1
|
Ghanim M, Rabayaa M, Alqub M, Hanani A, Abuawad M, Rahhal B, Qadous S, Barahmeh M, Atout S, Al-Lahham S, Aref A, Dwikat M, Alkhaldi S, Makhamreh A. Investigating knowledge and attitudes toward genetic testing and counseling among palestinians. Sci Rep 2025; 15:4446. [PMID: 39910132 PMCID: PMC11799357 DOI: 10.1038/s41598-024-84733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025] Open
Abstract
Genetic testing is important in the diagnosis of genetic disorders. Genetic counseling integrates the interpretation of the results of genetic testing to reach informed decisions concerning genetic disorders. Palestine has an increased incidence of genetic disorders primarily due to the continued practice of consanguineous marriage. Nevertheless, limited research has been conducted to explore public awareness regarding genetic testing and genetic counseling. The current study aimed to assess the public knowledge, attitudes, and practices of Palestinians toward genetic testing and genetic counseling. A cross-sectional study was performed using an online questionnaire that gathered information from Palestinians whose ages were 18 years or older between April and July 2024. The questionnaire gathered demographic information about the participants and assessed their genetic test usage patterns and their knowledge, practices, and attitudes toward genetic testing and counseling. A total of 1056 participants (408 males and 648 females) completed the questionnaire. The mean age of participants was 31.18 years. Sixty-seven point 6% of the participants reported their knowledge about the term genetic testing; however, only 35.5% of them knew the term genetic counseling. Knowledge of genetic testing was significantly associated with younger ages, higher levels of education, and higher income (p < 0.05). Knowledge of genetic counseling was significantly associated with higher income and was more familiar among married participants and those who underwent routine check-ups. Only 9% indicated that they underwent genetic testing which was higher among older ages, married participants, among those undergoing routine check-ups, and among participants who had hereditary disorders in their families. Among the 95 participants who had genetic tests, 52.6% of them performed it for marriage. Other reasons for undergoing genetic testing were diagnosis (22.1%), followed by carrier testing (17.9%), and predictive and pre-symptomatic testing (10.5%). Sixty-point-6% of respondents reported they would like to perform genetic testing as a predictive test for cancer risk. Participants with higher levels of education were more likely to perform cancer-predictive genetic testing (p < 0.05). Participants who were undergoing routine check-ups, those who had reported their health status as poor, and those who had hereditary disorders in their families were more likely to perform predictive cancer genetic testing. In conclusion, there is insufficient knowledge about genetic counseling among Palestinians. Despite the relatively good knowledge of genetic testing, this has not translated into appropriate practice. Genetic testing is still not widely practiced and the most common for performing it is pre-marriage testing rather than medical reasons. It is strongly recommended to increase awareness about genetic testing and genetic counseling among Palestinians. In particular, these programs should be directed toward people with lower levels of education, and toward families with a high degree of consanguinity and consequently a high incidence of genetic disorders.
Collapse
Affiliation(s)
- Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine.
| | - Maha Rabayaa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
- Department of Physiology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Malik Alqub
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Ahmad Hanani
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Mohammad Abuawad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Belal Rahhal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Shurouq Qadous
- Department of Nursing and Midwifery, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Myassar Barahmeh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Sameeha Atout
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Saad Al-Lahham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Aseel Aref
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Majdi Dwikat
- Department of Applied and Allied Medical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Samar Alkhaldi
- Department of Applied and Allied Medical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University (www.najah.edu), Nablus, Palestine
| | - Ahmad Makhamreh
- Faculty of Graduate Studies, An-Najah National University (www.najah.edu), Nablus, Palestine
| |
Collapse
|
2
|
Mandryk M, Owoc-Lempach J, Cecot J, Zarzecki K, Piasta M, Wolska-Kolmus M, Marschollek P, Mielcarek-Siedziuk M, Dembowska-Bagińska B, Kałwak K. Clinical Insights and Potential Benefits of Stem Cell Transplantation for Constitutional Mismatch Repair Deficiency: A Case Report of Two Siblings. Cureus 2024; 16:e66441. [PMID: 39247025 PMCID: PMC11380470 DOI: 10.7759/cureus.66441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome, caused by biallelic mutations in mismatch repair genes, is one of the most aggressive hereditary cancer syndromes. This report presents the clinical course of two brothers diagnosed with CMMRD. The first patient was diagnosed with T-cell lymphoma at the age of three and a half years, a relapse, and synchronous glioblastoma at the age of seven and a half years. After treatment with chemotherapy and neurosurgery, haematopoietic stem cell transplant (HSCT) was performed. The second patient was diagnosed with mediastinal T-cell lymphoma at the age of two and a half years and a relapse at the age of four and a half years. He also received chemotherapy and underwent HSCT. Both patients exhibited café au lait macules (CALMs), a common but non-specific feature of CMMRD, often confused with neurofibromatosis type 1 (NF1) syndrome. This study highlights the phenotype of CMMRD syndrome, associated cancers, and the potential benefits of stem cell transplantation. Previous reports suggest that allogeneic HSCT might reduce subsequent haematological malignancies and increase survival.
Collapse
Affiliation(s)
- Miłosz Mandryk
- Pediatric, Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, POL
| | - Joanna Owoc-Lempach
- Pediatric, Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, POL
| | - Jakub Cecot
- Medicine, Jan Mikulicz-Radecki University Clinical Hospital, Wroclaw, POL
| | | | | | | | - Paweł Marschollek
- Pediatric, Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, POL
| | | | | | - Krzysztof Kałwak
- Pediatric, Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, POL
| |
Collapse
|
3
|
Samborska M, Galli D, Achkar R, Thambyrajah S, Derwich K. Constitutional Mismatch Repair Deficiency Syndrome as a Cause of Numerous Malignancies in a Teenage Patient-A Case Report. J Pediatr Hematol Oncol 2023; 45:e917-e920. [PMID: 37526375 DOI: 10.1097/mph.0000000000002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
Constitutional mismatch repair deficiency syndrome is a genetic disorder resulting from a biallelic mutation in one of the following genes: MLH1, MSH2, MSH6, or PMS2. Individuals with constitutional mismatch repair deficiency are highly predisposed to develop both hematological and solid cancers in childhood, particularly lymphoma, brain tumors, and gastrointestinal neoplasms. We report a case of a boy diagnosed with B-cell acute lymphoblastic leukemia at the age of 3. In 2013, at the age of 6, head magnetic resonance imaging revealed hamartoma and astrocytoma lesions in the central nervous system. Two years after treatment completion, a diagnosis of precursor T-cell lymphoblastic lymphoma, accompanied by the vena cava syndrome, was established and treated accordingly. During treatment, a genetic test using Sanger sequencing was performed-a biallelic mutation in the MSH6 gene was detected. The study revealed that the mutation 17-bp c.2277-2293del. was inherited from the patient's mother. The second mutation, 5-bp c.1135_1139delAGAGA, developed inpatient de novo. At the age of 14, the diagnosis of isolated bone marrow relapse of acute lymphoblastic leukemia B-cell type was established. Due to the almost exceeded total dose of anthracyclines, the patient's treatment included blinatumomab, and subsequently, he was qualified for allogeneic hematopoietic cell transplantation. The patient remains in complete remission for 11 months after allogeneic hematopoietic stem cell transplantation under the care of the transplant center.
