M = 21/36; age 63.5±9.4 years) and 43 MSA-p (F/M = 16/27; age 62.3±9.0 years) patients within 2 years from motor symptoms. We applied questionnaires and clinical scales, sensory thresholds, and sudomotor testing to assess severity of motor and non-motor involvement and sensory and autonomic dysfunction. We quantified, in skin biopsy from thigh, leg, and fingertip, epidermal, pilomotor, and sudomotor nerve fibers, Meissner corpuscles and intrapapillary myelinated endings and the neural distribution of p-α-syn deposits. RESULTS Compared to controls, we found a cutaneous denervation paralleling functional and clinical impairment. Sensory and autonomic denervation was more severe in MSA-p than in PD. Deposits of p-α-syn were found in the majority of patients, with no significant differences among sites in both groups. Higher occurrence of p-α-syn deposits in autonomic nerves differentiated (p < 0.01) PD from MSA-p. p-α-syn deposits correlated positively with sudomotor function, epidermal, pilomotor and sudomotor nerve densities, and inversely with non-motor symptoms and disease progression. CONCLUSION Our work demonstrated an early peripheral sensory and autonomic involvement in synucleinopathies, more severe in MSA-p than in PD. Higher p-α-syn deposits in autonomic nerves differentiated PD from MSA-p. p-α-syn deposits were associated with preserved innervation and slower disease progression.
Collapse
Affiliation(s)
- Maria Nolano
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy.,Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Giuseppe Caporaso
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Annamaria Stancanelli
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
| | - Ilaria Borreca
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
| | - Stefania Mozzillo
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Floriana Vitale
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Shiwen Koay
- Department of Brain, Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK.,Autonomic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Ekawat Vichayanrat
- Autonomic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Valeria Iodice
- Department of Brain, Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK.,Autonomic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Vincenzo Provitera
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
| |
Collapse
|
35
|
Doot RK, Young AJ, Nasrallah IM, Wetherill RR, Siderowf A, Mach RH, Dubroff JG. [ 18F]NOS PET Brain Imaging Suggests Elevated Neuroinflammation in Idiopathic Parkinson's Disease. Cells 2022; 11:3081. [PMID: 36231041 PMCID: PMC9563966 DOI: 10.3390/cells11193081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is implicated as a key pathologic mechanism in many neurodegenerative diseases and is thought to be mediated in large part by microglia, native phagocytic immune cells of the CNS. Abnormal aggregation of the protein α-synuclein after phagocytosis by microglia is one possible neuropathophysiological mechanism driving Parkinson's disease (PD). We conducted a human pilot study to evaluate the feasibility of targeting the inducible isoform of nitric oxide synthase using the [18F]NOS radiotracer to measure neuroinflammation in idiopathic PD. Ten adults consisting of 6 PD patients and 4 healthy controls (HC) underwent one hour of dynamic [18F]NOS positron emission tomography (PET) brain imaging with arterial blood sampling. We observed increased [18F]NOS whole brain distribution volume (VT) in PD patients compared to age-matched healthy controls (p < 0.008) via a 1-tissue compartment (TC) model. The rate constant K1 for transport from blood into tissue did not differ between groups (p = 0.72). These findings suggest elevated oxidative stress, a surrogate marker of inflammation, is present in early-stage idiopathic PD and indicate that [18F]NOS PET imaging is a promising, non-invasive method to measure neuroinflammation.
