1
|
Vafa ZJ, Zare EN, Eslam MRF. Double-layer biodegradable hydrogel based on tragacanth gum as an electrically conductive nanoplatform for TENS device application. Carbohydr Polym 2025; 358:123540. [PMID: 40383596 DOI: 10.1016/j.carbpol.2025.123540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/02/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
This research focuses on designing and creating a double-layer bio-hydrogel made from tragacanth gum (TG) and carboxylated graphene (GrF), coated with polyaniline (PANI) for transcutaneous electrical nerve stimulation (TENS) devices. X-ray diffraction (XRD) analysis showed that the PANI coating removed peaks associated with crystalline regions (13.99° and 16.87°) in the tragacanth gum/polyvinyl alcohol/carboxylated graphene (TPG) bio-hydrogel. This indicates strong interactions between the PANI layer and the TPG bio-hydrogel matrix, with reduced crystallinity due to structural changes. Conductivity tests revealed significant improvements from both GrF and the PANI coating. At low frequencies (80 Hz), the PANI coating increased the alternating current conductivity of the tragacanth gum/polyvinyl alcohol (TP) bio-hydrogel by 20,481 times and that of the TPG bio-hydrogel by 1804 times. Contact angle measurements indicated a low hydrophilic surface (61.4°), thanks to the GrF and PANI coating. FESEM analysis confirmed the uniform distribution of GrF within the bio-hydrogel and revealed two distinct shapes in the PANI coating, indicating improved structural integrity and functionality. Mechanical tests showed a 4.59-fold increase in tensile strength, improving durability. MTT assays confirmed biocompatibility (>90.37 % cell viability), and the bio-hydrogel biodegraded completely within two months.
Collapse
|
2
|
Regmi S, Paudel S, Janaswamy S. Development of Eco-Friendly Packaging Films from Soyhull Lignocellulose: Towards Valorizing Agro-Industrial Byproducts. Foods 2024; 13:4000. [PMID: 39766941 PMCID: PMC11675783 DOI: 10.3390/foods13244000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives. To this end, agro-industrial byproducts such as soyhulls, which contain 29-50% lignocellulosic residue, are handy. This study extracted lignocellulosic residue from soyhulls using alkali treatment, dissolved it in ZnCl2 solution, and crosslinked it with calcium ions and glycerol to create biodegradable films. The film formulation was optimized using the Box-Behnken design, with response to tensile strength (TS), elongation at break (EB), and water vapor permeability (WVP). The optimized films were further characterized for color, light transmittance, UV-blocking capacity, water absorption, contact angle, and biodegradability. The resulting optimized film demonstrated a tensile strength of 10.4 ± 1.0 MPa, an elongation at break of 9.4 ± 1.8%, and a WVP of 3.5 ± 0.4 × 10-11 g·m-1·s-1·Pa-1. Importantly, 90% of the film degrades within 37 days at 24% soil moisture. This outcome underscores the potential of soyhull-derived films as a sustainable, innovative alternative to plastic packaging, contributing to the circular economy and generating additional income for farmers and allied industries.
Collapse
Affiliation(s)
| | | | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA; (S.R.); (S.P.)
| |
Collapse
|
3
|
Khodaparast FK, Pirsa S, Toupchi FM, Mohtarami F. Investigating the physicochemical, antimicrobial and antioxidant properties of chitosan film containing zero-valent iron nanoparticles and oregano essence. Biopolymers 2024; 115:e23614. [PMID: 38994805 DOI: 10.1002/bip.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
The problems caused by the pollution of the environment by petroleum polymers in recent years have caused researchers to think of replacing petroleum polymers with biodegradable and natural polymers. The aim of this research was to produce composite film of chitosan (Chit)/zero-valent iron (Fe) nanoparticles/oregano essence (Ess) (Chit/Fe/Ess). Central composite design was used to study physical, morphological, antioxidant and antimicrobial properties of films. The results showed that with the increase of iron nanoparticles and oregano essence, the thickness of the film increased. The moisture, solubility and water vapor permeability of the film decreased with the increase of iron nanoparticles and oregano essence. The results of the mechanical test showed that with the increase of iron nanoparticles and oregano essence, the tensile strength and elongation at break point decreased. Iron nanoparticles and oregano essence increased significantly the antioxidant activity of the film. The results of the antimicrobial activity of the prepared films show that the addition of iron nanoparticles and oregano essence enhanced the antimicrobial activity of the film against Escherichia coli and Staphylococcus aureus. X-ray diffraction analysis showed that iron nanoparticles were physically combined with chitosan polymer. Fourier transform infrared (FTIR) results confirmed the physical presence of iron nanoparticles and oregano essence in the polymer matrix. The results of scanning electron microscopy (SEM) showed that the surface of nanocomposite films is more heterogeneous than chitosan. Iron nanoparticles and oregano essence could delay the thermal decomposition of chitosan and increase the thermal stability of chitosan film.