Collapse
Affiliation(s)
- Magdalena Samborska
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznan University of Medical Sciencces, Poznan, Poland
| | | | | | | | | |
Collapse
|
4
|
Cekic S, Aydin F, Karali Y, Sevinir BB, Canoz O, Boztug K, Unal E, Kilic SS. T-cell/histiocyte-rich large B-cell lymphoma in a patient with a novel frameshift MSH6 mutation. Pediatr Blood Cancer 2023; 70:e30008. [PMID: 36151955 DOI: 10.1002/pbc.30008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Sukru Cekic
- Faculty of Medicine, Pediatric Immunology, Uludag University, Bursa, Turkey
| | - Firdevs Aydin
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yasin Karali
- Faculty of Medicine, Pediatric Immunology, Uludag University, Bursa, Turkey
| | | | - Ozlem Canoz
- Department of Pathology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, St. Anna Kinderspital und Universitätsklinik für Kinder und Jugendliche, Medizinische Universitat Wien, St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sara Sebnem Kilic
- Faculty of Medicine, Pediatric Immunology, Uludag University, Bursa, Turkey
| |
Collapse
|
5
|
Wei B, Gu J, Gao B, Bao Y, Duan R, Li Q, Xie F. Deficient mismatch repair is detected in large-to-giant congenital melanocytic naevi: providing new insight into aetiology and diagnosis. Br J Dermatol 2023; 188:64-74. [PMID: 36689509 DOI: 10.1093/bjd/ljac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND The aetiologies of large-to-giant congenital melanocytic naevi (LGCMN) remain ambiguous. A previous study discovered signatures associated with deficient mismatch repair (dMMR) in patients with LGCMN. However, a screening diagnostic immunohistochemistry (IHC) panel of dMMR in patients with LGCMN has not been performed to date. OBJECTIVES To identify the MMR status and aetiologies of LGCMN. METHODS A total of 110 patients with CMN, including 30 giant CMN, 30 large CMN, 30 medium CMN and 20 small CMN, underwent diagnostic IHC (for MSH6, MSH2, PMS2 and MLH1) screening of dMMR. The control group comprised normal skin samples from 20 healthy people. MMR proteins with little effect (MSH3 and PMS1) on the MMR system were stained in all samples. The surgical procedures conducted on each patient were noted because they might alter the behaviour of CMN and confound the results. Binary logistic regression analyses were performed between the phenotypic data and MMR status to identify associations. Whole-exome sequencing was performed on the main naevi, satellite naevi and normal skin tissues of four patients to detect variants. Mutational signature analyses were conducted to explore the aetiologies of LGCMN. RESULTS dMMR was detected in 37% (11 of 30) of giant, 23% (7 of 30) of large and 7% (2 of 30) of medium CMNs, but were not identified in small CMNs or normal skin tissues. Moreover, multiple LGCMNs had a much higher dMMR rate than did single LGCMNs. The regression analyses showed that MMR status was significantly associated with CMN size and the presence of satellites, but was not correlated with age, sex, location, satellite diversity or tissue expansion. Notably, the pattern of protein loss in LGCMN mainly consisted of PMS2 loss. Mutational signature analyses detected dMMR-related signatures in patients with LGCMN. Additionally, rare deleterious germline mutations in DNA repair genes were detected in LGCMN, mainly in MSH6, ATM, RAD50, BRCA1 and ERCC8. These germline mutations were single-patient variants with unknown significance. CONCLUSIONS dMMR is one of the aetiologies underlying LGCMN, particularly in patients with giant main lesions and multiple satellite lesions. Further studies are necessary to investigate the role of the DNA repair system, particularly MMR, in LGCMN.
Collapse
Affiliation(s)
- Boxuan Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Jieyu Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Bowen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Yongyang Bao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ran Duan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Medical College of Shanghai Jiaotong University, Shanghai, People's Republic ofChina
| |
Collapse
|
6
|
Uner M, Saglam A, Tukun A, Aydın B, Akyol A, Uner A. Diffuse Large B-Cell Lymphoma, Epstein-Barr Virus -Positive Kappa Monotypic Plasma Cell Proliferation and Invasive Carcinoma, Developing in a Child With Defective Mismatch Repair. Pediatr Dev Pathol 2022; 25:339-344. [PMID: 35227120 DOI: 10.1177/10935266221075605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is characterized by biallelic mutations in a mismatch repair gene and is associated with development of childhood cancers and symptoms resembling neurofibromatosis type 1, like café-au-lait spots. We describe the extremely rare case of a 12-year-old male presenting with several light brown macular lesions on the skin, gastrointestinal diffuse large B-cell lymphoma, adenomatous polyposis throughout the gastrointestinal tract and an intra-abdominal invasive carcinoma derived from upper gastrointestinal system. All neoplasia, as well as normal tissues, showed loss of Msh6 expression with immunohistochemistry. Molecular studies showed pathogenic homozygous p.F1088Sfs*2 mutation in MSH6. Furthermore, signs consistent with immunodeficiency, namely decreased levels of IgG and IgA in the serum, nodular lymphoid hyperplasia and EBV-associated plasma cell proliferation with monotypic kappa light chain expression in the ileum, were also noted. Our case depicts the phenotypic diversity of CMMRD syndrome and emphasizes its association with immunodeficiency, raising awareness to a feature not widely recognized.
Collapse
Affiliation(s)
- Meral Uner
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| | - Arzu Saglam
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| | - Ajlan Tukun
- Department of Medical Genetics, Düzen Laboratories Group, Ankara, Turkey
| | - Burca Aydın
- Department of Pediatric Oncology, Hacettepe Cancer Institute, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Liu Y, GuLiBaHa M, Yue YB, Li MW, Cao SB, Yan M. An isolated childhood myeloid sarcoma with germline MSH6 mutation-a case report. Transl Pediatr 2021; 10:2136-2143. [PMID: 34584885 PMCID: PMC8429872 DOI: 10.21037/tp-21-326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Myeloid sarcoma (MS) is a type of malignant tumor that originates in the bone marrow. This study reports on the treatment of an 11-year-old Uygur girl with a 15-day history of fever and paroxysmal cough, accompanied by right hip pain. During treatment, fatigue and anemia developed, physical strength decreased, and a few petechiae were seen in the lower extremities. Multiple enlarged lymph nodes were palpable in the neck, with slight congestion in the pharynx. Routine blood screening showed three major myeloid lineage abnormalities. Pathological examination revealed the presence of CD10 (-), CD99 (+), CD20 (+), CD3 (-), CD117 (weak+), CD34 (unclear location), TdT (-), Pax5 (-), Ki-67 (50%+), MPO (-), and CD43 (+). The patient was eventually diagnosed with isolated MS. After chemotherapy, no small particles were observed in bone marrow morphology. Complete remission was confirmed by flow cytometric detection of minimal residual disease. Genomic DNA was subjected to targeted sequencing of 236 gene panels to detect somatic mutations and the MSH6 c.3953_3954insAA p.R1318fs germline mutation. Unfortunately, the patient was subsequently lost to follow-up. To our knowledge, an MSH6 germline mutation had not previously been reported in children with MS, and we speculated that an MSH6 germline mutation led to genomic instability, triggering a somatic mutation in multiple genes and ultimately led to the development of MS in this patient. It is suggested that rare base abnormalities may be involved in the development of isolated myeloid sarcomas (IMS).
