1
|
Shu HM, Lin CQ, He B, Wang W, Wang L, Wu T, He HJ, Wang HJ, Zhou HP, Ding GZ. Pyroptosis-Related Genes as Diagnostic Markers in Chronic Obstructive Pulmonary Disease and Its Correlation with Immune Infiltration. Int J Chron Obstruct Pulmon Dis 2024; 19:1491-1513. [PMID: 38957709 PMCID: PMC11217143 DOI: 10.2147/copd.s438686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) stands as a predominant cause of global morbidity and mortality. This study aims to elucidate the relationship between pyroptosis-related genes (PRGs) and COPD diagnosis in the context of immune infiltration, ultimately proposing a PRG-based diagnostic model for predicting COPD outcomes. Methods Clinical data and PRGs of COPD patients were sourced from the GEO database. The "ConsensusClusterPlus" package was employed to generate molecular subtypes derived from PRGs that were identified through differential expression analysis and LASSO Cox analysis. A diagnostic signature including eight genes (CASP4, CASP5, ELANE, GPX4, NLRP1, GSDME, NOD1and IL18) was also constructed. Immune cell infiltration calculated by the ESTIMATE score, Stroma scores and Immune scores were also compared on the basis of pyroptosis-related molecular subtypes and the risk signature. We finally used qRT - PCR to detect the expression levels of eight genes in COPD patient and normal. Results The diagnostic model, anchored on eight PRGs, underwent validation with an independent experimental cohort. The area under the receiver operating characteristic (ROC) curves (AUC) for the diagnostic model showcased values of 0.809, 0.765, and 0.956 for the GSE76925, GSE8545, and GSE5058 datasets, respectively. Distinct expression patterns and clinical attributes of PRGs were observed between the comparative groups, with functional analysis underscoring a disparity in immune-related functions between them. Conclusion In this study, we developed a potential as diagnostic biomarkers for COPD and have a significant role in modulating the immune response. Such insights pave the way for novel diagnostic and therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Hong-Mei Shu
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Chang-Qing Lin
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Bei He
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Wang Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Ling Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Ting Wu
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Hai-Juan He
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Hui-Juan Wang
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - He-Ping Zhou
- Neurosurgery Department, Anqing Municipal Hospital, Anhui, People’s Republic of China
| | - Guo-Zheng Ding
- Department of Pulmonary and Critical Care Medicine, Anqing Municipal Hospital, Anhui, People’s Republic of China
| |
Collapse
|
2
|
Guzelj S, Jakopin Ž. Nucleotide-Binding Oligomerization Domain 1/Toll-Like Receptor 4 Co-Engagement Promotes Non-Specific Immune Response Against K562 Cancer Cells. Front Pharmacol 2022; 13:920928. [PMID: 35935855 PMCID: PMC9354050 DOI: 10.3389/fphar.2022.920928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1) receptor and Toll-like receptor 4 (TLR4) belong to the family of pattern recognition receptors. Interactions between these receptors profoundly shape the innate immune responses. We previously demonstrated that co-stimulation of peripheral blood mononuclear cells (PBMCs) with D-glutamyl-meso-diaminopimelic acid (iE-DAP)-based NOD1 agonists and lipopolysaccharide (LPS), a TLR4 agonist, synergistically increased the cytokine production. Herein, we postulate that stimulation of NOD1 alone or a combined stimulation of NOD1 and TLR4 could also strengthen PBMC-mediated cytotoxicity against cancer cells. Initially, an in-house library of iE-DAP analogs was screened for NOD1 agonist activity to establish their potency in HEK-Blue NOD1 cells. Next, we showed that our most potent NOD1 agonist SZZ-38 markedly enhanced the LPS-induced cytokine secretion from PBMCs, in addition to PBMC- and natural killer (NK) cell-mediated killing of K562 cancer cells. Activation marker analysis revealed that the frequencies of CD69+, CD107a+, and IFN-γ+ NK cells are significantly upregulated following NOD1/TLR4 co-stimulation. Of note, SZZ-38 also enhanced the IFN-γ-induced PBMC cytotoxicity. Overall, our findings provide further insight into how co-engagement of two pathways boosts the non-specific immune response and attest to the importance of such interplay between NOD1 and TLR4.
