1
|
Pastrana-Otero I, Godbole AR, Kraft ML. Noninvasive and in situ identification of the phenotypes and differentiation stages of individual living cells entrapped within hydrogels. Analyst 2025; 150:2047-2057. [PMID: 40198151 PMCID: PMC11977708 DOI: 10.1039/d4an00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Microscale screening platforms that allow cells to interact in three dimensions (3D) with their microenviroment have been developed as a tool for identifying the extrinsic cues that might stimulate stem cells to replicate without differentiating within artificial cultures. Though these platforms reduce the number of valuable stem cells that must be used for screening, analyzing the fate decisions of cells in these platforms can be challenging. New noninvasive approaches for identifying the lineage-specific differentiation stages of cells while they are entrapped in the hydrogels used for these 3D cultures are especially needed. Here we used Raman spectra acquired from individual, living cells entrapped within a hydrogel matrix and multivariate analysis to identify cell phenotype noninvasively and in situ. We collected a single Raman spectrum from each cell of interest while it was entrapped within a hydrogel matrix and used partial least-squares discriminant analysis (PLS-DA) of the spectra for cell phenotype identification. We first demonstrate that this approach enables identifying the lineages of individual, living cells from different laboratory lines entrapped within two different hydrogels that are used for 3D culture, collagen and gelatin methacrylate (gelMA). Then we use a hematopoietic progenitor cell line that differentiates into different types of macrophages to show that the lineage-specific differentiation stages of individual, living hematopoietic cells entrapped inside of gelMA scaffolds may be identified by PLS-DA of Raman spectra. This ability to noninvasively identify the lineage-specific differentiation stages of cells without removing them from a 3D culture could enable tracking the differentiation of the same cell over time.
Collapse
Affiliation(s)
- Isamar Pastrana-Otero
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Apurva R Godbole
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
2
|
Kale V. Priming human bone marrow-derived mesenchymal stromal cells with signaling modifiers boosts their functionality: Potential application in regenerative therapies. Int J Biochem Cell Biol 2025; 179:106734. [PMID: 39788281 DOI: 10.1016/j.biocel.2025.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/13/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Mesenchymal stromal cells (MSCs) isolated from tissues such as bone marrow, cord, cord blood, etc., are frequently used as feeder layers to expand hematopoietic stem/ progenitor cells (HSCs/HSPCs) in vitro. They are also co-infused with the HSCs to improve the efficacy of transplantation. However, the MSCs sourced from non-hematopoietic tissues could have suboptimal hematopoiesis-supportive ability. Likewise, the functionality of the MSCs is known to decline after continuous in vitro culture - an unavoidable manipulation to get clinically relevant cell numbers. Hence, it may be necessary to boost the hematopoiesis-supportive ability of the long-term cultured MSCs so that they can, in turn, be used to prime the HSCs before their clinical applications. Here, I show that priming human bone marrow-derived MSCs (BMSCs) with appropriately selected signaling modifiers and integrin-activating bioactive peptides boosts their hematopoiesis-supportive ability, as seen by the formation of a significantly higher number of colonies from the bone marrow-derived mononuclear cells (MNCs) and extensive proliferation of CD34+ HSCS briefly interacted with them. Priming the BMSCs with signaling modifiers is a cost-effective and time-efficient process as synthesizing these small molecule compounds is relatively inexpensive - an advantage in clinical settings. The approach of briefly interacting the donor HSCs/HSPCs with the primed BMSCs just before their infusion into the recipients' bodies could save the cost of long-term ex vivo expansion of HSCs. This concept could also find applications in other regenerative medicine protocols after identifying suitable pharmacological modulators that have the desired effects on the target cells.
Collapse
Affiliation(s)
- Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Lavale, Pune, India.
| |
Collapse
|
3
|
Ho AD, Tanaka M. Novel techniques to quantitatively assess age-dependent alterations in biophysical properties of HSPCs and bone marrow niche. Exp Hematol 2025; 142:104686. [PMID: 39613289 DOI: 10.1016/j.exphem.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
The present knowledge on hematopoietic stem and progenitor cell (HSPC) biology and aging is based largely on studies in mouse models. Although mouse models are invaluable, they are not without limitations for defining how physical properties of HSPCs and their niche change with age. The bone marrow (BM) niche is a complex, interactive environment with multiple cell types. The structure and organization of the BM niche, especially the extracellular matrix (ECM), change with age. Provided with recent advances in quantitative analytical techniques and in vitro niche models, we have developed novel tools to quantitatively assess the impact of specific biochemical and physical cues on homing, adhesion, and migration of HSPCs. Recent developments in in vitro niche models have also provided new insights into the interactions between HSPCs and their niche, particularly the role of matrix stiffness. Further research is needed to integrate physical biomarkers into comprehensive mathematical models of age-dependent HSPC-niche interactions. The key is to use mouse models in conjunction with direct analyses in in vitro niche models to achieve a more comprehensive understanding of age-dependent alterations in niche function and regulation.
Collapse
Affiliation(s)
- Anthony D Ho
- Department of Medicine V, Medical Center, Heidelberg University, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advances Study, Kyoto University, Kyoto, Japan.
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advances Study, Kyoto University, Kyoto, Japan; Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
5
|
Colella A, Biondi G, Marrano N, Francioso E, Fracassi L, Crovace AM, Recchia A, Natalicchio A, Paradies P. Generation of Insulin-Producing Cells from Canine Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Study. Vet Sci 2024; 11:380. [PMID: 39195834 PMCID: PMC11359947 DOI: 10.3390/vetsci11080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-based therapy using insulin-producing cells (IPCs) is anticipated as an alternative treatment option to insulin injection or pancreatic islet transplantation for the treatment of diabetes mellitus in both human and veterinary medicine. Several protocols were reported for the differentiation of mesenchymal stem cells (MSCs) into IPCs; to date, glucose-responsive IPCs have only been obtained from canine adipose tissue-derived MSCs (cAD-MSCs), but not from canine bone marrow-derived MSCs (cBM-MSCs). Therefore, this study aims to generate in vitro glucose-responsive IPCs from cBM-MSCs using two differentiation protocols: a two-step protocol using trichostatin (TSA) and a three-step protocol using mercaptoethanol to induce pancreatic and duodenal homeobox gene 1 (PDX-1) expression. A single experiment was carried out for each protocol. BM-MSCs from one dog were successfully cultured and expanded. Cells exposed to the two-step protocol appeared rarely grouped to form small clusters; gene expression analysis showed a slight increase in PDX-1 and insulin expression, but no insulin protein production nor secretion in the culture medium was detected either under basal conditions or following glucose stimulation. Conversely, cells exposed to the three-step protocol under a 3D culture system formed colony-like structures; insulin gene expression was upregulated compared to undifferentiated control and IPCs colonies secreted insulin in the culture medium, although insulin secretion was not enhanced by high-glucose culture conditions. The single experiment results suggest that the three-step differentiation protocol could generate IPCs from cBM-MSCs; however, further experiments are needed to confirm these data. The ability of IPCs from cBM- MSCs to produce insulin, described here for the first time, is a preliminary interesting result. Nevertheless, the IPCs' unresponsiveness to glucose, if confirmed, would affect its clinical application. Further studies are necessary to establish a differentiation protocol in this perspective.