Collapse
Affiliation(s)
- Robert K. Doot
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony J. Young
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya M. Nasrallah
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reagan R. Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob G. Dubroff
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Kung PJ, Elsayed I, Reyes-Pérez P, Bandres-Ciga S. Immunogenetic Determinants of Parkinson’s Disease Etiology. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S13-S27. [PMID: 35367971 PMCID: PMC9535568 DOI: 10.3233/jpd-223176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson’s disease (PD) is increasingly recognised as a systemic disorder in which inflammation might play a causative role rather than being a consequence or an epiphenomenon of the neurodegenerative process. Although growing genetic evidence links the central and peripheral immune system with both monogenic and sporadic PD, our understanding on how the immune system contributes to PD pathogenesis remains a daunting challenge. In this review, we discuss recent literature aimed at exploring the role of known genes and susceptibility loci to PD pathogenesis through immune system related mechanisms. Furthermore, we outline shared genetic etiologies and interrelations between PD and autoimmune diseases and underlining challenges and limitations faced in the translation of relevant allelic and regulatory risk loci to immune-pathological mechanisms. Lastly, with the field of immunogenetics expanding rapidly, we place these insights into a future context highlighting the prospect of immune modulation as a promising disease-modifying strategy.
Collapse
Affiliation(s)
- Pin-Jui Kung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, Sudan
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Autonoma de México, Queretaro, Mexico
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Iba M, McDevitt RA, Kim C, Roy R, Sarantopoulou D, Tommer E, Siegars B, Sallin M, Kwon S, Sen JM, Sen R, Masliah E. Aging exacerbates the brain inflammatory micro-environment contributing to α-synuclein pathology and functional deficits in a mouse model of DLB/PD. Mol Neurodegener 2022; 17:60. [PMID: 36064424 PMCID: PMC9447339 DOI: 10.1186/s13024-022-00564-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although ɑ-synuclein (ɑ-syn) spreading in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) has been extensively investigated, the role of aging in the manifestation of disease remains unclear. METHODS We explored the role of aging and inflammation in the pathogenesis of synucleinopathies in a mouse model of DLB/PD initiated by intrastriatal injection of ɑ-syn preformed fibrils (pff). RESULTS We found that aged mice showed more extensive accumulation of ɑ-syn in selected brain regions and behavioral deficits that were associated with greater infiltration of T cells and microgliosis. Microglial inflammatory gene expression induced by ɑ-syn-pff injection in young mice had hallmarks of aged microglia, indicating that enhanced age-associated pathologies may result from inflammatory synergy between aging and the effects of ɑ-syn aggregation. Based on the transcriptomics analysis projected from Ingenuity Pathway Analysis, we found a network that included colony stimulating factor 2 (CSF2), LPS related genes, TNFɑ and poly rl:rC-RNA as common regulators. CONCLUSIONS We propose that aging related inflammation (eg: CSF2) influences outcomes of pathological spreading of ɑ-syn and suggest that targeting neuro-immune responses might be important in developing treatments for DLB/PD.
Collapse
Affiliation(s)
- Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ella Tommer
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Byron Siegars
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michelle Sallin
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jyoti Misra Sen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
38
|
Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in parkinson's disease. Int Immunopharmacol 2022; 112:109191. [PMID: 36055034 DOI: 10.1016/j.intimp.2022.109191] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023]
Abstract
Balancing microglia M1/M2 polarization has been shown as a prospective therapeutic strategy for Parkinson's disease (PD). Various vital signaling pathways are likely to govern the microglial phenotype. The implication of 5HT1A receptors in neurodegenerative disorders has raised interest in exploring the repositioning of flibanserin (Flib), a 5HT1A agonist, as an effective neuroprotective agent for PD. Therefore, this study was designed to assess the ability of Flib to modulate microglia phenotype switching from M1 to M2 via PI3K/AKT downstream targets in a rotenone model of PD. Rats received rotenone (1.5 mg/kg) every other day and were concurrently treated with Flib (40 mg/kg/day) with or without wortmannin (15 μg/kg/day), a PI3K inhibitor, for 21 days. Flib improved the motor perturbations induced by rotenone, as confirmed by the reversion of histopathological damage and tyrosine hydroxylase immunohistochemical alterations in both the striata and substantia nigra. The molecular signaling of Flib was elaborated by inducing striatal AKT phosphorylation and the expression of its substantial target, KLF4. Flib induced STAT6 phosphorylation to promote M2 polarization as demonstrated by the increased CD163++ microglial count with striatal arginase activity. In parallel, it markedly inhibited M1 activation as evidenced by the reduction in CD86++ microglia count with striatal proinflammatory mediators, IL-1β and iNOS. The pre-administration of wortmannin mostly negated Flib's neuroprotective effects. In conclusion, Flib AKT/ KLF4-dependently amended M1/M2 microglial imbalance to exert a promising neuroprotective effect, highlighting its potential as a revolutionary candidate for conquering PD.