Collapse
|
3
|
Han G, Li M, Du J, Chen Y, Xu C. Nucleotide-Oligomerizing Domain-1 Activation Exaggerates Cigarette Smoke-Induced Chronic Obstructive Pulmonary-Like Disease in Mice. Int J Chron Obstruct Pulmon Dis 2021; 16:2605-2615. [PMID: 34556981 PMCID: PMC8453445 DOI: 10.2147/copd.s323616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a progressive condition related to abnormal inflammatory responses. As an inflammatory driver, nucleotide-binding oligomerizing domain-1 (NOD1) is highly expressed in pulmonary inflammatory cells; however, the roles of NOD1 in COPD are unknown. Methods A COPD mouse model was established by lipopolysaccharides tracheal instillation plus cigarette smoke (CS) exposure. NOD1 activation was induced by C12-iE-DAP (iE) treatment in both control and COPD mice. Inflammatory infiltration, pulmonary histological damage and gene expression were measured to evaluate the lung function of treated mice. Results The results showed that NOD1 was up-regulated in COPD mice, which significantly exaggerated CS-induced impairment of lung function, demonstrated by increased airway resistance, functional residual capacity and pulmonary damages. Mechanistically, NOD1 activation strongly activated the TLR4/NF-κB signaling pathway and then increased inflammatory responses and promoted the secretion of inflammatory cytokines. Discussion This study demonstrates that NOD1 is an important risk factor in the progression of COPD; therefore, targeting NOD1 in lung tissues is a potential strategy for COPD treatment.
Collapse
Affiliation(s)
- Guangchao Han
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People's Republic of China
| | - Min Li
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People's Republic of China
| | - Junfeng Du
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People's Republic of China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People's Republic of China
| | - Chen Xu
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People's Republic of China
| |
Collapse
|
4
|
Chen S, Yang F, Cao W, Liu H, Wen B, Sun Y, Zheng H, Wang J, Zhu Z. Quantitative Proteomics Reveals a Novel Role of the E3 Ubiquitin-Protein Ligase FANCL in the Activation of the Innate Immune Response through Regulation of TBK1 Phosphorylation during Peste des Petits Ruminants Virus Infection. J Proteome Res 2021; 20:4113-4130. [PMID: 34289691 DOI: 10.1021/acs.jproteome.1c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peste des petits ruminants virus (PPRV) infection causes considerable innate immunosuppression in its host, which promotes viral replication. However, how the host rescues the innate immune response to counteract this immunosuppression during viral replication remains largely unknown. To explore the mechanisms of how a host counteracts PPRV-mediated innate immunosuppression, a high-throughput quantitation proteomic approach (isobaric tags for relative and absolute quantitation in conjunction with LC-MS/MS) was used to investigate the proteome landscape of goat fetal fibroblasts (GFFs) in response to PPRV infection. Eventually, 497 upregulated proteins and 358 downregulated proteins were identified. Many of the differentially expressed proteins were enriched in immune-related pathways. Blocking the activation of the innate immune response with a specific inhibitor BX795 in GFFs remarkably promoted PPRV replication, suggesting the significant antiviral role of the enriched immune-related pathways. The GO enrichment analysis showed that the host protein FANCL revealed a similar expression pattern to these innate immune-related proteins. In addition, the analysis of protein-protein interaction networks reveals a potential relationship between FANCL and the innate immune pathway. We determined that FANCL inhibited PPRV infection by enhancing type I interferon (IFN) and IFN-stimulated gene expression. Further investigation determined that FANCL induced type I IFN production by promoting TBK1 phosphorylation, thus impairing PPRV-mediated immunosuppression.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.,State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Bo Wen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Jingyu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| |