Collapse
Affiliation(s)
- Antonella Colella
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Edda Francioso
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Laura Fracassi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Alberto M. Crovace
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Recchia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Paola Paradies
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| |
Collapse
|
6
|
Park HS, Lee BC, Chae DH, Yu A, Park JH, Heo J, Han MH, Cho K, Lee JW, Jung JW, Dunbar CE, Oh MK, Yu KR. Cigarette smoke impairs the hematopoietic supportive property of mesenchymal stem cells via the production of reactive oxygen species and NLRP3 activation. Stem Cell Res Ther 2024; 15:145. [PMID: 38764093 PMCID: PMC11103961 DOI: 10.1186/s13287-024-03731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.
Collapse
Affiliation(s)
- Hyun Sung Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Dong-Hoon Chae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Aaron Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Han Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jiyoung Heo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Myoung Hee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Keonwoo Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mi-Kyung Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Sakurai M, Ishitsuka K, Becker HJ, Yamazaki S. Ex vivo expansion of human hematopoietic stem cells and clinical applications. Cancer Sci 2024; 115:698-705. [PMID: 38221718 PMCID: PMC10921004 DOI: 10.1111/cas.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare population of cells found in the bone marrow that play a critical role in lifelong hematopoiesis and the reconstitution of the hematopoietic system after hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation remains the only curative treatment for patients with refractory hematologic disorders, and umbilical cord blood (CB) serves as an alternative stem cell source due to its several advantageous characteristics, including human leukocyte antigen flexibility and reduced donor burden. However, CB also has the disadvantage of containing a small number of cells, resulting in limited donor selection and a longer time for engraftment. Therefore, the development of techniques to expand HSCs ex vivo, particularly umbilical CB, is a goal in hematology. While various combinations of cytokines were once the mainstream approach, these protocols had limited expansion rates and did not lead to clinical application. However, in recent years, the development of a technique in which small molecules are added to cytokines has enabled the stable, long-term ex vivo expansion of human HSCs. Clinical trials of expanded umbilical CB using these techniques have been undertaken and have confirmed their efficacy and safety. In addition, we have successfully developed a recombinant-cytokine-free and albumin-free culture system for the long-term expansion of human HSCs. This approach could offer the potential for more selective expansion of human HSCs compared to previous protocols. This review discusses ex vivo culture protocols for expanding human HSCs and presents the results of clinical trials using these techniques, along with future perspectives.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Hematology, Department of MedicineKeio University School of MedicineTokyoJapan
| | - Kantaro Ishitsuka
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
- Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Nogoceke R, Josino R, Robert AW, Stimamiglio MA. Evaluation of a Peptide Hydrogel as a Chondro-Instructive Three-Dimensional Microenvironment. Polymers (Basel) 2023; 15:4630. [PMID: 38139882 PMCID: PMC10747086 DOI: 10.3390/polym15244630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Articular cartilage injuries are inherently irreversible, even with the advancement in current therapeutic options. Alternative approaches, such as the use of mesenchymal stem/stromal cells (MSCs) and tissue engineering techniques, have gained prominence. MSCs represent an ideal source of cells due to their low immunogenicity, paracrine activity, and ability to differentiate. Among biomaterials, self-assembling peptide hydrogels (SAPH) are interesting given their characteristics such as good biocompatibility and tunable properties. Herein we associate human adipose-derived stem cells (hASCs) with a commercial SAPH, Puramatrix™, to evaluate how this three-dimensional microenvironment affects cell behavior and its ability to undergo chondrogenic differentiation. We demonstrate that the Puramatrix™ hydrogel comprises a highly porous matrix permissible for hASC adhesion and in vitro expansion. The morphology and cell growth dynamics of hASCs were affected when cultured on the hydrogel but had minimal alteration in their immunophenotype. Interestingly, hASCs spontaneously formed cell aggregates throughout culturing. Analysis of glycosaminoglycan production and gene expression revealed a noteworthy and donor-dependent trend suggesting that Puramatrix™ hydrogel may have a natural capacity to support the chondrogenic differentiation of hASCs. Altogether, the results provide a more comprehensive understanding of the potential applications and limitations of the Puramatrix™ hydrogel in developing functional cartilage tissue constructs.
Collapse
Affiliation(s)
| | | | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, Brazil; (R.N.); (R.J.)
| | - Marco Augusto Stimamiglio
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, Brazil; (R.N.); (R.J.)
| |
Collapse
|
9
|
Rubio-Lara JA, Igarashi KJ, Sood S, Johansson A, Sommerkamp P, Yamashita M, Lin DS. Expanding hematopoietic stem cell ex vivo: recent advances and technical considerations. Exp Hematol 2023; 125-126:6-15. [PMID: 37543237 DOI: 10.1016/j.exphem.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic hierarchy, which are responsible for sustaining the lifelong production of mature blood and immune cells. Due to their superior long-term regenerative capacity, HSC therapies such as stem cell transplantation have been used in a broad range of hematologic disorders. However, the rarity of this population in vivo considerably limits its clinical applications and large-scale analyses such as screening and safety studies. Therefore, ex vivo culture methods that allow long-term expansion and maintenance of functional HSCs are instrumental in overcoming the difficulties in studying HSC biology and improving HSC therapies. In this perspective, we discuss recent advances and technical considerations for three ex vivo HSC expansion methods including 1) polyvinyl alcohol-based HSC expansion, 2) mesenchymal stromal cell-HSC co-culture, and 3) two-/three-dimensional hydrogel HSC culture. This review summarizes the presentations and discussions from the 2022 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session.