Collapse
Affiliation(s)
| | - Sajad Pirsa
- Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farzad Mirab Toupchi
- Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Forogh Mohtarami
- Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Dobrucka R, Dlugaszewska J, Pawlik M, Szymański M. Innovative active bio-based food packaging material with Cannabis sativa L. seeds extract as an agent to reduce food waste. Colloids Surf B Biointerfaces 2024; 245:114313. [PMID: 39418822 DOI: 10.1016/j.colsurfb.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In the present study, ethanolic extracts from the extract of unshelled seeds of Cannabis sativa L. were used to produce films in order not to generate additional waste, taking into view a circular economy. Combinations of apple pectin and citrus pectin in a ratio of 80:20 were used. Film samples containing 0.5, 1.0 and 2.5 [wt%] of the extract were extruded. Antimicrobial, mechanical and barrier properties of the obtained films were tested. Samples with 0.5 [wt%] showed a WVTR of 16.98 [g/m2d]. The water vapour barrier properties of the films decreased with an increase in the amount of extract used. As the amount of extract increased, the transparency of the films decreased linearly to 12.84 [%] (0.5 [wt%]), 4.90 [%] (1.0 [wt%]) and 4.99 [%] (2.5 [wt%]). It was observed that the brightness of the samples decreased with increasing concentration, due to the presence of higher levels of phenolic compounds. Tests carried out showed that the prepared films exhibited inhibitory activity against all micrograms tested. All prepared films had antibacterial activity against the Salmonella typhimurium strain. Similarly, in the case of L. monocytogenes.
Collapse
Affiliation(s)
- Renata Dobrucka
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznan University of Economics and Business, al. Niepodległości 10, Poznań 61-875, Poland.
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland
| | - Mikołaj Pawlik
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznan University of Economics and Business, al. Niepodległości 10, Poznań 61-875, Poland
| | - Marcin Szymański
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
| |
Collapse
|
5
|
Shiri Z, Pirsa S, Farzi J. Eco-friendly biodegradable film based on kombucha mushroom/corn starch/parsley extract: Physicochemical and antioxidant/antibacterial properties. Food Sci Nutr 2024; 12:7924-7937. [PMID: 39479647 PMCID: PMC11521688 DOI: 10.1002/fsn3.4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 11/02/2024] Open
Abstract
The main purpose of this study was to produce biodegradable film based on kombucha mushroom (KM), so kombucha mushroom was grown and used to prepare biodegradable film. Glycerol (Gl), corn starch (St), and parsley extract (PE) were used to improve the characteristics of the kombucha mushroom-based film. The physicochemical, thermal, and antibacterial properties of the films were investigated using different techniques. The obtained results showed that starch significantly increased the tensile strength of the film (3 Mpa) and glycerol improved the flexibility of the film (70%). Starch increased the film's resistance to dissolution in water, and parsley extract and starch improved water vapor permeability. The pure film of kombucha mushroom had good antioxidant (40% ± 2%) and antibacterial properties, and parsley extract significantly increased these properties of the film, so that the prepared film can be considered as an active film. Starch had no significant effect on antioxidant and antibacterial properties. The pure kombucha mushroom film had cracks on the surface, and the addition of starch removed these cracks and made the structure of the film more homogeneous. Electrostatic interactions between kombucha mushroom, glycerol, starch, and parsley extract were confirmed by Fourier transform infrared spectroscopy (FTIR) results. The pure film of kombucha mushroom was a completely amorphous film, which glycerol, parsley extract, and starch improved the crystallinity of the film. Glycerol and parsley extract decreased the thermal resistance of the film, but starch increased this property significantly (about 40°C), so that the kombucha mushroom/glycerol/starch/parsley extract composite film had the highest thermal resistance. In addition to having acceptable mechanical, thermal, and structural properties, the film based on kombucha mushroom can be used as an active film in the packaging of food products sensitive to microbial and oxidative spoilage due to having suitable antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Zahra Shiri