Collapse
Affiliation(s)
- Yu Liu
- Pediatric Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - MaiMaiTi GuLiBaHa
- Pediatric Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ying-Bin Yue
- Pediatric Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ming-Wei Li
- Pediatric Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shan-Bo Cao
- Lab of Gene, Acornmed Biotechnology Co., Ltd. Beijing Economic and Technological Development Zone, Beijing, China
| | - Mei Yan
- Pediatric Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
8
|
Aslam S, Shabana, Ahmed M. Implications of ACMG guidelines to identify high-risk acute lymphoblastic leukemia patients with hereditary cancer susceptibility syndromes (HCSS) in a highly consanguineous population. BMC Pediatr 2021; 21:282. [PMID: 34134655 PMCID: PMC8207605 DOI: 10.1186/s12887-021-02749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hereditary cancer susceptibility syndrome (HCSS) contributes to the cancer predisposition at an early age, therefore, identification of HCSS has found to be crucial for surveillance, managing therapeutic interventions and refer the patients and their families for genetic counselling. The study aimed to identify ALL patients who meet the American College of Medical Genetics (ACMG) criteria and refer them for the genetic testing for HCSS as hereditary leukemia and hematologic malignancy syndrome, and to elucidate the significance of high consanguinity with the prevalence of inherited leukemia in Pakistani population. METHODS A total of 300 acute lymphoblastic leukemia patients were recruited from the Children's Hospital, Lahore, Pakistan from December 2018 to September 2019. A structured self-reporting questionnaire based on family and medical history of the disease was utilized for the data collection. RESULTS In our cohort, 60.40% of ALL patients were identified to meet ACMG criteria. Among them, a large number of patients (40.65%) solely fulfil the criteria due to the presence of parental consanguinity. However, parental consanguinity showed protective impact on the onset at early age of disease [OD = 0.44 (0.25-0.77), p-value = 0.00] while, a family history of cancer increased the risk of cardiotoxicity [OD = 2.46 (1.15-5.24), p-value = 0.02]. Parental consanguinity shows no significant impact on the family history of cancer and the number of relatives with cancer. CONCLUSIONS More than 50% of the ALL patients were considered the strong candidates' for genetic testing of HCSS in the Pakistani population, and parental consanguinity was the leading criteria fulfilled by the individuals when assessed through ACMG guidelines. Our study suggests revisiting ACMG guidelines, especially for the criterion of parental consanguinity, and formulating the score based criteria based on; genetic research, the toxicology profile, physical features, personal and family history of cancer for the identification of patients for the genetic testing.
Collapse
Affiliation(s)
- Sara Aslam
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Shabana
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
9
|
Germline variants of DNA repair genes in early onset mantle cell lymphoma. Oncogene 2020; 40:551-563. [PMID: 33191405 DOI: 10.1038/s41388-020-01542-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Abstract
Although somatic mutations of DNA repair genes are frequent in mantle cell lymphoma (MCL), our understanding of their germline defects is limited. In a Chinese family with maternal Lynch syndrome and paternal B cell non-Hodgkin lymphoma, one sibling developed both Lynch syndrome and MCL. Lynch syndrome is caused by heterozygous mutations in mismatch repair (MMR) genes. To understand the genetic predispositions in the family, we performed exome sequencing and analyses of affected individuals and their tumor samples. A novel germline indel, MLH1 Gly101fsX1, was identified as the cause of Lynch syndrome, and unstable microsatellite loci and mutational signatures as evidence of defective MMR were revealed in the MCL sample. Furthermore, we included additional 15 MCL patients with early onset, and found by exome sequencing that 11 patients carried heterozygous germline variants of 20 DNA repair genes, including MSH2 in MMR. In the MCL with MSH2 Arg359fsX16, unstable microsatellite loci and defective MMR signatures were also found. In addition, five patients also had heterozygous germline variants of genes involved in B cell functions. Thus, our study found germline variants of genes in single-strand break repair, double-strand break repair, and Fanconi anemia pathway in early onset MCL; and for the first time we identified germline defects of MMR in two MCLs.
Collapse
|
10
|
Lan TL, Chou FI, Lin KH, Pan PS, Lee JC, Huang WS, Liu YM, Chao Y, Chen YW. Using salvage Boron Neutron Capture Therapy (BNCT) for recurrent malignant brain tumors in Taiwan. Appl Radiat Isot 2020; 160:109105. [PMID: 32351215 DOI: 10.1016/j.apradiso.2020.109105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/29/2019] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
Radiation therapy has an irreplaceable role in modern oncologic therapy, thanks to the advanced radiation techniques developed in recent decades. However, photon-resistant cases are sometimes encountered. Boron Neutron Capture Therapy (BNCT) is a highly selective radiotherapy technique due to the high tumor to tissue ratio of boronophenylalanine (BPA), the unique medication used for the BNCT treatment reaction. In this study, we report on three special patients with malignant brain tumors treated with BNCT.
Collapse
Affiliation(s)
- Tien-Li Lan
- Division of Radiotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.
| | - Fong-In Chou
- Nuclear Science & Technology Development Department, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ko-Han Lin
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Po-Shen Pan
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Jia-Cheng Lee
- Division of Radiotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Yu-Ming Liu
- Division of Radiotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Wei Chen
- Division of Radiotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.
| |
Collapse
|
11
|
Abstract
Tackling the topic of genetic predisposition to childhood cancer requires close co-operation between pathologists, pediatric oncologists, and human geneticists. It is not just about the precise diagnosis and the most effective treatment of the cancer, but also to prevent further cancerous diseases for those affected and also their family members. On the basis of examples such as Li-Fraumeni syndrome, constitutional mismatch repair deficiency (CMMRD), medullo- and neuroblastoma, as well as hematological neoplasias, we will discuss the criteria for tumor predisposition genetic syndromes, the relationship between somatic and germline variants, and the immediate clinical consequences. In some cases, the diagnosis of a genetic tumor predisposition syndrome has immediate consequences for the treatment, e. g. to avoid radiotherapy for Li-Fraumeni syndrome, which would otherwise significantly increase the probability of secondary, independent tumors. Predictive diagnostics can be offered to identify the family members who carry the pathogenic variant. Because of their increased tumor risk, they should be integrated into cancer surveillance programs. Evidence-based data show that this significantly improves overall survival.
Collapse
|
12
|
Evensen NA, Madhusoodhan PP, Meyer J, Saliba J, Chowdhury A, Araten DJ, Nersting J, Bhatla T, Vincent TL, Teachey D, Hunger SP, Yang J, Schmiegelow K, Carroll WL. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica 2018; 103:830-839. [PMID: 29449434 PMCID: PMC5927991 DOI: 10.3324/haematol.2017.176362] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/02/2018] [Indexed: 01/10/2023] Open
Abstract
Survival of children with relapsed acute lymphoblastic leukemia is poor, and understanding mechanisms underlying resistance is essential to developing new therapy. Relapse-specific heterozygous deletions in MSH6, a crucial part of DNA mismatch repair, are frequently detected. Our aim was to determine whether MSH6 deletion results in a hypermutator phenotype associated with generation of secondary mutations involved in drug resistance, or if it leads to a failure to initiate apoptosis directly in response to chemotherapeutic agents. We knocked down MSH6 in mismatch repair proficient cell lines (697 and UOCB1) and showed significant increases in IC50s to 6-thioguanine and 6-mercaptopurine (697: 26- and 9-fold; UOCB1: 5- and 8-fold) in vitro, as well as increased resistance to 6-mercaptopurine treatment in vivo. No shift in IC50 was observed in deficient cells (Reh and RS4;11). 697 MSH6 knockdown resulted in increased DNA thioguanine nucleotide levels compared to non-targeted cells (3070 vs. 1722 fmol/μg DNA) with no difference observed in mismatch repair deficient cells. Loss of MSH6 did not give rise to microsatellite instability in cell lines or clinical samples, nor did it significantly increase mutation rate, but rather resulted in a defect in cell cycle arrest upon thiopurine exposure. MSH6 knockdown cells showed minimal activation of checkpoint regulator CHK1, γH2AX (DNA damage marker) and p53 levels upon treatment with thiopurines, consistent with intrinsic chemoresistance due to failure to recognize thioguanine nucleotide mismatching and initiate mismatch repair. Aberrant MSH6 adds to the list of alterations/mutations associated with acquired resistance to purine analogs emphasizing the importance of thiopurine therapy.