Collapse
Affiliation(s)
| | - Kyomi J Igarashi
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Shubhankar Sood
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alban Johansson
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pia Sommerkamp
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
10
|
Askari MHA, Shahabi M, Kojabad AA, Zarif MN. Reconstruction of bone marrow microenvironment for expansion of hematopoietic stem cells by a histone deacetylase inhibitor. Cytotechnology 2023; 75:195-206. [PMID: 37187947 PMCID: PMC10167084 DOI: 10.1007/s10616-022-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/06/2022] [Indexed: 05/17/2023] Open
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) is an approach for overcoming cell insufficiency for umbilical cord blood transplantation. It was suggested that in common ex vivo cultures, the stemness specificity of HSCs is rapidly reducing due to DNA hypermethylation. Here, Nicotinamide (NAM), a DNA methyltransferase and histone deacetylase inhibitor, is used with a bioengineered Bone Marrow-like niche (BLN) for HSC ex vivo expansion. The CFSE cell proliferation assay was used for tracking HSCs division. qRT-PCR was conducted to assay the HOXB4 mRNA expression levels. The morphology of BLN-cultured cells was analyzed using scanning electron microscopy (SEM). NAM boosted the induction of HSC proliferation in the BLN group compared to the control group. In addition, the ability of HSCs to colonize was more significant in the BLN group than in the control group. Our data suggest that the presence of NAM in bioengineered niches promotes HSC proliferation. The presented approach showed that small molecules could be used in the clinical setting to overcome the limited number of CD34+ cells in cord blood units.
Collapse
Affiliation(s)
- Maryam Haj Ali Askari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO Building, Hemmat Expressway, Tehran, Iran
| | - Majid Shahabi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO Building, Hemmat Expressway, Tehran, Iran
| | - Amir Asri Kojabad
- Department of Hematology and Blood Bank, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO Building, Hemmat Expressway, Tehran, Iran
- Department of Medicine, Center for Hematology and Regenerative Medicin, 14183 Stockholm, Sweden
- Cell Therapy Department, XNKtheraeutics Company, Stockholm, Sweden
| |
Collapse
|
11
|
Tanaka M, Thoma J, Poisa-Beiro L, Wuchter P, Eckstein V, Dietrich S, Pabst C, Müller-Tidow C, Ohta T, Ho AD. Physical biomarkers for human hematopoietic stem and progenitor cells. Cells Dev 2023; 174:203845. [PMID: 37116713 DOI: 10.1016/j.cdev.2023.203845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Adhesion of hematopoietic stem and progenitor cells (HSPCs) to the bone marrow niche plays critical roles in the maintenance of the most primitive HSPCs. The interactions of HSPC-niche interactions are clinically relevant in acute myeloid leukemia (AML), because (i) leukemia-initiating cells adhered to the marrow niche are protected from the cytotoxic effect by chemotherapy and (ii) mobilization of HSPCs from healthy donors' bone marrow is crucial for the effective stem cell transplantation. However, although many clinical agents have been developed for the HSPC mobilization, the effects caused by the extrinsic molecular cues were traditionally evaluated based on phenomenological observations. This review highlights the recent interdisciplinary challenges of hematologists, biophysicists and cell biologists towards the design of defined in vitro niche models and the development of physical biomarkers for quantitative indexing of differential effects of clinical agents on human HSPCs.
Collapse
Affiliation(s)
- Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, INF253, Heidelberg University, 69120 Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan.
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, INF253, Heidelberg University, 69120 Heidelberg, Germany
| | - Laura Poisa-Beiro
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Volker Eckstein
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Takao Ohta
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan
| | - Anthony D Ho
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan; Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Zhu M, Wang Q, Gu T, Han Y, Zeng X, Li J, Dong J, Huang H, Qian P. Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cell Mol Life Sci 2023; 80:49. [PMID: 36690903 PMCID: PMC11073069 DOI: 10.1007/s00018-023-04696-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/06/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Abstract
Haematopoietic Stem cells (HSCs) have the potential for self-renewal and multilineage differentiation, and their behaviours are finely tuned by the microenvironment. HSC transplantation (HSCT) is widely used in the treatment of haematologic malignancies while limited by the quantity of available HSCs. With the development of tissue engineering, hydrogels have been deployed to mimic the HSC microenvironment in vitro. Engineered hydrogels influence HSC behaviour by regulating mechanical strength, extracellular matrix microstructure, cellular ligands and cytokines, cell-cell interaction, and oxygen concentration, which ultimately facilitate the acquisition of sufficient HSCs. Here, we review recent advances in the application of hydrogel-based microenvironment engineering of HSCs, and provide future perspectives on challenges in basic research and clinical practice.
Collapse
Affiliation(s)
- Meng Zhu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Tianning Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xin Zeng
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jinxin Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Manzo P, Scala P, Giudice V, Gorrese M, Bertolini A, Morini D, D'Alto F, Pepe R, Pedicini A, Izzo B, Verdesca F, Langella M, Serio B, Della Porta G, Selleri C. c-Kit M541L variant is related to ineffective hemopoiesis predisposing to clonal evolution in 3D in vitro biomimetic co-culture model of bone marrow niche. Heliyon 2022; 8:e11998. [DOI: 10.1016/j.heliyon.2022.e11998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
|
14
|
Huang X, Wang Y, Wang T, Wen F, Liu S, Oudeng G. Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Front Bioeng Biotechnol 2022; 10:1049965. [PMID: 36507253 PMCID: PMC9730123 DOI: 10.3389/fbioe.2022.1049965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide a life-long supply of haemopoietic cells and are indispensable for clinical transplantation in the treatment of malignant hematological diseases. Clinical applications require vast quantities of HSCs with maintained stemness characteristics. Meeting this demand poses often insurmountable challenges for traditional culture methods. Creating a supportive artificial microenvironment for the culture of HSCs, which allows the expansion of the cells while maintaining their stemness, is becoming a new solution for the provision of these rare multipotent HSCs. Hydrogels with good biocompatibility, excellent hydrophilicity, tunable biochemical and biophysical properties have been applied in mimicking the hematopoietic niche for the efficient expansion of HSCs. This review focuses on recent progress in the use of hydrogels in this specialized application. Advanced biomimetic strategies use for the creation of an artificial haemopoietic niche are discussed, advances in combined use of hydrogel matrices and microfluidics, including the emerging organ-on-a-chip technology, are summarized. We also provide a brief description of novel stimulus-responsive hydrogels that are used to establish an intelligent dynamic cell microenvironment. Finally, current challenges and future perspectives of engineering hydrogels for HSC biomedicine are explored.