Collapse
|
5
|
Valsamidou E, Gioxari A, Amerikanou C, Zoumpoulakis P, Skarpas G, Kaliora AC. Dietary Interventions with Polyphenols in Osteoarthritis: A Systematic Review Directed from the Preclinical Data to Randomized Clinical Studies. Nutrients 2021; 13:1420. [PMID: 33922527 PMCID: PMC8145539 DOI: 10.3390/nu13051420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a major cause of limited functionality and thus a decrease in the quality of life of the inflicted. Given the fact that the existing pharmacological treatments lack disease-modifying properties and their use entails significant side effects, nutraceuticals with bioactive compounds constitute an interesting field of research. Polyphenols are plant-derived molecules with established anti-inflammatory and antioxidant properties that have been extensively evaluated in clinical settings and preclinical models in OA. As more knowledge is gained in the research field, an interesting approach in the management of OA is the additive and/or synergistic effects that polyphenols may have in an optimized supplement. Therefore, the aim of this review was to summarize the recent literature regarding the use of combined polyphenols in the management of OA. For that purpose, a PubMed literature survey was conducted with a focus on some preclinical osteoarthritis models and randomized clinical trials on patients with osteoarthritis from 2018 to 2021 which have evaluated the effect of combinations of polyphenol-rich extracts and purified polyphenol constituents. Data indicate that combined polyphenols may be promising for the treatment of osteoarthritis in the future, but more clinical trials with novel approaches in the identification of the in-between relationship of such constituents are needed.
Collapse
Affiliation(s)
- Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
| | - Aristea Gioxari
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Panagiotis Zoumpoulakis
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, Egaleo, 12243 Athens, Greece
| | - George Skarpas
- Hellenic Open University/Sports Injuries & Regenarative Medicine Orthopaedic Clinic at “MITERA” Hospital, Marousi, 15123 Attiki, Greece;
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| |
Collapse
|
6
|
Lim RR, Wieser ME, Ganga RR, Barathi VA, Lakshminarayanan R, Mohan RR, Hainsworth DP, Chaurasia SS. NOD-like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy. Int J Mol Sci 2020; 21:E899. [PMID: 32019187 PMCID: PMC7037099 DOI: 10.3390/ijms21030899] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM). International Diabetic Federations (IDF) estimates up to 629 million people with DM by the year 2045 worldwide. Nearly 50% of DM patients will show evidence of diabetic-related eye problems. Therapeutic interventions for DR are limited and mostly involve surgical intervention at the late-stages of the disease. The lack of early-stage diagnostic tools and therapies, especially in DR, demands a better understanding of the biological processes involved in the etiology of disease progression. The recent surge in literature associated with NOD-like receptors (NLRs) has gained massive attraction due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, a central phenomenon found in the pathogenesis of ocular diseases including DR. The NLR family of receptors are expressed in different eye tissues during pathological conditions suggesting their potential roles in dry eye, ocular infection, retinal ischemia, cataract, glaucoma, age-related macular degeneration (AMD), diabetic macular edema (DME) and DR. Our group is interested in studying the critical early components involved in the immune cell infiltration and inflammatory pathways involved in the progression of DR. Recently, we reported that NLRP3 inflammasome might play a pivotal role in the pathogenesis of DR. This comprehensive review summarizes the findings of NLRs expression in the ocular tissues with special emphasis on its presence in the retinal microglia and DR pathogenesis.
Collapse
Affiliation(s)
- Rayne R. Lim
- Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; (R.R.L.); (M.E.W.); (R.R.M.)