- Afagh Higher Education Institute of UrmiaUrmiaIran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Jafar Farzi
- Afagh Higher Education Institute of UrmiaUrmiaIran
| |
Collapse
|
6
|
Zhao X, Wang W, Cheng J, Xia Y, Duan C, Zhong R, Zhao X, Li X, Ni Y. Nanolignin-containing cellulose nanofibrils (LCNF)-enabled multifunctional ratiometric fluorescent bio-nanocomposite films for food freshness monitoring. Food Chem 2024; 453:139673. [PMID: 38772308 DOI: 10.1016/j.foodchem.2024.139673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Herein, the nanolignin-containing cellulose nanofibrils (LCNF)-enabled ratiometric fluorescent bio-nanocomposite film is developed. Interestingly, the inclusion of LCNF in the cellulose-based film enhances the detecting performance of food freshness, such as high sensitivity to biogenic amines (BAs) (limit of detection (LOD) of up to 1.83 ppm) and ultrahigh discernible fluorescence color difference (ΔE = 113.11). The underlying mechanisms are the fluorescence resonance energy transfer (FRET), π - π interaction, and cation - π interaction between LCNF and fluorescein isothiocyanate (FITC), as well as the increased hydrophobicity due to lignin, which increases the interactions of amines with FITC. Its color stability (up to 28 days) and mechanical property (49.4 Mpa) are simultaneously improved. Furthermore, a smartphone based detecting platform is developed to achieve access to food safety. This work presents a novel technology, which can have a great potential in the field of food packaging and safety.
Collapse
Affiliation(s)
- Xingjin Zhao
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Wenliang Wang
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jinbao Cheng
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuanyuan Xia
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Duan
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ruofan Zhong
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinyu Zhao
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinping Li
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
7
|
Pirsa S, Bener M, Şen FB. Biodegradable film of carboxymethyl cellulose modified with red onion peel powder waste and boron nitride nanoparticles: Investigation of physicochemical properties and release of active substances. Food Chem 2024; 445:138721. [PMID: 38359571 DOI: 10.1016/j.foodchem.2024.138721] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The aim of this study was to modify carboxymethyl cellulose (CMC) films with onion peel extract (OPE) (0-2 g), onion peel powder (OPP) (0-2 g) and boron nitride nanoparticles (BN) (0-100 mg). 17 different CMC/OPE/OPP/BN films were provided and the physicochemical properties of films were studied. The release of active compounds of the composite film was investigated over time. The obtained results showed that OPE, OPP and BN increased the physical resistance and flexibility of the films. The percentage of moisture and solubility of the films decreased with the increase of OPE, OPP and BN. By adding BN, OPE and OPP, the structure of the film became stronger and the permeability to water vapor decreased. Addition of OPE and OPP significantly increased the antioxidant property of the film. In general, it can be said that the antioxidant substances of the onion peel are protected inside the film by preparing a CMC/OPE/OPP/BN film, which, in addition to stabilizing the antioxidants, can play an effective role in the controlled release of these antioxidant substances.
Collapse
Affiliation(s)
- Sajad Pirsa
- Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Mustafa Bener
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Turkiye
| | - Furkan Burak Şen
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Turkiye
| |
Collapse
|
8
|
Zhang J, Zhang J, Zhang X, Huang X, Shi J, Sobhy R, Khalifa I, Zou X. Ammonia-Responsive Colorimetric Film of Phytochemical Formulation (Alizarin) Grafted onto ZIF-8 Carrier with Poly(vinyl alcohol) and Sodium Alginate for Beef Freshness Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11706-11715. [PMID: 38728528 DOI: 10.1021/acs.jafc.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.