Collapse
Affiliation(s)
- Xiaochan Huang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Yuting Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Tianci Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Kale VP. A chimeric feeder comprising transforming growth factor beta 1- and basic fibroblast growth factor-primed bone marrow-derived mesenchymal stromal cells suppresses the expansion of hematopoietic stem and progenitor cells. Cell Biol Int 2022; 46:2132-2141. [PMID: 36073008 DOI: 10.1002/cbin.11904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/20/2022] [Indexed: 12/19/2022]
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) physically associate with the hematopoietic stem cells (HSCs), forming a unique HSC niche. Owing to this proximity, the signaling mechanisms prevailing in the BMSCs affect the fate of the HSCs. In addition to cell-cell and cell-extracellular matrix interactions, various cytokines and growth factors present in the BM milieu evoke signaling mechanisms in the BMSCs. Previously, I have shown that priming of human BMSCs with transforming growth factor β1 (TGFβ1), a cytokine consistently found at active sites of hematopoiesis, boosts their hematopoiesis-supportive ability. Basic fibroblast growth factor (bFGF), another cytokine present in the marrow microenvironment, positively regulates hematopoiesis. Hence, I examined whether priming human BMSCs with bFGF improves their hematopoiesis-supportive ability. I found that bFGF-primed BMSCs stimulate hematopoiesis, as seen by a significant increase in colony formation from the bone marrow cells briefly interacted with them and the extensive proliferation of CD34+ HSCs cocultured with them. However, contrary to my expectation, I found that chimeric feeders comprising a mixture of TGF-primed and bFGF-primed BMSCs exerted a suppressive effect. These data demonstrate that though the TGF- and bFGF-primed BMSCs exert a salutary effect on hematopoiesis when used independently, they exert a suppressive effect when presented as a chimera. These findings suggest that the combinatorial effect of various priming agents and cytokines on the functionality of BMSCs toward the target tissues needs to be critically evaluated before they are clinically applied.
Collapse
Affiliation(s)
- Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Pune, Maharashtra, India.,National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
16
|
Oliveira CS, Nadine S, Gomes MC, Correia CR, Mano JF. Bioengineering the human bone marrow microenvironment in liquefied compartments: A promising approach for the recapitulation of osteovascular niches. Acta Biomater 2022; 149:167-178. [PMID: 35811072 DOI: 10.1016/j.actbio.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Recreating the biological complexity of living bone marrow (BM) in a single in vitro strategy has faced many challenges. Most bioengineered strategies propose the co-culture of BM cellular components entrapped in different matrices limiting their migration and self-organization capacity or in open scaffolds enabling their escaping. We propose a methodology for fabricating a "human bone marrow-in-a-liquefied-capsule" to overcome these challenges, embracing the most important BM components in a single platform. Since free dispersion of the cells within the BM is an essential feature to maintain their in vivo properties, this platform provides a liquefied environment for the encapsulated cells to move freely and self-organize. Inside liquefied capsules, an engineered endosteal niche (eEN) is co-cultured with human umbilical cord cells, including endothelial cells and hematopoietic stem and progenitor cells (HSPCs). Two different human-like BM niches were recreated under static and dynamic systems. Although the culture of the engineered BM capsules (eBMC) in these different environments did not change the structural and compositional features of the BM niches, the biophysical stimulation potentiated the cellular intercommunication and the biomolecules secretion, demonstrating an enhanced in vitro bio performance. Moreover, while the eBMC without HSPCs provided the secretion of hematopoietic supportive factors, the presence of these cells recapitulated more closely the biological complexity of the native BM niches. This functional eBMC approach is an innovative platform capable of investigating several components and interactions of BM niches and how they regulate BM homeostasis and hematopoiesis. STATEMENT OF SIGNIFICANCE: The recapitulation of the multifaceted bone marrow (BM) microenvironment under in vitro conditions has gained intensive recognition to understand the intrinsic complexity of the native BM. While conventional strategies do not recapitulate the BM osteovascular niches nor give the cellular components a free movement, we report for the first time the development of human bone marrow-in-a-liquefied-capsule to overcome such limitations. Our engineered BM capsules (eBMC) partially mimic the complex structure, composition, and spatial organization of the native osteovascular niches present in the BM. This strategy offers a platform with physiological relevance to exploit the niches' components/networks and how they regulate the hematopoiesis and the initiation/progression of various BM-related pathologies.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sara Nadine
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
18
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
19
|
Bilko DI, Russu IZ, Boiko RV, Bilko NM. HUMANIZED MODEL OF ISOLATED SUSPENSION CULTIVATION OF HEMATOPOIETIC PROGENITOR CELLS FOR THE INVESTIGATION OF IONIZING RADIATION INFLUENCE IN VIVO. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:235-247. [PMID: 34965551 DOI: 10.33145/2304-8336-2021-26-235-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE development of the humanized system for cells cultivation outside the human organism (human-mouse)and investigation of the influence of ionizing radiation in increasing doses on the colony-forming ability ofhematopoietic progenitor cells. MATERIALS AND METHODS Bone marrow samples of individuals without blood system diseases were cultivated in geldiffusion chambers with semi-solid agar in the abdominal cavity of CBA mice exposed to ionizing radiation action.Cell aggregates, which were obtained in the culture of diffusion chambers in vivo, were counted and colony-formingefficiency of bone marrow cells was determined. RESULTS We revealed the stimulation of colony forming under the action of ionizing radiation in increasing doseson the animals-recipients of the chambers, which indirectly indicates the synthesis of colony-stimulating factor inthe mice organism and its permeation into the diffusion chambers with human bone marrow cells. The effect of cyto-statics action on the mice organism was investigated, which in experimentally selected dose cause stimulation ofcolony forming in cell cultures, both 24 hours and 2 hours after administration. CONCLUSIONS The ability of hematopoietic progenitor cells of bone marrow to form colonies and clusters was eval-uated during the cultivation in semi-solid agar in gel diffusion chambers in vivo, as well as the association with thenumber of explanted cells in the appropriate range was established, which indicates the clonal nature of cell aggre-gates growth in culture. It was shown that the treatment of animals the day prior to experiment with administra-tion of cytostatics is comparable to the action of ionizing radiation and can be used to study hematopoiesis in«human-mouse» system.