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 652011, USA
- Ophthalmology, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 652011, USA
| | - Margaret E. Wieser
- Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; (R.R.L.); (M.E.W.); (R.R.M.)
| | - Rama R. Ganga
- Surgery, University of Missouri, Columbia, MO 652011, USA;
| | | | | | - Rajiv R. Mohan
- Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; (R.R.L.); (M.E.W.); (R.R.M.)
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 652011, USA
- Ophthalmology, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 652011, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 652011, USA;
| | - Dean P. Hainsworth
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 652011, USA;
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; (R.R.L.); (M.E.W.); (R.R.M.)
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 652011, USA
- Ophthalmology, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 652011, USA
| |
Collapse
|
7
|
Mey L, Jung M, Roos F, Blaheta R, Hegele A, Kinscherf R, Urbschat A. NOD1 and NOD2 of the innate immune system is differently expressed in human clear cell renal cell carcinoma, corresponding healthy renal tissue, its vasculature and primary isolated renal tubular epithelial cells. J Cancer Res Clin Oncol 2019; 145:1405-1416. [PMID: 30903318 DOI: 10.1007/s00432-019-02901-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE NOD1 and NOD2 (nucleotide-binding oligomerization domain)-receptors are intracellular receptors and belong to the family of pattern recognition receptors being present in both human and murine renal tubular cells. Besides, NOD1 has been proved to promote apoptosis, upon its overexpression. Hence, we aimed to investigate NOD1 and NOD2 expression in human clear cell renal cell carcinoma (ccRCC). METHODS Tumor and corresponding adjacent healthy tissues from 41 patients with histopathological diagnosis of ccRCC as well as primary isolated renal tubular epithelial cells (TECs) and tumor tissue from a murine xenograft model using CAKI-1 ccRCC cells were analyzed. RESULTS NOD1 and NOD2 mRNA was constitutively expressed in both tumor and adjacent healthy renal tissue, with NOD1 being significantly lower and in contrast NOD2 significantly higher expressed in tumor tissue compared to healthy tissues. Immunohistochemically, NOD1 was located not only in the cytoplasm, but also in the nucleus in ccRCC tissue whereas NOD2 was solely localized in the cytoplasm in both human ccRCC as well as in the healthy tubular system. Focusing on the vasculature, NOD2 displayed broader expression than NOD1. In primary TECs as well as CAKI-1 cells NOD1 and NOD2 was constitutively expressed and increasable upon LPS stimulation. In the mouse xenograft model, human NOD1 mRNA was significantly higher expressed compared to NOD2. In contrast hereto, we observed a shift towards lower mouse NOD1 compared to NOD2 mRNA expression. CONCLUSION In view of reduced apoptosis-associated NOD1 expression in ccRCC tissue opposed to higher expression of NOD2 in tumor vasculature, inducibility of NOD expression in TECs as well as the detected shift of NOD1 and NOD2 expression in the mouse xenograft model, modulation of NOD receptors might, therefore, provide a molecular therapeutic approach in ccRCC.
Collapse
Affiliation(s)
- Lilli Mey
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Frederik Roos
- Clinic of Urology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Roman Blaheta
- Clinic of Urology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Axel Hegele
- Clinic of Urology and Pediatric Urology, Philipps-University Marburg, Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Anja Urbschat
- Clinic of Urology and Pediatric Urology, Philipps-University Marburg, Marburg, Germany.