Collapse
Affiliation(s)
- Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Toukh 13736, Egypt
| | - Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Food Technology Department, Faculty of Agriculture, Benha University, Toukh13736, Egypt
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Kumari S, Kumari A, Sharma R. Safe and sustainable food packaging: Argemone albiflora mediated green synthesized silver-carrageenan nanocomposite films. Int J Biol Macromol 2024; 264:130626. [PMID: 38453123 DOI: 10.1016/j.ijbiomac.2024.130626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Silver-Carrageenan (Ag/Carr) nanocomposite film for food packing application by the green method using Argemone albiflora leaf extract has been developed in this study. Different plant parts of Argemone albiflora (blue stem prickly poppy) are used all over the world for the treatment of microbial infections, jaundice, skin diseases etc. GC-MS analysis was used to examine the phytochemical found in the Argemone albiflora leaf extract which reduces the metal ions to nanoscale. The biopolymer employed in the synthesis of nanocomposite film was carrageenan, a natural carbohydrate (polysaccharide) extracted from edible red seaweeds. We developed a food packing that is biodegradable, eco-friendly, economical and free from harmful chemicals. These films possess better UV barrier and mechanical and antimicrobial properties with 1 mM AgNO3 solution. The presence of silver nanoparticles in the carrageenan matrix was evident from FESEM. The mechanical properties were analysed by a Universal testing machine (UTM) and different properties like water vapour permeability (WVP), moisture content (MC) and total soluble matter (TSM) important for food packing applications were also analysed. The antimicrobial properties of the synthesized film samples were studied against E. coli and S. aureus pathogenic bacteria. These films were employed for the storage of cottage cheese (dairy product) and strawberries (fruit). This packing increased the shelf life of the packed food effectively. Ag/Carr films are biodegradable within four weeks.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India.
| |
Collapse
|
10
|
Bumbudsanpharoke N, Nurhadi RP, Chongcharoenyanon B, Kwon S, Harnkarnsujarit N, Ko S. Effect of migration on the functionality of zinc oxide nanoparticle in polybutylene adipate terephthalate/thermoplastic starch films: A food simulant study. Int J Biol Macromol 2024; 263:130232. [PMID: 38373561 DOI: 10.1016/j.ijbiomac.2024.130232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Active packaging relies on controlled release of antimicrobials for food protection; however, uncontrolled migration due to environmental factors poses safety and functionality challenges. This study investigated the stability of zinc oxide nanoparticle (ZnONP) in poly(butylene-adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) biopolymer film for active food packaging applications. While incorporating ZnONP significantly enhanced the properties and active functionalities (UV-light blocking, antimicrobial activity) of PBAT/TPS film, food simulants posed significant stability challenges. Notably, exposure to 3 % acetic acid (acidic food simulant) triggered complete detachment and dissolution of ZnONPs from the film surface, leading to pore formation and subsequent internal ZnO dissolution. This resulted in dramatic alterations to the bionanocomposite films, including increased opacity, water vapor permeability, and decreased thermal stability, mechanical properties, and active functionalities. In contrast, 10 % ethanol (aqueous food simulant) had minimal impact, suggesting higher ZnO stability in neutral environments. Importantly, ZnO migration analysis revealed thresholds for safe application: 1 % ZnONP for acidic food contact and up to 5 % for aqueous foodstuffs. These findings highlight the critical role of environmental factors in ZnONP stability and emphasize the need for strategic optimization of ZnO content for achieving both functionality and safety in active biopolymer packaging.
Collapse
Affiliation(s)
- Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Rineta Pertiwi Nurhadi
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Busarin Chongcharoenyanon
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Seongyoung Kwon
- Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University 1 Yonseidaegil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Seonghyuk Ko
- Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University 1 Yonseidaegil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
11
|
Yaman M, Yildiz S, Özdemir A, Yemiş GP. Multicomponent system for development of antimicrobial PLA-based films with enhanced physical characteristics. Int J Biol Macromol 2024; 262:129832. [PMID: 38331069 DOI: 10.1016/j.ijbiomac.2024.129832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
This study aims to develop polylactic acid (PLA)-based packaging films with imparted antimicrobial properties and enhanced physical characteristics by evaluating the likely interaction among multiple film components. For this purpose; epoxidized soybean oil (ES) (20 %) serves as a plasticizer, spruce resin (SR) (15 %) functions as both a plasticizer and antimicrobial agent, ZnO (0.1 %) acts as a nanofiller and antimicrobial, and finally thyme and clove essential oil mixture (5 % and 10 %) serves as an antimicrobial agent were incorporated to PLA film formulation. Composite materials were prepared by the solvent casting method using methylene chloride as the solvent. The developed films were characterized in terms of physical, mechanical, thermal, and antimicrobial properties. Tensile strength (59 MPa) and elastic modulus (2625 MPa) of the neat PLA film gradually decreased to 8.99 MPa and 725.4 MPa, respectively, with the sequential addition of all components, indicating enhanced flexibility. SR, ZnO, and EOs significantly imparted antimicrobial property to the PLA film as demonstrated by the inhibition zone of 13.83 mm and 15.67 mm observed for E. coli and S. aureus, respectively. The barrier properties of the films were enhanced by the addition of SR and ZnO; however, EOs increased the water vapor permeability from 0.080 to 0.090 g.mm/m2.day.kPa compared to the neat PLA film. Principal component and hierarchical cluster analysis enabled the successful discrimination of the films, demonstrating how the film properties are affected by the film components. Therefore, this study suggests that selection of a proper combination is essential to highly benefit from the multicomponent film systems for designing alternative food packaging materials with desired properties.