Collapse
|
39
|
Gonzalez De La Cruz E, Vo Q, Moon K, McFarland KN, Weinrich M, Williams T, Giasson BI, Chakrabarty P. MhcII Regulates Transmission of α-Synuclein-Seeded Pathology in Mice. Int J Mol Sci 2022; 23:8175. [PMID: 35897751 PMCID: PMC9332117 DOI: 10.3390/ijms23158175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
MHCII molecules, expressed by professional antigen-presenting cells (APCs) such as T cells and B cells, are hypothesized to play a key role in the response of cellular immunity to α-synuclein (α-syn). However, the role of cellular immunity in the neuroanatomic transmission of α-syn pre-formed fibrillar (PFF) seeds is undetermined. To illuminate whether cellular immunity influences the transmission of α-syn seeds from the periphery into the CNS, we injected preformed α-syn PFFs in the hindlimb of the Line M83 transgenic mouse model of synucleinopathy lacking MhcII. We showed that a complete deficiency in MhcII accelerated the appearance of seeded α-syn pathology and shortened the lifespan of the PFF-seeded M83 mice. To characterize whether B-cell and T-cell inherent MhcII function underlies this accelerated response to PFF seeding, we next injected α-syn PFFs in Rag1-/- mice which completely lacked these mature lymphocytes. There was no alteration in the lifespan or burden of endstage α-syn pathology in the PFF-seeded, Rag1-deficient M83+/- mice. Together, these results suggested that MhcII function on immune cells other than these classical APCs is potentially involved in the propagation of α-syn in this model of experimental synucleinopathy. We focused on microglia next, finding that while microglial burden was significantly upregulated in PFF-seeded, MhcII-deficient mice relative to controls, the microglial activation marker Cd68 was reduced in these mice, suggesting that these microglia were not responsive. Additional analysis of the CNS showed the early appearance of the neurotoxic astrocyte A1 signature and the induction of the Ifnγ-inducible anti-viral response mediated by MhcI in the MhcII-deficient, PFF-seeded mice. Overall, our data suggest that the loss of MhcII function leads to a dysfunctional response in non-classical APCs and that this response could potentially play a role in determining PFF-induced pathology. Collectively, our results identify the critical role of MhcII function in synucleinopathies induced by α-syn prion seeds.
Collapse
Affiliation(s)
- Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Katie Moon
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Karen N. McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mary Weinrich
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Tristan Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
40
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
41
|
Yang XX, Yang R, Zhang F. Role of Nrf2 in Parkinson's Disease: Toward New Perspectives. Front Pharmacol 2022; 13:919233. [PMID: 35814229 PMCID: PMC9263373 DOI: 10.3389/fphar.2022.919233] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common and chronic degenerative diseases in the central nervous system. The main pathology of PD formation is the progressive loss of dopaminergic neurons in substantia nigra and the formation of α-synuclein-rich Lewy bodies. The pathogenesis of PD is not caused by any single independent factor. The diversity of these independent factors of PD, such as iron accumulation, oxidative stress, neuroinflammation, mitochondrial dysfunction, age, environment, and heredity, makes the research progress of PD slow. Nrf2 has been well-known to be closely associated with the pathogenesis of PD and could regulate these induced factors development. Nrf2 activation could protect dopaminergic neurons and slow down the progression of PD. This review summarized the role of Nrf2 pathway on the pathogenesis of PD. Regulation of Nrf2 pathway might be one of the promising strategies to prevent and treat PD.