Collapse
Affiliation(s)
- Nikki A Evensen
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - P Pallavi Madhusoodhan
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Julia Meyer
- Huntsman Cancer Institute, University of Utah Medical Center, Salt Lake City, USA
| | - Jason Saliba
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Ashfiyah Chowdhury
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - David J Araten
- Department of Medicine, Perlmutter Cancer Center, NYU-Langone Medical Center, New York NY, USA
| | - Jacob Nersting
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Teena Bhatla
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Tiffaney L Vincent
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - David Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Yang
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - William L Carroll
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Recent Discoveries in the Genetics of Familial Colorectal Cancer and Polyposis. Clin Gastroenterol Hepatol 2017; 15:809-819. [PMID: 27712984 DOI: 10.1016/j.cgh.2016.09.148] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
The development of genome-wide massively parallel sequencing, ie, whole-genome and whole-exome sequencing, and copy number approaches has raised high expectations for the identification of novel hereditary colorectal cancer genes. Although relatively successful for genes causing adenomatous polyposis syndromes, both autosomal dominant and recessive, the identification of genes associated with hereditary non-polyposis colorectal cancer has proven extremely challenging, mainly because of the absence of major high-penetrance genes and the difficulty in demonstrating the functional impact of the identified variants and their causal association with tumor development. Indeed, most, if not all, novel candidate non-polyposis colorectal cancer genes identified so far lack corroborative data in independent studies. Here we review the novel hereditary colorectal cancer genes and syndromes identified and the candidate genes proposed in recent years as well as discuss the challenges we face.
Collapse
|
14
|
Maletzki C, Huehns M, Bauer I, Ripperger T, Mork MM, Vilar E, Klöcking S, Zettl H, Prall F, Linnebacher M. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome. Mol Carcinog 2017; 56:1753-1764. [PMID: 28218421 DOI: 10.1002/mc.22632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 01/23/2023]
Abstract
Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis.
Collapse
Affiliation(s)
- Claudia Maletzki
- Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Maja Huehns
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Ingrid Bauer
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
| | - Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maureen M Mork
- Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston,, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston,, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabine Klöcking
- Rostock Cancer Registry, University of Rostock, Rostock, Germany
| | - Heike Zettl
- Rostock Cancer Registry, University of Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
15
|
Xie C, Sheng H, Zhang N, Li S, Wei X, Zheng X. Association of MSH6 mutation with glioma susceptibility, drug resistance and progression. Mol Clin Oncol 2016; 5:236-240. [PMID: 27446556 DOI: 10.3892/mco.2016.907] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
MutS homolog 6 (MSH6) is one of the mismatch repair proteins and is encoded by the MSH6 gene, which is located on chromosome 2 and is 23,806 bp in length, including 10 exons and 83 untranslated regions. The MSH6 protein consists of 1,358 amino acid residues and forms a heterodimer with another mismatch repair protein, MSH2. The MSH2-MSH6 heterodimeric complex is able to recognize base-base substitution and single-base insertion/deletion mismatches. Germline mutations of MSH6 lead to high susceptibility to glioma, as well as a number of benign or malignant tumors in other organs. However, somatic MSH6 mutations are not associated with susceptibility to glioma. Somatic MSH6 mutations usually follow temozolomide treatment and result in resistance to temozolomide. Subsequently, MSH6 mutations cause a hypermutation in the glioma cell genome, which may accelerate tumor progression.
Collapse
Affiliation(s)
- Chaoran Xie
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China; Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Xiangyu Wei
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Xuesheng Zheng
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
16
|
Aronson M, Gallinger S, Cohen Z, Cohen S, Dvir R, Elhasid R, Baris HN, Kariv R, Druker H, Chan H, Ling SC, Kortan P, Holter S, Semotiuk K, Malkin D, Farah R, Sayad A, Heald B, Kalady MF, Penney LS, Rideout AL, Rashid M, Hasadsri L, Pichurin P, Riegert-Johnson D, Campbell B, Bakry D, Al-Rimawi H, Alharbi QK, Alharbi M, Shamvil A, Tabori U, Durno C. Gastrointestinal Findings in the Largest Series of Patients With Hereditary Biallelic Mismatch Repair Deficiency Syndrome: Report from the International Consortium. Am J Gastroenterol 2016; 111:275-84. [PMID: 26729549 DOI: 10.1038/ajg.2015.392] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 11/01/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Hereditary biallelic mismatch repair deficiency (BMMRD) is caused by biallelic mutations in the mismatch repair (MMR) genes and manifests features of neurofibromatosis type 1, gastrointestinal (GI) polyposis, and GI, brain, and hematological cancers. This is the first study to characterize the GI phenotype in BMMRD using both retrospective and prospective surveillance data. METHODS The International BMMRD Consortium was created to collect information on BMMRD families referred from around the world. All patients had germline biallelic MMR mutations or lack of MMR protein staining in normal and tumor tissue. GI screening data were obtained through medical records with annual updates. RESULTS Thirty-five individuals from seven countries were identified with BMMRD. GI data were available on 24 of 33 individuals (73%) of screening age, totaling 53 person-years. The youngest age of colonic adenomas was 7, and small bowel adenoma was 11. Eight patients had 19 colorectal adenocarcinomas (CRC; median age 16.7 years, range 8-25), and 11 of 18 (61%) CRC were distal to the splenic flexure. Eleven patients had 15 colorectal surgeries (median 14 years, range 9-25). Four patients had five small bowel adenocarcinomas (SBC; median 18 years, range 11-33). Two CRC and two SBC were detected during surveillance within 6-11 months and 9-16 months, respectively, of last consecutive endoscopy. No patient undergoing surveillance died of a GI malignancy. Familial clustering of GI cancer was observed. CONCLUSIONS The prevalence and penetrance of GI neoplasia in children with BMMRD is high, with rapid development of carcinoma. Colorectal and small bowel surveillance should commence at ages 3-5 and 8 years, respectively.