Collapse
Affiliation(s)
- Merve Yaman
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey
| | - Semanur Yildiz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey.
| | - Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| |
Collapse
|
12
|
Liang W, Ge X, Lin Q, Niu L, Zhao W, Muratkhan M, Li W. Ternary composite degradable plastics based on Alpinia galanga essential oil Pickering emulsion templates: A potential multifunctional active packaging. Int J Biol Macromol 2024; 257:128580. [PMID: 38052283 DOI: 10.1016/j.ijbiomac.2023.128580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
To reduce the use of petroleum-based plastics and explore multifunctional plastics, this study was conducted to prepare ternary composite plastics by doping Pickering emulsions containing Alpinia galanga essential oil into a polymer network consisting of poly(vinyl alcohol)-acetylated pullulan polysaccharides. Scanning electron microscopy results showed that although incompatible components were present in the composite plastic, compatibility improved with the addition of pullulan polysaccharides, resulting in smooth surfaces and cross-sections, which was consistent with the observation of continuous dark zones and low relative roughness (Ra = 5.51) in Atomic force microscopy. Further, Fourier transform spectroscopy and X-ray diffraction characterization revealed that the composite plastic disrupted the molecular and crystalline structures of the pure PVA, causing the stretching vibration of -OH and the decrease of relative crystallinity. Moreover, this plastic performed optimally at a PVA to pullulan polysaccharide ratio of 75:25, exhibiting good thermal (13.12 J/g) and mechanical properties, low water absorption (70.71 %) and water vapor transmission (1.80 × 10-3 g/m2 s), as well as excellent degradability. In addition, Alpinia galanga essential oil components in the composite plastic provided favorable antioxidant scavenging of DPPH and ABTS and inhibitory effects against Escherichia coli and Staphylococcus aureus. Chicken meat packaging revealed that the plastic maintained sensory parameters such as pH and color by inhibiting the oxidation of proteins and lipids during shelf-life. The findings provide insights into developing innovative, green, multifunctional packaging and broaden the in-depth application of Alpinia galanga essential oil.
Collapse
Affiliation(s)
- Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China
| | - Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Niu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Nur-Sultan, Zhenis avenue, 62, 010011, Republic of Kazakhstan
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
13
|
Atlar GC, Kutlu G, Tornuk F. Design and characterization of chitosan-based films incorporated with summer savory (Satureja hortensis L.) essential oil for active packaging. Int J Biol Macromol 2023; 254:127732. [PMID: 39492498 DOI: 10.1016/j.ijbiomac.2023.127732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
In this study, biodegradable films were fabricated by using cross-linked chitosan nanoparticles containing different concentrations (0, 1.0, 1.2, 1.4, and 1.5 %, v/v) of Satureja hortensis essential oil (SHEO) and their physicochemical, mechanical, antimicrobial, morphological, structural and antioxidant properties were analyzed. SHEO incorporation improved antibacterial, antioxidant and thermal properties of the films. Four studied bacteria were efficiently inhibited by films loaded with SHEO. According to the FE-SEM analysis, control film had nano-sized pores while micron sized particles were present in SHEO incorporated films. Increase in color difference was well correlated with SHEO concentration. The addition of SHEO decreased elongation at break (EB) and caused an irregular fluctuation in the tensile strength (TS) values. Increase in essential oil concentration resulted in lower water solubility. The FTIR spectra of films showed evidence of interactions and molecular arrangements when SHEO was added to the polymer matrix. Overall, the findings demonstrated that SHEO incorporated chitosan-based films were successfully prepared by cross linking and film properties were remarkably affected from SHEO concentration.