Collapse
Affiliation(s)
- Xin-xing Yang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rong Yang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
42
|
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18:476-495. [PMID: 35750883 DOI: 10.1038/s41582-022-00681-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Evidence for a close bidirectional link between the brain and the gut has led to a paradigm shift in neurology, especially in the case of Parkinson disease (PD), in which gastrointestinal dysfunction is a prominent feature. Over the past decade, numerous high-quality preclinical and clinical publications have shed light on the highly complex relationship between the gut and the brain in PD, providing potential for the development of new biomarkers and therapeutics. With the advent of high-throughput sequencing, the role of the gut microbiome has been specifically highlighted. Here, we provide a critical review of the literature on the microbiome-gut-brain axis in PD and present perspectives that will be useful for clinical practice. We begin with an overview of the gut-brain axis in PD, including the potential roles and interrelationships of the vagus nerve, α-synuclein in the enteric nervous system, altered intestinal permeability and inflammation, and gut microbes and their metabolic activities. The sections that follow synthesize the proposed roles of gut-related factors in the development and progression of, in responses to PD treatment, and as therapeutic targets. Finally, we summarize current knowledge gaps and challenges and delineate future directions for the field.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Folke J, Bergholt E, Pakkenberg B, Aznar S, Brudek T. Alpha-Synuclein Autoimmune Decline in Prodromal Multiple System Atrophy and Parkinson's Disease. Int J Mol Sci 2022; 23:6554. [PMID: 35742998 PMCID: PMC9224313 DOI: 10.3390/ijms23126554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Multiple-system trophy (MSA) and Parkinson's Disease (PD) are both progressive, neurodegenerative diseases characterized by neuropathological deposition of aggregated alpha-synuclein (αSyn). The causes behind this aggregation are still unknown. We have reported aberrancies in MSA and PD patients in naturally occurring autoantibodies (nAbs) against αSyn (anti-αSyn-nAbs), which are important partakers in anti-aggregatory processes, immune-mediated clearance, and anti-inflammatory functions. To elaborate further on the timeline of autoimmune aberrancies towards αSyn, we investigated here the Immunoglobulin (Ig) affinity profile and subclass composition (IgG-total, IgG1-4 and IgM) of anti-αSyn-nAbs in serum samples from prodromal (p) phases of MSA and PD. Using an electrochemiluminescence competition immunoassay, we confirmed that the repertoire of high-affinity anti-αSyn-nAbs is significantly reduced in pMSA and pPD. Further, we demonstrated that pPD had increased anti-αSyn IgG-total levels compared to pMSA and controls, concordant with increased anti-αSyn IgG1 levels in pPD. Anti-αSyn IgG2 and IgG4 levels were reduced in pMSA and pPD compared with controls, whereas anti-αSyn IgG3 levels were reduced in pMSA compared to pPD and controls. The results indicate that the impaired reactivity towards αSyn occurs prior to disease onset. The apparent lack of high-affinity anti-αSyn nAbs may result in reduced clearance of αSyn, leading to aggregation of the protein. Thus, this study provides novel insights into possible causes behind the pathogenesis in synucleinopathies such as MSA and PD.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Emil Bergholt
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
| | - Bente Pakkenberg
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| |
Collapse
|
44
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
45
|
Chakraborty S, Chatterjee R, Chakravortty D. Evolving and assembling to pierce through: Evolutionary and structural aspects of antimicrobial peptides. Comput Struct Biotechnol J 2022; 20:2247-2258. [PMID: 35615024 PMCID: PMC9117813 DOI: 10.1016/j.csbj.