Collapse
Affiliation(s)
- Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Steven Gallinger
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zane Cohen
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shlomi Cohen
- Pediatric Gastro-Enterology Unit, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Rina Dvir
- Department of Pediatric Hemato-Oncology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Ronit Elhasid
- Department of Pediatric Hemato-Oncology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel, and Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Revital Kariv
- Department of Gastroenterology and Liver Disease, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | | | - Helen Chan
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon C Ling
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kortan
- St Michael's Hospital, Toronto, Ontario, Canada
| | - Spring Holter
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kara Semotiuk
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Malkin
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Roula Farah
- Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Alain Sayad
- Lebanese American University Medical Centre, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | | - Doua Bakry
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hala Al-Rimawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Qasim Kholaif Alharbi
- Department of Pediatric Hematology/Oncology and Stem Cell Transplant, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | | | - Uri Tabori
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Successful matched sibling cord blood transplant for ALL in a child with constitutional mismatch repair deficiency syndrome. Bone Marrow Transplant 2016; 51:848-9. [PMID: 26808570 DOI: 10.1038/bmt.2015.353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet 2015; 59:133-42. [PMID: 26743104 DOI: 10.1016/j.ejmg.2015.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is one of the rare diseases associated with a high risk of cancer. Causative mutations are found in DNA mismatch repair genes PMS2, MSH6, MSH2 or MLH1 that are well known in the context of Lynch syndrome. CMMRD follows an autosomal recessive inheritance trait and is characterized by childhood brain tumors and hematological malignancies as well as gastrointestinal cancer in the second and third decades of life. There is a high risk of multiple cancers, occurring synchronously and metachronously. In general, the prognosis is poor. About one third of CMMRD patients develop hematological malignancies as primary (sometimes the only) malignancy or as secondary neoplasm. T-cell non-Hodgkin lymphomas, mainly of mediastinal origin, are the most frequent hematological malignancies. Besides malignant diseases, non-neoplastic features are frequently observed, e.g. café-au-lait spots sometimes resembling neurofibromatosis type I, hypopigmented skin lesions, numerous adenomatous polyps, multiple pilomatricomas, or impaired immunoglobulin class switch recombination. Within the present review, we summarize previously published CMMRD patients with at least one hematological malignancy, provide an overview of steps necessary to substantiate the diagnosis of CMMRD, and refer to the recent most relevant literature.
Collapse
Affiliation(s)
- Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
19
|
Clinical and Molecular Characterization of Brazilian Patients Suspected to Have Lynch Syndrome. PLoS One 2015; 10:e0139753. [PMID: 26437257 PMCID: PMC4593564 DOI: 10.1371/journal.pone.0139753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/15/2015] [Indexed: 12/30/2022] Open
Abstract
Lynch syndrome (LS) accounts for 3–5% of all colorectal cancers (CRC) and is inherited in an autosomal dominant fashion. This syndrome is characterized by early CRC onset, high incidence of tumors in the ascending colon, excess of synchronous/metachronous tumors and extra-colonic tumors. Nowadays, LS is regarded of patients who carry deleterious germline mutations in one of the five mismatch repair genes (MMR), mostly in MLH1 and MSH2, but also in MSH6, PMS1 and PMS2. To comprehensively characterize 116 Brazilian patients suspected for LS, we assessed the frequency of germline mutations in the three minor genes MSH6, PMS1 and PMS2 in 82 patients negative for point mutations in MLH1 and MSH2. We also assessed large genomic rearrangements by MLPA for detecting copy number variations (CNVs) in MLH1, MSH2 and MSH6 generating a broad characterization of MMR genes. The complete analysis of the five MMR genes revealed 45 carriers of pathogenic mutations, including 25 in MSH2, 15 in MLH1, four in MSH6 and one in PMS2. Eleven novel pathogenic mutations (6 in MSH2, 4 in MSH6 and one in PMS2), and 11 variants of unknown significance (VUS) were found. Mutations in the MLH1 and MSH2 genes represented 89% of all mutations (40/45), whereas the three MMR genes (MSH6, PMS1 and PMS2) accounted for 11% (5/45). We also investigated the MLH1 p.Leu676Pro VUS located in the PMS2 interaction domain and our results revealed that this variant displayed no defective function in terms of cellular location and heterodimer interaction. Additionally, we assessed the tumor phenotype of a subset of patients and also the frequency of CRC and extra-colonic tumors in 2,365 individuals of the 116 families, generating the first comprehensive portrait of the genetic and clinical aspects of patients suspected of LS in a Brazilian cohort.
Collapse
|
20
|
Anämien mit Panzytopenie. Monatsschr Kinderheilkd 2015. [DOI: 10.1007/s00112-014-3189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med 2014; 17:70-87. [PMID: 25394175 DOI: 10.1038/gim.2014.147] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022] Open
Abstract
DISCLAIMER The practice guidelines of the American College of Medical Genetics and Genomics (ACMG) and the National Society of Genetic Counselors (NSGC) are developed by members of the ACMG and NSGC to assist medical geneticists, genetic counselors, and other health-care providers in making decisions about appropriate management of genetic concerns, including access to and/or delivery of services. Each practice guideline focuses on a clinical or practice-based issue and is the result of a review and analysis of current professional literature believed to be reliable. As such, information and recommendations within the ACMG and NSGC joint practice guidelines reflect the current scientific and clinical knowledge at the time of publication, are current only as of their publication date, and are subject to change without notice as advances emerge. In addition, variations in practice, which take into account the needs of the individual patient and the resources and limitations unique to the institution or type of practice, may warrant approaches, treatments, and/or procedures that differ from the recommendations outlined in this guideline. Therefore, these recommendations should not be construed as dictating an exclusive course of management, nor does the use of such recommendations guarantee a particular outcome. Genetic counseling practice guidelines are never intended to displace a health-care provider's best medical judgment based on the clinical circumstances of a particular patient or patient population. Practice guidelines are published by the ACMG or the NSGC for educational and informational purposes only, and neither the ACMG nor the NSGC "approve" or "endorse" any specific methods, practices, or sources of information.Cancer genetic consultation is an important aspect of the care of individuals at increased risk of a hereditary cancer syndrome. Yet several patient, clinician, and system-level barriers hinder identification of individuals appropriate for cancer genetics referral. Thus, the purpose of this practice guideline is to present a single set of comprehensive personal and family history criteria to facilitate identification and maximize appropriate referral of at-risk individuals for cancer genetic consultation. To develop this guideline, a literature search for hereditary cancer susceptibility syndromes was conducted using PubMed. In addition, GeneReviews and the National Comprehensive Cancer Network guidelines were reviewed when applicable. When conflicting guidelines were identified, the evidence was ranked as follows: position papers from national and professional organizations ranked highest, followed by consortium guidelines, and then peer-reviewed publications from single institutions. The criteria for cancer genetic consultation referral are provided in two formats: (i) tables that list the tumor type along with the criteria that, if met, would warrant a referral for a cancer genetic consultation and (ii) an alphabetical list of the syndromes, including a brief summary of each and the rationale for the referral criteria that were selected. Consider referral for a cancer genetic consultation if your patient or any of their first-degree relatives meet any of these referral criteria.
Collapse
Affiliation(s)
- Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Robin L Bennett
- Genetic Medicine Clinic, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Adam Buchanan
- Cancer Prevention, Detection and Control Research Program, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Georgia L Wiesner
- Clinical and Translational Hereditary Cancer Program, Division of Genetic Medicine, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
22
|
Meira LB, Calvo JA, Shah D, Klapacz J, Moroski-Erkul CA, Bronson RT, Samson LD. Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 2014; 21:78-86. [PMID: 24994062 PMCID: PMC4125484 DOI: 10.1016/j.dnarep.2014.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O(6)-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm(-/-) mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.