Collapse
Affiliation(s)
- G Cansu Atlar
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Istanbul, Turkey
| | - Gozde Kutlu
- Ankara Medipol University, Faculty of Fine Arts, Design and Architecture, Department of Gastronomy and Culinary Arts, Ankara, Turkey
| | - Fatih Tornuk
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Istanbul, Turkey.
| |
Collapse
|
14
|
Tallawi M, Amrein D, Gemmecker G, Aifantis KE, Drechsler K. A novel polysaccharide/zein conjugate as an alternative green plastic. Sci Rep 2023; 13:13161. [PMID: 37573459 PMCID: PMC10423201 DOI: 10.1038/s41598-023-40293-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
The flax seed cake is a waste product from flax oil extraction. Adding value to this wasted material aligns with the concept of circularity. In this study, we explored zein protein conjugation with flax mucilage for packaging material development. Although both flax mucilage and zein have excellent film-forming properties, they lack the required mechanical properties for industrial processing and are sensitive to high humidity. We present a simple and non-toxic one-pot method for developing the novel flax mucilage/zein conjugate. Where the flax mucilage undergoes oxidation to form aldehyde groups, which then react with zein's amino groups in a glycation process. The conjugates were analyzed using different techniques. The flax mucilage conjugate had a water-holding capacity of 87-62%. Increasing the zein content improved the surface smoothness of the films. On the other hand, higher levels of zein led to a significant decrease in film solubility (p < 0.05). The flax mucilage conjugate exhibited thermoplastic and elastic properties; revealing Young's modulus of 1-3 GPa, glass transition temperature between 49 °C and 103 °C and excellent processability with various industrial techniques. Showing its potential as a sustainable alternative to traditional plastics.
Collapse
Affiliation(s)
- Marwa Tallawi
- Carbon Composite, School of Engineering and Design, Technical University of Munich, 85748, Garching, Germany.
| | - Danial Amrein
- Carbon Composite, School of Engineering and Design, Technical University of Munich, 85748, Garching, Germany
| | - Gerd Gemmecker
- School of Natural Sciences, Bavarian NMR Center, Technical University of Munich, 85748, Garching, Germany
| | - Katerina E Aifantis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Klaus Drechsler
- Carbon Composite, School of Engineering and Design, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
15
|
Erfani A, Pirouzifard MK, Pirsa S. Photochromic biodegradable film based on polyvinyl alcohol modified with silver chloride nanoparticles and spirulina; investigation of physicochemical, antimicrobial and optical properties. Food Chem 2023; 411:135459. [PMID: 36681023 DOI: 10.1016/j.foodchem.2023.135459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
In this study, biodegradable film was prepared from polyvinyl alcohol (PVA), Silver chloride (AgCl) and spirulina (Sp). Surface morphology, mechanical properties, antioxidant, antimicrobial, optical properties, etc. were investigated. The FTIR results confirmed the effect of AgCl and Sp on PVA structure. Sp increased the moisture content and solubility in water. The XRD results showed the semi-crystalline structure of PVA. AgCl nanoparticles activated the antibacterial property of the film against Escherichia coli and Staphylococcus aureus bacteria and Sp caused a strong increase in the antioxidant property of the film. Examining the light transmittance of films containing AgCl nanoparticles showed that the transmittance of films containing nanoparticles decreased with exposure to sunlight and ultraviolet light with increasing treatment time, which indicates the activation of the photochromic property of films containing AgCl in the presence of light. The results showed the suitable photochromic property of the PVA/AgCl films.