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The burgeoning menace of antimicrobial resistance across the globe has necessitated investigations into other chemotherapeutic strategies to combat infections. Antimicrobial peptides, or host defense peptides, are a set of promising therapeutic candidates in this regard. Most of them cause membrane permeabilization and are a key component of the innate immune response to pathogenic invasion. It has also been reported that peptide self-assembly is a driving factor governing the microbicidal activity of these peptide candidates. While efforts have been made to develop novel synthetic peptides against various microbes, many clinical trials of such peptides have failed due to toxicity and hemolytic activity to the host. A function-guided rational peptide engineering, based on evolutionary principles, physicochemical properties and activity determinants of AMP activity, is expected to help in targeting specific microbes. Furthermore, it is important to develop a unified understanding of the evolution of AMPs in order to fully appreciate their importance in host defense. This review seeks to explore the evolution of AMPs and the physicochemical determinants of AMP activity. The specific interactions driving AMP self-assembly have also been reviewed, emphasizing implications of this self-assembly on microbicidal and immunomodulatory activity.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Science, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Science, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
46
|
Moriya S, Hanazono M, Fukuhara T, Iwase K, Hattori N, Takiguchi M. A53T mutant α-synuclein fibrils formed in macrophage are spread to neurons. Cell Mol Life Sci 2022; 79:234. [PMID: 35397671 PMCID: PMC11073293 DOI: 10.1007/s00018-022-04263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
Lewy body (LB), which mainly consists of abnormal α-synuclein (αS) aggregates, is a histological hallmark of Parkinson's disease (PD). αS aggregation and LB inclusions are induced by spreading αS fibrils to neurons; therefore, the formation and transmission of αS fibrils to neurons may play an essential role in initiating LB formation in neurons. αS expressed in neurons is released into the extracellular space and taken up by macrophages and microglia; therefore, we hypothesized that macrophages/microglia play a role in the formation and spread of αS fibrils. In this study, we aimed to investigate the involvement of macrophages/microglia in the formation and spread of αS fibrils using transgenic animals that express human αS in macrophages/microglia. Transgenic zebrafish expressing A53T mutated αS (αS_A53T) in macrophages/microglia revealed αS accumulation in neurons. Transcriptome analysis by RNA-seq of human αS and αS_A53T expressing zebrafish revealed that kinase genes and E3 ubiquitin protein ligase genes were significantly high, and neuronal activity and transport-related Gene Ontology terms were also isolated. Meanwhile, αS_A53T monomers were taken up by A-THP-1 cells; processed to larger molecules, which could be αS fibrils; and released from macrophage cells. Furthermore, the ubiquitin-proteasome system modulated αS fibrils in A-THP-1 cells. αS fibrils suggest being formed from monomers in macrophages and spread to neurons to induce αS aggregates. Therefore, macrophages may play an essential role in the formation of αS aggregates and the pathogenesis of PD.
Collapse
Affiliation(s)
- Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Michiko Hanazono
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Katsuro Iwase
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Masaki Takiguchi
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
47
|
Chakkittukandiyil A, Sajini DV, Karuppaiah A, Selvaraj D. The principal molecular mechanisms behind the activation of Keap1/Nrf2/ARE pathway leading to neuroprotective action in Parkinson's disease. Neurochem Int 2022; 156:105325. [PMID: 35278519 DOI: 10.1016/j.neuint.2022.105325] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. PD is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Present therapies for PD provide only symptomatic relief by restoring the dopamine (DA) level. However, they are not disease modifying agents and so they do not delay the disease progression. Alpha-synuclein aggregation, oxidative stress, mitochondrial dysfunction and chronic inflammation are considered to be the major pathological mechanisms mediating neurodegeneration in PD. To resist oxidative stress, the human body has an antioxidant defence mechanism consisting of many antioxidants and cytoprotective genes. The expression of those genes are largely controlled by the Kelch-like ECH-associated protein 1/Nuclear factor - erythroid - 2 - related factor 2/Antioxidant response element (Keap1/Nrf2/ARE) signalling pathway. The transcription factor Nrf2 is activated in response to oxidative or electrophilic stress and protects the cells from oxidative stress and inflammation. Nrf2 has been widely considered as a therapeutic target for neurodegeneration and several drugs are now being tested in clinical trials. Regulation of the Keap1/Nrf2/ARE pathway by small molecules which can act as Nrf2 activators could be effective for treating oxidative stress and neuroinflammation in PD. In this review, we had discussed the principal molecular mechanisms behind the neuroprotective effects of Keap1/Nrf2/ARE pathway in PD. Additionally, we also discussed the small molecules and phytochemicals that could activate the Nrf2 mediated anti-oxidant pathway for neuroprotection in PD.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arjunan Karuppaiah