Collapse
Affiliation(s)
- Lisiane B Meira
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Dharini Shah
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Joanna Klapacz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Catherine A Moroski-Erkul
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Roderick T Bronson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States.
| |
Collapse
|
23
|
Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 2014; 19:199-213. [PMID: 24780560 DOI: 10.1016/j.dnarep.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Vasen HFA, Ghorbanoghli Z, Bourdeaut F, Cabaret O, Caron O, Duval A, Entz-Werle N, Goldberg Y, Ilencikova D, Kratz CP, Lavoine N, Loeffen J, Menko FH, Muleris M, Sebille G, Colas C, Burkhardt B, Brugieres L, Wimmer K. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium "Care for CMMR-D" (C4CMMR-D). J Med Genet 2014; 51:283-93. [PMID: 24556086 DOI: 10.1136/jmedgenet-2013-102238] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lynch syndrome (LS) is an autosomal dominant disorder caused by a defect in one of the DNA mismatch repair genes: MLH1, MSH2, MSH6 and PMS2. In the last 15 years, an increasing number of patients have been described with biallelic mismatch repair gene mutations causing a syndrome referred to as 'constitutional mismatch repair-deficiency' (CMMR-D). The spectrum of cancers observed in this syndrome differs from that found in LS, as about half develop brain tumours, around half develop digestive tract cancers and a third develop haematological malignancies. Brain tumours and haematological malignancies are mainly diagnosed in the first decade of life, and colorectal cancer (CRC) and small bowel cancer in the second and third decades of life. Surveillance for CRC in patients with LS is very effective. Therefore, an important question is whether surveillance for the most common CMMR-D-associated cancers will also be effective. Recently, a new European consortium was established with the aim of improving care for patients with CMMR-D. At a workshop of this group held in Paris in June 2013, one of the issues addressed was the development of surveillance guidelines. In 1968, criteria were proposed by WHO that should be met prior to the implementation of screening programmes. These criteria were used to assess surveillance in CMMR-D. The evaluation showed that surveillance for CRC is the only part of the programme that largely complies with the WHO criteria. The values of all other suggested screening protocols are unknown. In particular, it is questionable whether surveillance for haematological malignancies improves the already favourable outcome for patients with these tumours. Based on the available knowledge and the discussions at the workshop, the European consortium proposed a surveillance protocol. Prospective collection of all results of the surveillance is needed to evaluate the effectiveness of the programme.
Collapse
Affiliation(s)
- H F A Vasen
- Department of Gastroenterology & Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, Alharbi M, Shamvil A, Ben-Shachar S, Mistry M, Constantini S, Dvir R, Qaddoumi I, Gallinger S, Lerner-Ellis J, Pollett A, Stephens D, Kelies S, Chao E, Malkin D, Bouffet E, Hawkins C, Tabori U. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer 2014; 50:987-96. [PMID: 24440087 DOI: 10.1016/j.ejca.2013.12.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/23/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which data regarding clinical manifestations, molecular screening tools and management are limited. METHODS We established an international CMMRD consortium and collected comprehensive clinical and genetic data. Molecular diagnosis of tumour and germline biospecimens was performed. A surveillance protocol was developed and implemented. RESULTS Overall, 22/23 (96%) of children with CMMRD developed 40 different tumours. While childhood CMMRD related tumours were observed in all families, Lynch related tumours in adults were observed in only 2/14 families (p=0.0007). All children with CMMRD had café-au-lait spots and 11/14 came from consanguineous families. Brain tumours were the most common cancers reported (48%) followed by gastrointestinal (32%) and haematological malignancies (15%). Importantly, 12 (30%) of these were low grade and resectable cancers. Tumour immunohistochemistry was 100% sensitive and specific in diagnosing mismatch repair (MMR) deficiency of the corresponding gene while microsatellite instability was neither sensitive nor specific as a diagnostic tool (p<0.0001). Furthermore, screening of normal tissue by immunohistochemistry correlated with genetic confirmation of CMMRD. The surveillance protocol detected 39 lesions which included asymptomatic malignant gliomas and gastrointestinal carcinomas. All tumours were amenable to complete resection and all patients undergoing surveillance are alive. DISCUSSION CMMRD is a highly penetrant syndrome where family history of cancer may not be contributory. Screening tumours and normal tissues using immunohistochemistry for abnormal expression of MMR gene products may help in diagnosis and early implementation of surveillance for these children.
Collapse
Affiliation(s)
- Doua Bakry
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Melyssa Aronson
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease and Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carol Durno
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease and Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Nutrition and Hepatology, The Hospital for Sick Children, Toronto, Canada
| | - Hala Rimawi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Roula Farah
- Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Qasim Kholaif Alharbi
- King Fahad Specialist Hospital, Department of Pediatric Hematology/Oncology and Stem Cell Transplant, Dammam, Saudi Arabia
| | | | | | - Shay Ben-Shachar
- The Gilbert Israeli Neurofibromatosis Center (GINFC), Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Matthew Mistry
- Genetic and Genomic Program, Institute of Medical Sciences, The University of Toronto, Israel
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Rina Dvir
- Pediatric Hemato-Oncology Department, Tel Aviv Medical Center, Tel-Aviv, Israel
| | | | - Steven Gallinger
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease and Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Canada; Dept of Lab Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Ontario Institute of Cancer Research, Genome Technologies Platform, Canada
| | - Aaron Pollett
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Canada; Dept of Lab Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Derek Stephens
- Dalla Lana School of Public Health University of Toronto, Canada; Clinical Research, The Hospital for Sick Children, Canada
| | | | | | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Arthur and Sonia Labbatt Brain Tumor Research Center, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Arthur and Sonia Labbatt Brain Tumor Research Center, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Malkin D, Nichols KE, Zelley K, Schiffman JD. Predisposition to pediatric and hematologic cancers: a moving target. Am Soc Clin Oncol Educ Book 2014:e44-e55. [PMID: 24857136 DOI: 10.14694/edbook_am.2014.34.e44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Our understanding of hereditary cancer syndromes in children, adolescents, and young adults continues to grow. In addition, we now recognize the wide variation in tumor spectrum found within each specific cancer predisposition syndrome including the risk for hematologic malignancies. An increased understanding of the genetic mutations, biologic consequences, tumor risk, and clinical management of these syndromes will improve patient outcome. In this article, we illustrate the diversity of molecular mechanisms by which these disorders develop in both children and adults with a focus on Li-Fraumeni syndrome, hereditary paraganglioma syndrome, DICER1 syndrome, and multiple endocrine neoplasia syndrome. This is followed by a detailed discussion of adult-onset tumors that can occur in the pediatric population including basal cell carcinoma, colorectal cancer, medullary thyroid cancer, and adrenal cortical carcinoma, and the underlying hereditary cancer syndromes that these tumors could indicate. Finally, the topic of leukemia predisposition syndromes is explored with a specific focus on the different categories of syndromes associated with leukemia risk (genetic instability/DNA repair syndromes, cell cycle/differentiation, bone marrow failure syndromes, telomere maintenance, immunodeficiency syndromes, and transcription factors/pure familial leukemia syndromes). Throughout this article, special attention is made to clinical recognition of these syndromes, genetic testing, and management with early tumor surveillance and screening.