Collapse
Affiliation(s)
- D I Bilko
- National University of Kyiv-Mohyla Academy, G. Skovorody Str. 2, Kyiv, 04070, Ukraine
| | - I Z Russu
- National University of Kyiv-Mohyla Academy, G. Skovorody Str. 2, Kyiv, 04070, Ukraine
| | - R V Boiko
- National University of Kyiv-Mohyla Academy, G. Skovorody Str. 2, Kyiv, 04070, Ukraine
| | - N M Bilko
- National University of Kyiv-Mohyla Academy, G. Skovorody Str. 2, Kyiv, 04070, Ukraine
| |
Collapse
|
20
|
Fernandes SS, Limaye LS, Kale VP. Differentiated Cells Derived from Hematopoietic Stem Cells and Their Applications in Translational Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:29-43. [PMID: 34114129 DOI: 10.1007/5584_2021_644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hematopoietic stem cells (HSCs) and their development are one of the most widely studied model systems in mammals. In adults, HSCs are predominantly found in the bone marrow, from where they maintain homeostasis. Besides bone marrow and mobilized peripheral blood, cord blood is also being used as an alternate allogenic source of transplantable HSCs. HSCs from both autologous and allogenic sources are being applied for the treatment of various conditions like blood cancers, anemia, etc. HSCs can further differentiate to mature blood cells. Differentiation process of HSCs is being extensively studied so as to obtain a large number of pure populations of various differentiated cells in vitro so that they can be taken up for clinical trials. The ability to generate sufficient quantity of clinical-grade specialized blood cells in vitro would take the field of hematology a step ahead in translational medicine.
Collapse
Affiliation(s)
| | - Lalita S Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
21
|
Pethe P, Kale V. Placenta: A gold mine for translational research and regenerative medicine. Reprod Biol 2021; 21:100508. [PMID: 33930790 DOI: 10.1016/j.repbio.2021.100508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has gained much impetus in regenerative medicine due to some of the encouraging results obtained in the laboratory as well as in translational/clinical studies. Although stem cells are of various types and their therapeutic potential has been documented in several studies, mesenchymal stromal/stem cells (MSCs) have an edge, as in addition to being multipotent, these cells are easy to obtain and expand, pose fewer ethical issues, and possess immense regenerative potential when used in a scientifically correct manner. Currently, MSCs are being sourced from various tissues such as bone marrow, cord, cord blood, adipose tissue, dental tissue, etc., and, quite often, the choice depends on the availability of the source. One such rich source of tissue suitable for obtaining good quality MSCs in large numbers is the placenta obtained in a full-term delivery leading to a healthy child's birth. Several studies have demonstrated the regenerative potential of human placenta-derived MSCs (hPMSC), and most show that these MSCs possess comparable, in some instances, even better, therapeutic potential as that shown by human bone marrow-derived (hBMSC) or human umbilical cord-derived (hUC-MSC) MSCs. The placenta can be easily sourced from the OB/GYN department of any hospital, and if its derivatives such as hPMSC or their EVs are produced under GMP conditions, it could serve as a gold mine for translational/clinical research. Here, we have reviewed recent studies revealing the therapeutic potential of hPMSC and their extracellular vesicles (EVs) published over the past three years.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, 412115, India.
| |
Collapse
|
22
|
Oliveira CS, Carreira M, Correia CR, Mano JF. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:379-392. [PMID: 33683146 DOI: 10.1089/ten.teb.2021.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The repair process of bone fractures is a complex biological mechanism requiring the recruitment and in situ functionality of stem/stromal cells from the bone marrow (BM). BM mesenchymal stem/stromal cells have been widely explored in multiple bone tissue engineering applications, whereas the use of hematopoietic stem cells (HSCs) has been poorly investigated in this context. A reasonable explanation is the fact that the role of HSCs and their combined effect with other elements of the hematopoietic niches in the bone-healing process is still elusive. Therefore, in this review we intend to highlight the influence of HSCs in the bone repair process, mainly through the promotion of osteogenesis and angiogenesis at the bone injury site. For that, we briefly describe the main biological characteristics of HSCs, as well as their hematopoietic niches, while reviewing the biomimetic engineered BM niche models. Moreover, we also highlighted the role of HSCs in translational in vivo transplantation or implantation as promoters of bone tissue repair.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana Carreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
23
|
Chen L, Zhou D, Li X, Yang B, Xu T. Bioprinting of Human Cord Blood-Derived CD34+ Cells and Exploration of the Multilineage Differentiation Ability in Vitro. ACS Biomater Sci Eng 2021; 7:2592-2604. [PMID: 33939424 DOI: 10.1021/acsbiomaterials.0c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three-dimensional (3D) marrow microenvironment plays an essential role in regulating human cord blood-derived CD34+ cells (hCB-CD34+) migration, proliferation, and differentiation. Extensive in vitro and in vivo studies have aimed to recapitulate the main components of the bone marrow (BM) niche. Nonetheless, the models are limited by a lack of heterogeneity and compound structure. Here, we fabricated coaxial extruded core-shell tubular scaffolds and extrusion-based bioprinted cell-laden mesh scaffolds to mimic the functional niche in vitro. A multicellular mesh scaffold and two different core-shell tubular scaffolds were developed with human bone marrow-derived mesenchymal stromal cells (BMSCs) in comparison with a conventional 2D coculture system. A clear cell-cell connection was established in all three bioprinted constructs. Cell distribution and morphology were observed in different systems with scanning electron microscopy (SEM). Collected hCB-CD34+ cells were characterized by various stem cell-specific and lineage-specific phenotypic parameters. The results showed that compared with hCB-CD34+ cells cocultured with BMSCs in Petri dishes, the self-renewal potential of hCB-CD34+ cells was stronger in the tubular scaffolds after 14 days. Besides, cells in these core-shell constructs tended to obtain stronger differentiation potential of lymphoid and megakaryocytes, while cells encapsulated in mesh scaffolds obtained stronger differentiation tendency into erythroid cells. Consequently, 3D bioprinting technology could partially simulate the niche of human hematopoietic stem cells. The three models have their potential in stemness maintenance and multilineage differentiation. This study can provide initial effective guidance in the directed differentiation research and related screening of drug models for hematological diseases.