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Huang S, Wu J, Gao X, Zou S, Chen L, Yang X, Sun C, Du Y, Zhu B, Li J, Yang X, Feng X, Wu C, Shi C, Wang B, Lu Y, Liu J, Zheng X, Gong F, Lu M, Yang D. LSECs express functional NOD1 receptors: A role for NOD1 in LSEC maturation-induced T cell immunity in vitro. Mol Immunol 2018; 101:167-175. [PMID: 29944986 DOI: 10.1016/j.molimm.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/21/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are organ resident APCs capable of antigen presentation and subsequent tolerization of T cells under physiological conditions. In this study, we investigated whether LSEC pretreatment with NOD-like receptor (NLR) agonists can switch the cells from a tolerogenic to an immunogenic state and promote the development of T cell immunity. LSECs constitutively express NOD1, NOD2 and RIPK2. Stimulation of LSECs with DAP induced the activation of NF-κB and MAP kinases and upregulated the expression of chemokines (CXCL2/9, CCL2/7/8) and cytokines (IFN-γ, TNF-α and IL-2). Pretreatment of LSECs with DAP induced significantly increased IFN-γ and IL-2-production by HBV-stimulated CD8+ T cells primed by DAP-treated LSECs. Consistently, a significant reduction in the HBV DNA and HBsAg level occurred in mice receiving T cells primed by DAP-treated LSECs. MDP stimulation had no impact on LSECs or HBV-stimulated CD8+ T cells primed with MDP-treated LSECs except for the upregulation of PD-L1. DAP stimulation in vitro could promote LSEC maturation and activate HBV-specific T cell responses. These results are of particular relevance for the regulation of the local innate immune response against HBV infections.
Collapse
Affiliation(s)
- Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xiaoyan Gao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Shi Zou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Liwen Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xilang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Chan Sun
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Jia Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany.
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
9
|
NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. Int Immunopharmacol 2017; 54:385-400. [PMID: 29207344 DOI: 10.1016/j.intimp.2017.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD) 1 and NOD2 are pattern-recognition receptors responsible for sensing fragments of bacterial peptidoglycan known as muropeptides. Stimulation of innate immunity by systemic or local administration of NOD1 and NOD2 agonists is an attractive means to prevent and treat infectious diseases. In this review, we discuss novel data concerning structural features of selective and non-selective (dual) NOD1 and NOD2 agonists, main signaling pathways and biological effects induced by NOD1 and NOD2 stimulation, including induction of pro-inflammatory cytokines, type I interferons and antimicrobial peptides, induction of autophagy, alterations of metabolism. We also discuss interactions between NOD1/NOD2 and Toll-like receptor agonists in terms of synergy and cross-tolerance. Finally, we review available animal data on the role of NOD1 and NOD2 in protection against infections, and discuss how these data could be applied in human infectious diseases.
Collapse
|
10
|
Hara T, Nakashima Y, Sakai Y, Nishio H, Motomura Y, Yamasaki S. Kawasaki disease: a matter of innate immunity. Clin Exp Immunol 2016; 186:134-143. [PMID: 27342882 PMCID: PMC5054572 DOI: 10.1111/cei.12832] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 12/26/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis of childhood that does not have a known cause or aetiology. The epidemiological features (existence of epidemics, community outbreaks and seasonality), unique age distribution and clinical symptoms and signs of KD suggest that the disease is caused by one or more infectious environmental triggers. However, KD is not transmitted person-to-person and does not occur in clusters within households, schools or nurseries. KD is a self-limited illness that is not associated with the production of autoantibodies or the deposition of immune complexes, and it rarely recurs. Regarding the underlying pathophysiology of KD, innate immune activity (the inflammasome) is believed to play a role in the development of KD vasculitis, based on the results of studies with animal models and the clinical and laboratory findings of KD patients. Animal studies have demonstrated that innate immune pathogen-associated molecular patterns (PAMPs) can cause vasculitis independently of acquired immunity and have provided valuable insights regarding the underlying mechanisms of this phenomenon. To validate this concept, we recently searched for KD-specific PAMPs and identified such molecules with high specificity and sensitivity. These molecules have structures similar to those of microbe-associated molecular patterns (MAMPs), as shown by liquid chromatography-tandem mass spectrometry. We propose herein that KD is an innate immune disorder resulting from the exposure of a genetically predisposed individual to microbe-derived innate immune stimulants and that it is not a typical infectious disease.
Collapse
Affiliation(s)
- T Hara
- Fukuoka Children's Hospital.
- Department of Pediatrics, Graduate School of Medical Sciences.