Collapse
Affiliation(s)
- David Malkin
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kim E Nichols
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kristin Zelley
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Joshua D Schiffman
- From the Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA; and Division of Pediatric Hematology/Oncology, Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
27
|
Walter AW, Ennis S, Best H, Vaughn CP, Swensen JJ, Openshaw A, Gripp KW. Constitutional mismatch repair deficiency presenting in childhood as three simultaneous malignancies. Pediatr Blood Cancer 2013; 60:E135-6. [PMID: 23729388 DOI: 10.1002/pbc.24613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/03/2013] [Indexed: 01/05/2023]
Abstract
A 13-year-old child presented with three simultaneous malignancies: glioblastoma multiforme, Burkitt lymphoma, and colonic adenocarcinoma. She was treated for her diseases without success and died 8 months after presentation. Genetic analysis revealed a homozygous mutation in the PMS2 gene, consistent with constitutional mismatch repair deficiency. Her siblings and parents were screened: three of four siblings and both parents were heterozygous for this mutation; the fourth sibling did not have the mutation.
Collapse
Affiliation(s)
- Andrew W Walter
- Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Pediatrics, A. I. duPont Hospital for Children, Wilmington, Delaware
| | | | | | | | | | | | | |
Collapse
|
28
|
miR-1279, miR-548j, miR-548m, and miR-548d-5p binding sites in CDSs of paralogous and orthologous PTPN12, MSH6, and ZEB1 Genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:902467. [PMID: 23957009 PMCID: PMC3730384 DOI: 10.1155/2013/902467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/14/2013] [Accepted: 05/28/2013] [Indexed: 12/19/2022]
Abstract
Only PTPN12, MSH6, and ZEB1 have significant miR-1279 binding sites among paralogous genes of human tyrosine phosphatase family, DNA mismatch repair family, and zinc finger family, respectively. All miRNA binding sites are located within CDSs of studied mRNAs. Nucleotide sequences of hsa-miR-1279 binding sites with mRNAs of human PTPN12, MSH6, and ZEB1 genes encode TKEQYE, EGSSDE, and GEKPYE oligopeptides, respectively. The conservation of miRNA binding sites encoding oligopeptides has been revealed. MRNAs of many paralogs of zinc finger gene family have from 1 to 12 binding sites coding the same GEKPYE hexapeptide. MRNAs of PTPN12, MSH6, and ZEB1 orthologous genes from different animal species have binding sites for hsa-miR-1279 which consist of homologous oligonucleotides encoding similar human oligopeptides TKEQYE, EGSSDE, and GEKPYE. MiR-548j, miR-548m, and miR-548d-5p have homologous binding sites in the mRNA of PTPN12 orthologous genes which encode PRTRSC, TEATDI, and STASAT oligopeptides, respectively. All regions of miRNA are important for binding with the mRNA.
Collapse
|
29
|
Chmara M, Wernstedt A, Wasag B, Peeters H, Renard M, Beert E, Brems H, Giner T, Bieber I, Hamm H, Sciot R, Wimmer K, Legius E. Multiple pilomatricomas with somatic CTNNB1 mutations in children with constitutive mismatch repair deficiency. Genes Chromosomes Cancer 2013; 52:656-64. [PMID: 23629955 DOI: 10.1002/gcc.22061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/09/2022] Open
Abstract
Constitutional mismatch repair deficiency (CMMR-D) due to biallelic germline mutations in one of four mismatch repair genes causes a childhood cancer syndrome characterized by a broad tumor spectrum including hematological malignancies, and brain and Lynch syndrome-associated tumors. Herein, we report three children who had in addition to CMMR-D-associated malignancies multiple pilomatricomas. These are benign skin tumors of hair matrical differentiation frequently associated with somatic activating mutations in the ß-catenin gene CTNNB1. In two of the children, the diagnosis of CMMR-D was confirmed by the identification of biallelic germline PMS2 mutations. In the third individual, we only found a heterozygous germline PMS2 mutation. In all nine pilomatricomas with basophilic cells, we detected CTNNB1 mutations. Our findings indicate that CTNNB1 is a target for mutations when mismatch repair is impaired due to biallelic PMS2 mutations. An elevated number of activating CTNNB1 alterations in hair matrix cells may explain the development of multiple pilomatricomas in CMMR-D patients. Of note, two of the children presented with multiple pilomatricomas and other nonmalignant features of CMMR-D before they developed malignancies. To offer surveillance programs to CMMR-D patients, it may be justified to suspect CMMR-D syndrome in individuals fulfilling multiple nonmalignant features of CMMR-D (including multiple pilomatricomas) and offer molecular testing in combination with interdisciplinary counseling.
Collapse
Affiliation(s)
- Magdalena Chmara
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bu R, Siraj AK, Bavi P, Belgaumi A, Uddin S, Alkuraya FS. Constitutional Mismatch Repair-Deficiency Syndrome Is a Rare Cause of Cancer Even in a Highly Consanguineous Population. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.45114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Furlanetti LL, Santos MV, Valera ET, Brassesco MS, de Oliveira RS. Metachronous occurrence of nonradiation-induced brain cavernous hemangioma and medulloblastoma in a child with neurofibromatosis type I phenotype. J Pediatr Neurosci 2012; 7:43-6. [PMID: 22837778 PMCID: PMC3401654 DOI: 10.4103/1817-1745.97623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cavernous hemangioma (CH) is a sporadic vascular malformation occurring either as an autosomal dominant condition or as a well-known complication of radiation exposure. Medulloblastoma is a primitive neuroectodermal tumor common in children and currently treated with surgical resection, chemotherapy, and radiotherapy. Neurofibromatosis is the most common single-gene disorder of the central nervous system. Posterior fossa malignant tumors in the context of neurofibromatosis type I (NF1) are very infrequent. This is the first documented case of an unusual metachronous occurrence of non-radiation-induced CH and medulloblastoma in a child with NF1 phenotype. We report the case of a 13-month-old boy with café-au-lait skin lesions associated with NF1-like phenotype who underwent surgical resection of a single CH in the temporal lobe due to recurrent seizures. Four years later he presented with signs of raised intracranial pressure associated with a posterior fossa tumor and hydrocephalus, thus requiring gross total resection of the lesion. Histological analysis revealed a medulloblastoma. After being treated with radiotherapy and chemotherapy, he achieved total remission. Six years later a massive recurrence of the tumor was observed and the child eventually died. The interest in this case lies in the rarity of NF1-like phenotype associated with a non-radiation-induced brain CH and medulloblastoma in a child.
Collapse
Affiliation(s)
- Luciano L Furlanetti
- Department of Surgery and Anatomy Division of Pediatric Neurosurgery, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo
| | | | | | | | | |
Collapse
|
32
|
Steffen LS, Bacher JW, Peng Y, Le PN, Ding LH, Genik PC, Ray FA, Bedford JS, Fallgren CM, Bailey SM, Ullrich RL, Weil MM, Story MD. Molecular characterisation of murine acute myeloid leukaemia induced by 56Fe ion and 137Cs gamma ray irradiation. Mutagenesis 2012; 28:71-9. [PMID: 22987027 DOI: 10.1093/mutage/ges055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.