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
48
|
Li KL, Huang HY, Ren H, Yang XL. Role of exosomes in the pathogenesis of inflammation in Parkinson's disease. Neural Regen Res 2022; 17:1898-1906. [PMID: 35142665 PMCID: PMC8848593 DOI: 10.4103/1673-5374.335143] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory responses, including glial cell activation and peripheral immune cell infiltration, are involved in the pathogenesis of Parkinson’s disease (PD). These inflammatory responses appear to be closely related to the release of extracellular vesicles, such as exosomes. However, the relationships among different forms of glial cell activation, synuclein dysregulation, mitochondrial dysfunction, and exosomes are complicated. This review discusses the multiple roles played by exosomes in PD-associated inflammation and concludes that exosomes can transport toxic α-synuclein oligomers to immature neurons and into the extracellular environment, inducing the oligomerization of α-synuclein in normal neurons. Misfolded α-synuclein causes microglia and astrocytes to activate and secrete exosomes. Glial cell-derived exosomes participate in communications between glial cells and neurons, triggering anti-stress and anti-inflammatory responses, in addition to axon growth. The production and release of mitochondrial vesicles and exosomes establish a new mechanism for linking mitochondrial dysfunction to systemic inflammation associated with PD. Given the relevance of exosomes as mediators of neuron-glia communication in neuroinflammation and neuropathogenesis, new targeted treatment strategies are currently being developed that use these types of extracellular vesicles as drug carriers. Exosome-mediated inflammation may be a promising target for intervention in PD patients.
Collapse
Affiliation(s)
- Ke-Lu Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong-Yan Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Long Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
49
|
Kasen A, Houck C, Burmeister AR, Sha Q, Brundin L, Brundin P. Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiol Dis 2022; 166:105654. [DOI: 10.1016/j.nbd.2022.105654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
|
50
|
Jain M, Singh MK, Shyam H, Mishra A, Kumar S, Kumar A, Kushwaha J. Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders. Ann Neurosci 2022; 28:191-200. [PMID: 35341232 PMCID: PMC8948319 DOI: 10.1177/09727531211070532] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Innate immunity is mediated by a variety of cell types, including microglia,
macrophages, and neutrophils, and serves as the immune system's first line of defense.
There are numerous pathways involved in innate immunity, including the interferon (IFN)
pathway, TRK pathway, mitogen-activated protein kinase (MAPK) pathway, Janus
kinase/signal transducer and activator of transcription (JAK/STAT) pathway, interleukin
(IL) pathways, chemokine pathways (CCR5), GSK signaling, and Fas signaling. Summary: JAK/STAT is one of these important signaling pathways and this review focused on
JAK/STAT signaling pathway only. The overactivation of microglia and astrocytes
influences JAK/STAT's role in neuroinflammatory disease by initiating innate immunity,
orchestrating adaptive immune mechanisms, and ultimately constraining inflammatory and
immunological responses. The JAK/STAT signaling pathway is one of the critical factors
that promotes neuroinflammation in neurodegenerative diseases. Key message: Given the importance of the JAK/STAT pathway in neurodegenerative disease, this review
discussed the feasibility of targeting the JAK/STAT pathway as a neuroprotective therapy
for neurodegenerative diseases in near future.
Collapse
Affiliation(s)
- Mayank Jain
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mukul Kumar Singh
- Department of Urology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Hari Shyam
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Archana Mishra
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shailendra Kumar
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Ambrish Kumar
- Department of Vascular Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Jitendra Kushwaha
- Department of General Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|