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Y Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences
| | - Y Sakai
- Department of Pediatrics, Graduate School of Medical Sciences
| | - H Nishio
- Department of Pediatrics, Graduate School of Medical Sciences
| | - Y Motomura
- Department of Pediatrics, Graduate School of Medical Sciences
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - S Yamasaki
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Yang H, Li N, Song LN, Wang L, Tian C, Tang CS, Du J, Li HH, Yu XH, Wang HX. Activation of NOD1 by DAP contributes to myocardial ischemia/reperfusion injury via multiple signaling pathways. Apoptosis 2015; 20:512-22. [DOI: 10.1007/s10495-015-1089-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Jakopin Ž, Gobec M, Kodela J, Hazdovac T, Mlinarič-Raščan I, Sollner Dolenc M. Synthesis of conformationally constrained γ-D-glutamyl-meso-diaminopimelic acid derivatives as ligands of nucleotide-binding oligomerization domain protein 1 (Nod1). Eur J Med Chem 2013; 69:232-43. [PMID: 24044936 DOI: 10.1016/j.ejmech.2013.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 08/12/2013] [Indexed: 11/26/2022]
Abstract
Nod1, an important member of the pattern recognition receptor family, remains a virtually unexploited target. Harnessing its innate immune stimulatory properties still remains an unfulfilled goal of medicinal chemistry. Nucleotide-binding oligomerization domain protein 1 (Nod1) agonists have been shown to boost the inflammatory responses against pathogenic microbes and could thus constitute a new class of broad spectrum antimicrobial agents. To gain additional insight into the structure/activity relationships of Nod1 agonistic compounds, a series of novel, conformationally constrained γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) analogs have been designed and synthesized. Ramos-Blue cells expressing Nod1 were used to screen and validate our compounds for their Nod1-agonist activity. Their immunomodulatory properties were subsequently determined in vitro, by evaluating their capacity to induce pro-inflammatory cytokine and chemokine production from human peripheral blood mononuclear cells (PBMC), by themselves and in synergy with lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) ligand. The synthesized iE-DAP analogs were shown to possess immuno-enhancing properties as a result of their potent and specific Nod1-agonistic effect. The activity of the compound exhibiting the greatest capacity to induce pro-inflammatory cytokine release from PBMC surpassed that of lauroyl-γ-D-glutamyl-meso-diaminopimelic acid (C12-iE-DAP).
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
13
|
The meningococcal adhesin NhhA provokes proinflammatory responses in macrophages via toll-like receptor 4-dependent and -independent pathways. Infect Immun 2012; 80:4027-33. [PMID: 22949555 DOI: 10.1128/iai.00456-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of macrophages by Toll-like receptors (TLRs) and functionally related proteins is essential for host defense and innate immunity. TLRs recognize a wide variety of pathogen-associated molecules. Here, we demonstrate that the meningococcal outer membrane protein NhhA has immunostimulatory functions and triggers release of proinflammatory cytokines from macrophages. NhhA-induced cytokine release was found to proceed via two distinct pathways in RAW 264.7 macrophages. Interleukin-6 (IL-6) secretion was dependent on activation of TLR4 and required the TLR signaling adaptor protein MyD88. In contrast, release of tumor necrosis factor (TNF) was TLR4 and MyD88 independent. Both pathways involved NF-κB-dependent gene regulation. Using a PCR-based screen, we could identify additional targets of NhhA-dependent gene activation such as the cytokines and growth factors IL-1α, IL-1β, granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). In human monocyte-derived macrophages, G-CSF, GM-CSF, and IL-6 were found to be major targets of NhhA-dependent gene regulation. NhhA induced transcription of IL-6 and G-CSF mRNA via TLR4-dependent pathways, whereas GM-CSF transcription was induced via TLR4-independent pathways. These data provide new insights into the role of NhhA in host-pathogen interaction.
Collapse
|