Collapse
Affiliation(s)
- Lidan Chen
- Centre of Maxillofacial Surgery and Digital Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Bin Yang
- Centre of Maxillofacial Surgery and Digital Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Precision Medicine and Healthcare, Tsinghua Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
24
|
Bessy T, Itkin T, Passaro D. Bioengineering the Bone Marrow Vascular Niche. Front Cell Dev Biol 2021; 9:645496. [PMID: 33996805 PMCID: PMC8113773 DOI: 10.3389/fcell.2021.645496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
The bone marrow (BM) tissue is the main physiological site for adult hematopoiesis. In recent years, the cellular and matrix components composing the BM have been defined with unprecedent resolution, both at the molecular and structural levels. With the expansion of this knowledge, the possibility of reproducing a BM-like structure, to ectopically support and study hematopoiesis, becomes a reality. A number of experimental systems have been implemented and have displayed the feasibility of bioengineering BM tissues, supported by cells of mesenchymal origin. Despite being known as an abundant component of the BM, the vasculature has been largely disregarded for its role in regulating tissue formation, organization and determination. Recent reports have highlighted the crucial role for vascular endothelial cells in shaping tissue development and supporting steady state, emergency and malignant hematopoiesis, both pre- and postnatally. Herein, we review the field of BM-tissue bioengineering with a particular focus on vascular system implementation and integration, starting from describing a variety of applicable in vitro models, ending up with in vivo preclinical models. Additionally, we highlight the challenges of the field and discuss the clinical perspectives in terms of adoptive transfer of vascularized BM-niche grafts in patients to support recovering hematopoiesis.
Collapse
Affiliation(s)
- Thomas Bessy
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| | - Tomer Itkin
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Diana Passaro
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
25
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
26
|
Kumar R, Gulia K. The convergence of nanotechnology‐stem cell, nanotopography‐mechanobiology, and biotic‐abiotic interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and heart attacks. NANO SELECT 2021. [DOI: 10.1002/nano.202000192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rajiv Kumar
- NIET National Institute of Medical Science Rajasthan India
| | - Kiran Gulia
- Materials and Manufacturing School of Engineering University of Wolverhampton Wolverhampton England, UK
| |
Collapse
|
27
|
Zhang L, Xiong N, Liu Y, Gan L. Biomimetic cell-adhesive ligand-functionalized peptide composite hydrogels maintain stemness of human amniotic mesenchymal stem cells. Regen Biomater 2021; 8:rbaa057. [PMID: 33738111 PMCID: PMC7953499 DOI: 10.1093/rb/rbaa057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
In vivo, stem cells reside in a three-dimensional (3D) extracellular microenvironment in which complicated biophysical and biochemical factors regulate their behaviors. Biomimicking of the stem cell-matrix interactions is an ideal approach for controlling the stem cell fate. This study investigates the effects of the incorporation of cell-adhesive ligands in 3D self-assembling peptide hydrogels to modulate stem cell survival, proliferation, maintenance of stemness, and osteogenic differentiation. The results show that the composite hydrogels were non-cytotoxic and effective for maintaining human amniotic mesenchymal stem cell (hAMSC) survival, proliferation and phenotypic characterization. The expression levels of pluripotent markers were also upregulated in the composite hydrogels. Under inductive media conditions, mineral deposition and mRNA expression levels of osteogenic genes of hAMSCs were enhanced. The increasing expression of integrin α- and β-subunits for hAMSCs indicates that the ligand-integrin interactions may modulate the cell fate for hAMSCs in composite hydrogels.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Na Xiong
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
28
|
Ayhan S, Nemutlu E, Uçkan Çetinkaya D, Kır S, Özgül RK. Characterization of human bone marrow niches with metabolome and transcriptome profiling. J Cell Sci 2021; 134:jcs.250720. [PMID: 33526717 DOI: 10.1242/jcs.250720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
Bone marrow (BM) niches are special microenvironments that work in harmony with each other for the regulation and maintenance of hematopoiesis. Niche investigations have thus far been limited to various model organisms and animal studies; therefore, little is known about different niches in healthy humans. In this study, a special harvesting method for the collection of BM from two different anatomical regions in the iliac crest of humans was used to investigate the presence of different niches in BM. Additionally, metabolomic and transcriptomic profiles were compiled using comparative 'omics' technologies, and the main cellular pathways and corresponding transcripts and metabolites were identified. As a result, we found that the energy metabolism between the regions was different. This study provides basic broad data for regenerative medicine in terms of the design of the appropriate microenvironment for in vitro hematopoietic niche modeling, and identifies the normal reference values that can be compared in hematological disease.
Collapse
Affiliation(s)
- Selda Ayhan
- Center for Stem Cell Research and Development/PEDI-STEM and Department of Stem Cell Sciences, Health Sciences Institute, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.,Department of Pediatric Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Duygu Uçkan Çetinkaya
- Center for Stem Cell Research and Development/PEDI-STEM and Department of Stem Cell Sciences, Health Sciences Institute, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.,Department of Pediatrics, Division of Hematology, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Sedef Kır
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Rıza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| |
Collapse
|
29
|
Prieto EI, Mojares EBA, Cortez JJM, Vasquez MR. Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomed Mater 2021; 16:035004. [PMID: 33634797 DOI: 10.1088/1748-605x/abc3dd] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances in cancer treatment, breast cancer remains the second foremost cause of cancer mortality among women, with a high rate of relapse after initial treatment success. A subpopulation of highly malignant cancer cells, known as cancer stem cells (CSCs), is suspected to be linked to metastasis and relapse. Targeting of CSCs may therefore provide a means of addressing cancer-related mortality. However, due to their low population in vivo and a lack of proper culture platform for their propagation, much of the CSC biology remains unknown. Since maintenance of CSCs is heavily influenced by the tumor microenvironment, this study developed a 3D culture platform that mimics the metastatic tumor extracellular matrix (ECM) to effectively increase CSC population in vitro and allow CSC analysis. Through electrospinning, nanofibers that were aligned, porous, and collagen-coated were fabricated from polycaprolactone to recreate the metastatic tumor ECM assemblage. Breast cancer cells seeded onto the nanofiber scaffolds exhibited gross morphology and cytoskeletal phenotype similar to invasive cancer cells. Moreover, the population of breast cancer stem cells increased in nanofiber scaffolds. Analysis of breast cancer cells grown on the nanofiber scaffolds demonstrated an upregulation of mesenchymal markers and an increase in cell invasiveness suggesting the cells have undergone epithelial-mesenchymal transition. These results indicate that the fabricated nanofiber scaffolds effectively mimicked the tumor microenvironment that maintains the cancer stem cell population, offering a platform to enrich and analyze CSCs in vitro.