Collapse
Affiliation(s)
- Aref Erfani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mir Khalil Pirouzifard
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
16
|
Fayaz I, Ganaie NB, Peerzada GM. Synthesis of bromoepoxy/zirconium phosphate (ZrP) metalloresin by ultrasonication and exploring its applications. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
17
|
Ibrahim AG, Elgammal WE, Hashem AH, Mohamed AE, Awad MA, Hassan SM. Development of a chitosan derivative bearing the thiadiazole moiety and evaluation of its antifungal and larvicidal efficacy. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractA new chitosan derivative bearing a new thiadiazole compound was developed, and its antifungal and larvicidal activities were investigated. The chitosan derivative (coded here as PTDz-Cs) was synthesized by the reaction between the carboxylic derivative of the thiadiazole moiety and chitosan. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H/13C-NMR), gas chromatography–mass spectrometry (GC–MS), elemental analysis, X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) were used to characterize the developed derivatives. Compared to chitosan, the PTDz-Cs derivative has a less crystalline structure and less thermal stability. The antifungal results revealed that PTDz-Cs exhibited potential activity against Rhizopus microspores, Mucor racemosus, Lichtheimia corymbifera, and Syncephalastrum racemosum where inhibition zones were 17.76, 20.1, 38.2, and 18.3 mm, respectively. The larvicidal efficacy of the PTDz-Cs derivative against A. stephensi larvae was tested, and the results exposed that the LC50 and LC90 values (first instar) were 5.432 and 10.398 ppm, respectively, indicating the high susceptibility of early instar mosquito larvae to PTDz-Cs. These results emphasize that this study provided a new chitosan derivative that could be potentially used in the biomedical fields.
Collapse
|
18
|
Zhang Q, Cui J, Zhao S, Gao A, Zhang G, Yan Y. Regulation binary electromagnetic filler networks in segregated poly(vinylidenefluoride) composite for absorption‐dominated electromagnetic interference shielding. J Appl Polym Sci 2023. [DOI: 10.1002/app.53650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qimei Zhang
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
- School of Materials and Environmental Engineering Chizhou University Chizhou China
| | - Jian Cui
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Shuai Zhao
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Ailin Gao
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Guangfa Zhang
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Yehai Yan
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
19
|
Pirsa S, Hafezi K. Hydrocolloids: Structure, preparation method, and application in food industry. Food Chem 2023; 399:133967. [DOI: 10.1016/j.foodchem.2022.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
|
20
|
Emerging Applications of Versatile Polyaniline-Based Polymers in the Food Industry. Polymers (Basel) 2022; 14:polym14235168. [PMID: 36501566 PMCID: PMC9737623 DOI: 10.3390/polym14235168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Intrinsically conducting polymers (ICPs) have been widely studied in various applications, such as sensors, tissue engineering, drug delivery, and semiconductors. Specifically, polyaniline (PANI) stands out in food industry applications due to its advantageous reversible redox properties, electrical conductivity, and simple modification. The rising concerns about food safety and security have encouraged the development of PANI as an antioxidant, antimicrobial agent, food freshness indicator, and electronic nose. At the same time, it plays an important role in food safety control to ensure the quality of food. This study reviews the emerging applications of PANI in the food industry. It has been found that the versatile applications of PANI allow the advancement of modern active and intelligent food packaging and better food quality monitoring systems.
Collapse
|
21
|
Biswas S, Lee Y, Jang H, Han S, Kim H. Improved mechanical stability of indium zinc tin oxide based flexible transparent electrode through interlayer treatment. J Appl Polym Sci 2022. [DOI: 10.1002/app.53251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea
| | - Yongju Lee
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea
| | - Hyowon Jang
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea
| | - Selim Han
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea
- AI Robot R&D Department Korea Institute of Industrial Technology (KITECH) Ansan South Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4) University of Seoul Seoul Republic of Korea
- Central Business, SENSOMEDI Cheongju‐si Republic of Korea
- Institute of Sensor System, SENSOMEDI, Seoul Biohub Seoul Republic of Korea
- Energy Flex Seoul Republic of Korea
| |
Collapse
|
22
|
Pirsa S, Mahmudi M, Ehsani A. Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: Physicochemical properties and lutein controlled release. Int J Biol Macromol 2022; 224:1588-1599. [DOI: 10.1016/j.ijbiomac.2022.10.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
23
|