Collapse
Affiliation(s)
- Leta S Steffen
- Genetic Analysis Group, Promega Corporation, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aberdein D, Munday J, Howe L, French A, Gibson I. Widespread Mismatch Repair Expression in Feline Small Intestinal Lymphomas. J Comp Pathol 2012; 147:24-30. [DOI: 10.1016/j.jcpa.2011.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/05/2011] [Accepted: 08/19/2011] [Indexed: 02/02/2023]
|
34
|
Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome. Eur J Hum Genet 2012; 21:55-61. [PMID: 22692065 DOI: 10.1038/ejhg.2012.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.
Collapse
|
35
|
Phenotype diversity in type 1 Gaucher disease: discovering the genetic basis of Gaucher disease/hematologic malignancy phenotype by individual genome analysis. Blood 2012; 119:4731-40. [PMID: 22493294 DOI: 10.1182/blood-2011-10-386862] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease (GD), an inherited macrophage glycosphingolipidosis, manifests with an extraordinary variety of phenotypes that show imperfect correlation with mutations in the GBA gene. In addition to the classic manifestations, patients suffer from increased susceptibility to hematologic and nonhematologic malignancies. The mechanism(s) underlying malignancy in GD is not known, but is postulated to be secondary to macrophage dysfunction and immune dysregulation arising from lysosomal accumulation of glucocerebroside. However, there is weak correlation between GD/cancer phenotype and the systemic burden of glucocerebroside-laden macrophages. Therefore, we hypothesized that genetic modifier(s) may underlie the GD/cancer phenotype. In the present study, the genetic basis of GD/T-cell acute lymphoblastic lymphoma in 2 affected siblings was deciphered through genomic analysis. GBA gene sequencing revealed homozygosity for a novel mutation, D137N. Whole-exome capture and massively parallel sequencing combined with homozygosity mapping identified a homozygous novel mutation in the MSH6 gene that leads to constitutional mismatch repair deficiency syndrome and increased cancer risk. Enzyme studies demonstrated that the D137N mutation in GBA is a pathogenic mutation, and immunohistochemistry confirmed the absence of the MSH6 protein. Therefore, precise phenotype annotation followed by individual genome analysis has the potential to identify genetic modifiers of GD, facilitate personalized management, and provide novel insights into disease pathophysiology.
Collapse
|
36
|
|
37
|
Gassman NR, Clodfelter JE, McCauley AK, Bonin K, Salsbury FR, Scarpinato KD. Cooperative nuclear localization sequences lend a novel role to the N-terminal region of MSH6. PLoS One 2011; 6:e17907. [PMID: 21437237 PMCID: PMC3060103 DOI: 10.1371/journal.pone.0017907] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/14/2011] [Indexed: 01/08/2023] Open
Abstract
Human mismatch repair proteins MSH2-MSH6 play an essential role in maintaining genetic stability and preventing disease. While protein functions have been extensively studied, the substantial amino-terminal region (NTR*) of MSH6 that is unique to eukaryotic proteins, has mostly evaded functional characterization. We demonstrate that a cluster of three nuclear localization signals (NLS) in the NTR direct nuclear import. Individual NLSs are capable of partially directing cytoplasmic protein into the nucleus; however only cooperative effects between all three NLSs efficiently transport MSH6 into the nucleus. In striking contrast to yeast and previous assumptions on required heterodimerization, human MSH6 does not determine localization of its heterodimeric partner, MSH2. A cancer-derived mutation localized between two of the three NLS significantly decreases nuclear localization of MSH6, suggesting altered protein localization can contribute to carcinogenesis. These results clarify the pending speculations on the functional role of the NTR in human MSH6 and identify a novel, cooperative nuclear localization signal.
Collapse
Affiliation(s)
- Natalie R. Gassman
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Jill E. Clodfelter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Anita K. McCauley
- Department of Biology, Wake Forest University, Winston Salem, North Carolina, United States of America
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston Salem, North Carolina, United States of America
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Karin D. Scarpinato
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
38
|
Herkert JC, Niessen RC, Olderode-Berends MJW, Veenstra-Knol HE, Vos YJ, van der Klift HM, Scheenstra R, Tops CMJ, Karrenbeld A, Peters FTM, Hofstra RMW, Kleibeuker JH, Sijmons RH. Paediatric intestinal cancer and polyposis due to bi-allelic PMS2 mutations: case series, review and follow-up guidelines. Eur J Cancer 2011; 47:965-82. [PMID: 21376568 DOI: 10.1016/j.ejca.2011.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/20/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bi-allelic germline mutations of one of the DNA mismatch repair genes, so far predominantly found in PMS2, cause constitutional MMR-deficiency syndrome. This rare disorder is characterised by paediatric intestinal cancer and other malignancies. We report the clinical, immunohistochemical and genetic characterisation of four families with bi-allelic germline PMS2 mutations. We present an overview of the published gastrointestinal manifestations of CMMR-D syndrome and propose recommendations for gastro-intestinal screening. METHODS AND RESULTS The first proband developed a cerebral angiosarcoma at age 2 and two colorectal adenomas at age 7. Genetic testing identified a complete PMS2 gene deletion and a frameshift c.736_741delinsTGTGTGTGAAG (p.Pro246CysfsX3) mutation. In the second family, both the proband and her brother had multiple intestinal adenomas, initially wrongly diagnosed as familial adenomatous polyposis. A splice site c.2174+1G>A, and a missense c.137G>T (p.Ser46Ile) mutation in PMS2 were identified. The third patient was diagnosed with multiple colorectal adenomas at age 11; he developed a high-grade dysplastic colorectal adenocarcinoma at age 21. Two intragenic PMS2 deletions were found. The fourth proband developed a cerebral anaplastic ganglioma at age 9 and a high-grade colerectal dysplastic adenoma at age 10 and carries a homozygous c.2174+1G>A mutation. Tumours of all patients showed microsatellite instability and/or loss of PMS2 expression. CONCLUSIONS Our findings show the association between bi-allelic germline PMS2 mutations and severe childhood-onset gastrointestinal manifestations, and support the notion that patients with early-onset gastrointestinal adenomas and cancer should be investigated for CMMR-D syndrome. We recommend yearly follow-up with colonoscopy from age 6 and simultaneous video-capsule small bowel enteroscopy from age 8.
Collapse
Affiliation(s)
- Johanna C Herkert
- Department of Genetics, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Peled JU, Sellers RS, Iglesias-Ussel MD, Shin DM, Montagna C, Zhao C, Li Z, Edelmann W, Morse HC, Scharff MD. Msh6 protects mature B cells from lymphoma by preserving genomic stability. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2597-608. [PMID: 20934970 DOI: 10.2353/ajpath.2010.100234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most human B-cell non-Hodgkin's lymphomas arise from germinal centers. Within these sites, the mismatch repair factor MSH6 participates in antibody diversification. Reminiscent of the neoplasms arising in patients with Lynch syndrome III, mice deficient in MSH6 die prematurely of lymphoma. In this study, we characterized the B-cell tumors in MSH6-deficient mice and describe their histological, immunohistochemical, and molecular features, which include moderate microsatellite instability. Based on histological markers and gene expression, the tumor cells seem to be at or beyond the germinal center stage. The simultaneous loss of MSH6 and of activation-induced cytidine deaminase did not appreciably affect the survival of these animals, suggesting that these germinal center-like tumors arose by an activation-induced cytidine deaminase-independent pathway. We conclude that MSH6 protects B cells from neoplastic transformation by preserving genomic stability.
Collapse
Affiliation(s)
- Jonathan U Peled
- Cell Biology Department, Chanin 403, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|