Collapse
Affiliation(s)
- E I Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - E B A Mojares
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - J J M Cortez
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - M R Vasquez
- Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
30
|
3D Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. MATERIALS 2021; 14:ma14030569. [PMID: 33530372 PMCID: PMC7865713 DOI: 10.3390/ma14030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of blood and immune cells during life. HSC fate decisions are dependent on signals from specialized microenvironments in the bone marrow, termed niches. The HSC niche is a tridimensional environment that comprises cellular, chemical, and physical elements. Introductorily, we will revise the current knowledge of some relevant elements of the niche. Despite the importance of the niche in HSC function, most experimental approaches to study human HSCs use bidimensional models. Probably, this contributes to the failure in translating many in vitro findings into a clinical setting. Recreating the complexity of the bone marrow microenvironment in vitro would provide a powerful tool to achieve in vitro production of HSCs for transplantation, develop more effective therapies for hematologic malignancies and provide deeper insight into the HSC niche. We previously demonstrated that an optimized decellularization method can preserve with striking detail the ECM architecture of the bone marrow niche and support HSC culture. We will discuss the potential of this decellularized scaffold as HSC niche model. Besides decellularized scaffolds, several other methods have been reported to mimic some characteristics of the HSC niche. In this review, we will examine these models and their applications, advantages, and limitations.
Collapse
|
31
|
Carreras P, González I, Gallardo M, Ortiz-Ruiz A, Morales ML, Encinas J, Martínez-López J. Long-Term Human Hematopoietic Stem Cell Culture in Microdroplets. MICROMACHINES 2021; 12:90. [PMID: 33467039 PMCID: PMC7830102 DOI: 10.3390/mi12010090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
We previously reported a new approach for micromanipulation and encapsulation of human stem cells using a droplet-based microfluidic device. This approach demonstrated the possibility of encapsulating and culturing difficult-to-preserve primary human hematopoietic stem cells using an engineered double-layered bead composed by an inner layer of alginate and an outer layer of Puramatrix. We also demonstrated the maintenance and expansion of Multiple Myeloma cells in this construction. Here, the presented microfluidic technique is applied to construct a 3D biomimetic model to recapitulate the human hematopoietic stem cell niche using double-layered hydrogel beads cultured in 10% FBS culture medium. In this model, the long-term maintenance of the number of cells and expansion of hHSCS encapsulated in the proposed structures was observed. Additionally, a phenotypic characterization of the human hematopoietic stem cells generated in the presented biomimetic model was performed in order to assess their long-term stemness maintenance. Results indicate that the ex vivo cultured human CD34+ cells from bone marrow were viable, maintained, and expanded over a time span of eight weeks. This novel long-term stem cell culture methodology could represent a novel breakthrough to improve Hematopoietic Progenitor cell Transplant (HPT) as well as a novel tool for further study of the biochemical and biophysical factors influencing stem cell behavior. This technology opens a myriad of new applications as a universal stem cell niche model potentially able to expand other types of cells.
Collapse
Affiliation(s)
- Pilar Carreras
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
| | - Itziar González
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
| | - Miguel Gallardo
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Maria Luz Morales
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Jessica Encinas
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Joaquín Martínez-López
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
- UCM, Medical Faculty, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
32
|
Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8841865. [PMID: 33133196 PMCID: PMC7591982 DOI: 10.1155/2020/8841865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
The potential of mesenchymal stem cells (MSCs) to differentiate into nonmesodermal cells such as pancreatic beta cells has been reported. New cell-based therapy using MSCs for diabetes mellitus is anticipated as an alternative treatment option to insulin injection or islet transplantation in both human and veterinary medicine. Several protocols were reported for differentiation of MSCs into insulin-producing cells (IPCs), but no studies have reported IPCs generated from canine MSCs. The purpose of this study was to generate IPCs from canine adipose tissue-derived MSCs (AT-MSCs) in vitro and to investigate the effects of IPC transplantation on diabetic mice in vivo. Culturing AT-MSCs with the differentiation protocol under a two-dimensional culture system did not produce IPCs. However, spheroid-like small clusters consisting of canine AT-MSCs and human recombinant peptide μ-pieces developed under a three-dimensional (3D) culture system were successfully differentiated into IPCs. The generated IPCs under 3D culture condition were stained with dithizone and anti-insulin antibody. Canine IPCs also showed gene expression typical for pancreatic beta cells and increased insulin secretion in response to glucose stimulation. The blood glucose levels in streptozotocin-induced diabetic mice were decreased after injection with the supernatant of canine IPCs, but the hyperglycemic states of diabetic mice were not improved after transplanting IPCs subcutaneously or intramesenterically. The histological examination showed that the transplanted small clusters of IPCs were successfully engrafted to the mice and included cells positive for insulin by immunofluorescence. Several factors, such as the transplanted cell number, the origin of AT-MSCs, and the differentiation protocol, were considered potential reasons for the inability to improve the hyperglycemic state after IPC transplantation. These findings suggest that canine AT-MSCs can be differentiated into IPCs under a 3D culture system and IPC transplantation may be a new treatment option for dogs with diabetes mellitus.
Collapse
|
33
|
Mason CC, Fiol CR, Baker MJ, Nadal-Melsio E, Yebra-Fernandez E, Bicalho L, Chowdhury A, Albert M, Reid AG, Claudiani S, Apperley JF, Khorashad JS. Identification of genetic targets in acute myeloid leukaemia for designing targeted therapy. Br J Haematol 2020; 192:137-145. [PMID: 33022753 DOI: 10.1111/bjh.17129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023]
Abstract
Few effective therapies exist for acute myeloid leukaemia (AML), in part due to the molecular heterogeneity of this disease. We sought to identify genes crucial to deregulated AML signal transduction pathways which, if inhibited, could effectively eradicate leukaemia stem cells. Due to difficulties in screening primary cells, most previous studies have performed next-generation sequencing (NGS) library knockdown screens in cell lines. Using carefully considered methods including evaluation at multiple timepoints to ensure equitable gene knockdown, we employed a large NGS short hairpin RNA (shRNA) knockdown screen of nearly 5 000 genes in primary AML cells from six patients to identify genes that are crucial for leukaemic survival. Across various levels of stringency, genome-wide bioinformatic analysis identified a gene in the NOX family, NOX1, to have the most consistent knockdown effectiveness in primary cells (P = 5∙39 × 10-5 , Bonferroni-adjusted), impacting leukaemia cell survival as the top-ranked gene for two of the six AML patients and also showing high effectiveness in three of the other four patients. Further investigation of this pathway highlighted NOX2 as the member of the NOX family with clear knockdown efficacy. We conclude that genes in the NOX family are enticing candidates for therapeutic development in AML.