Synthesis and characterization of poly(glycolic acid) (PGA) and its graphene oxide hybrids (PGA-GO). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Bayramoglu G, Kilic M, Yakup Arica M. Selective isolation and sensitive detection of lysozyme using aptamer based magnetic adsorbent and a new quartz crystal microbalance system. Food Chem 2022; 382:132353. [PMID: 35152024 DOI: 10.1016/j.foodchem.2022.132353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Magnetic chitosan beads and quartz crystal microbalance chip were decorated with lysozyme specific aptamer for isolation and detection of lysozyme, respectively. The lysozyme specific aptamer was immobilized on poly (dopamine) coated magnetic chitosan beads and the chip via Schiff base reaction. The percentage of the removal efficiency and purity of the isolated lysozyme from egg white were 87.6% and 91.8%, respectively. Further, the sensor system was contacted with different concentrations of lysozyme and other test proteins. This sensor system provided a method for the label-free, concentration-dependent, and selective detection of lysozyme with an observed detection limit of 17.9 ± 0.6 ng/mL. The sensor system was very selective and not significantly responded to the other tested proteins such as ovalbumin, trypsin, cytochrome C, and glucose oxidase. The prepared new sensor system showed a good durability and a high sensitivity for determination of lysozyme from solutions and whole egg white.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| | - Murat Kilic
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - M Yakup Arica
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|
25
|
Recent advances in chitosan-polyaniline based nanocomposites for environmental applications: A review. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Sun X, Yin L, Zhu H, Zhu J, Hu J, Luo X, Huang H, Fu Y. Enhanced Antimicrobial Cellulose/Chitosan/ZnO Biodegradable Composite Membrane. MEMBRANES 2022; 12:membranes12020239. [PMID: 35207160 PMCID: PMC8877955 DOI: 10.3390/membranes12020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, chitosan and sugarcane cellulose were used as film-forming materials, while the inorganic agent zinc oxide (ZnO) and natural compound phenyllactic acid (PA) were used as the main bacteriostatic components to fabricate biodegradable antimicrobial composite membranes. The water absorption and antimicrobial properties were investigated by adjusting the concentration of PA. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results demonstrated that the components of the composite membrane were successfully integrated. The addition of ZnO improved the mechanical and antimicrobial properties of the composite membrane, while the addition of PA with high crystallinity significantly reduced the water absorption and swelling. Moreover, the addition of 0.5% PA greatly improved the water absorption of the composite membrane. The results of antimicrobial experiments showed that PA improved the antimicrobial activity of the composite membrane against Staphylococcus aureus, Escherichia coli, Aspergillus niger and Penicillium rubens. Among them, 0.3% PA had the best antimicrobial effect against S. aureus, E. coli and A. niger, while 0.7% PA had the best antimicrobial effect against P. rubens.
Collapse
Affiliation(s)
- Xiaolong Sun
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China; (X.S.); (H.H.)
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Longfei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Huayue Zhu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Junhao Zhu
- Zhejiang Kingsun Eco-Pack Co., Ltd., Taizhou 317000, China;
| | - Jiahuan Hu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - He Huang
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China; (X.S.); (H.H.)
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
- Correspondence:
| |
Collapse
|
27
|
Atomization of Microfibrillated Cellulose and Its Incorporation into Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Reactive Extrusion. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study focuses on the preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films that were reinforced with cellulose microstructures to obtain new green composite materials for sustainable food packaging applications. The atomization of suspensions of microfibrillated cellulose (MFC) successfully allowed the formation of ultrathin cellulose structures of nearly 3 µm that were, thereafter, melt-mixed at 2.5, 5, and 10 wt % with PHBV and subsequently processed into films by thermo-compression. The most optimal results were attained for the intermediate MFC content of 5 wt %, however, the cellulose microstructures showed a low interfacial adhesion with the biopolyester matrix. Thus, two reactive compatibilizers were explored in order to improve the properties of the green composites, namely the multi-functional epoxy-based styrene-acrylic oligomer (ESAO) and the combination of triglycidyl isocyanurate (TGIC) with dicumyl peroxide (DCP). The chemical, optical, morphological, thermal, mechanical, and barrier properties against water and aroma vapors and oxygen were analyzed in order to determine the potential application of these green composite films in food packaging. The results showed that the incorporation of MFC yielded contact transparent films, whereas the reactive extrusion with TGIC and DCP led to green composites with enhanced thermal stability, mechanical strength and ductility, and barrier performance to aroma vapor and oxygen. In particular, this compatibilized green composite film was thermally stable up to ~280 °C, whereas it showed an elastic modulus (E) of above 3 GPa and a deformation at break (ɛb) of 1.4%. Moreover, compared with neat PHBV, its barrier performance to limonene vapor and oxygen was nearly improved by nine and two times, respectively.
Collapse
|