Collapse
Affiliation(s)
- Clinton C Mason
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | | | - Monika J Baker
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT, USA
| | - Elisabet Nadal-Melsio
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Eva Yebra-Fernandez
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Deynoux M, Sunter N, Ducrocq E, Dakik H, Guibon R, Burlaud-Gaillard J, Brisson L, Rouleux-Bonnin F, le Nail LR, Hérault O, Domenech J, Roingeard P, Fromont G, Mazurier F. A comparative study of the capacity of mesenchymal stromal cell lines to form spheroids. PLoS One 2020; 15:e0225485. [PMID: 32484831 PMCID: PMC7266346 DOI: 10.1371/journal.pone.0225485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC)-spheroid models favor maintenance of stemness, ex vivo expansion and transplantation efficacy. Spheroids may also be considered as useful surrogate models of the hematopoietic niche. However, accessibility to primary cells, from bone marrow (BM) or adipose tissues, may limit their experimental use and the lack of consistency in methods to form spheroids may affect data interpretation. In this study, we aimed to create a simple model by examining the ability of cell lines, from human (HS-27a and HS-5) and murine (MS-5) BM origins, to form spheroids, compared to primary human MSCs (hMSCs). Our protocol efficiently allowed the spheroid formation from all cell types within 24 hours. Whilst hMSC-spheroids began to shrink after 24 hours, the size of spheroids from cell lines remained constant during three weeks. The difference was partially explained by the balance between proliferation and cell death, which could be triggered by hypoxia and induced oxidative stress. Our results demonstrate that, like hMSCs, MSC cell lines make reproductible spheroids that are easily handled. Thus, this model could help in understanding mechanisms involved in MSC functions and may provide a simple model by which to study cell interactions in the BM niche.
Collapse
Affiliation(s)
- Margaux Deynoux
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Nicola Sunter
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Elfi Ducrocq
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Hassan Dakik
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Roseline Guibon
- Anatomie et cytologie pathologique, CHRU de Tours, Tours, France
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
- INSERM U1259 MAVIVH, Université et CHRU de Tours, Tours, France
| | - Lucie Brisson
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | | | | | - Olivier Hérault
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- Service d'hématologie biologique, CHRU de Tours, Tours, France
| | - Jorge Domenech
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- Service d'hématologie biologique, CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
- INSERM U1259 MAVIVH, Université et CHRU de Tours, Tours, France
| | - Gaëlle Fromont
- Anatomie et cytologie pathologique, CHRU de Tours, Tours, France
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Frédéric Mazurier
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- * E-mail:
| |
Collapse
|
35
|
Lee E, Kim J, Kang Y, Shin JW. A Platform for Studying of the Three-Dimensional Migration of Hematopoietic Stem/Progenitor Cells. Tissue Eng Regen Med 2019; 17:25-31. [PMID: 32002840 DOI: 10.1007/s13770-019-00224-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hematopoietic stem/progenitor cells (HSPCs) have the property to return to the bone marrow, which is believed to be critical in situations such as HSPC transplantation. This property plays an important role in the stemness, viability, and proliferation of HSPCs, also. However, most in vitro models so far have not sufficiently simulated the complicate environment. Here, we proposed a three-dimensional experimental platform for the quantitative study of the migration of HSPCs. METHODS After encapsulating osteoblasts (OBs) in alginate beads, we quantified the migration of HSPCs into the beads due to the physical environment using digital image processing. Intermittent hydrostatic pressure (IHP) was used to mimic the mechanical environment of human bone marrow without using any biochemical factors. The expression of stromal cell-derived factor 1 (SDF-1) under IHP was measured. RESULTS The results showed that the presence of OBs in the hydrogel scaffold initiate the movement of HSPCs. Furthermore, the IHP promotes the migration of HSPCs, even without the addition of any biochemical factors, and the results were confirmed by measuring SDF-1 levels. CONCLUSION We believe this suggested three-dimensional experimental platform consisting of a simulated in vivo physical environment and encapsulated OBs should contribute to in vitro migration studies used to investigate the effects of other external factors.
Collapse
Affiliation(s)
- Eunjin Lee
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-do, 50834, Republic of Korea
| | - Jieun Kim
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-do, 50834, Republic of Korea
| | - Yungyeong Kang
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-do, 50834, Republic of Korea.
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-do, 50834, Republic of Korea.
- Cardiovascular and Metabolic Disease Center, Institute of Aged Life Redesign, UHARC, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-do, 50834, Republic of Korea.
| |
Collapse
|
36
|
Kale VP. Application of "Primed" Mesenchymal Stromal Cells in Hematopoietic Stem Cell Transplantation: Current Status and Future Prospects. Stem Cells Dev 2019; 28:1473-1479. [PMID: 31559908 DOI: 10.1089/scd.2019.0149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerative potential of mesenchymal stem/stromal cells (MSCs) has led to their application in various cellular therapies. Since in vivo these cells are present in very low numbers, they need expansion in culture to get clinically relevant numbers; however, such long-term ex vivo manipulation leads to loss of their regenerative capacity. Although use of naïve MSCs is still the most common approach used in various therapies, several strategies, both genetic and pharmacological, are being tried out to boost the regenerative capacity of in vitro expanded MSCs. Such manipulations are very commonly reported for regeneration of various tissues like bone, cartilage, kidney, pancreas, and others. Likewise, several efforts have been made to investigate priming of MSCs to enhance their immunoregulatory activity, but such efforts have not been made to the same extent for enhancing the efficacy of hematopoietic stem cell transplantation (HSCT). Development of such approaches for HSCT would not only be useful for enhancing the transplantation efficacy of cord blood cells, which are fewer in numbers, and aged HSCs, which could be functionally compromised, but also for genetically modified HSCs, which are likely to be both, fewer in number and functionally compromised. This review specifically deals with application of "primed" MSCs in the scenario of HSCT.
Collapse
Affiliation(s)
- Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International University, Pune, India
| |
Collapse
|
37
|
Microphysiological systems in the evaluation of hematotoxicities during drug development. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:312-329. [DOI: 10.1089/ten.teb.2018.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
In vitro and in vivo effects of insulin-producing cells generated by xeno-antigen free 3D culture with RCP piece. Sci Rep 2019; 9:10759. [PMID: 31341242 PMCID: PMC6656749 DOI: 10.1038/s41598-019-47257-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
To establish widespread cell therapy for type 1 diabetes mellitus, we aimed to develop an effective protocol for generating insulin-producing cells (IPCs) from adipose-derived stem cells (ADSCs). We established a 3D culture using a human recombinant peptide (RCP) petaloid μ-piece with xeno-antigen free reagents. Briefly, we employed our two-step protocol to differentiate ADSCs in 96-well dishes and cultured cells in xeno-antigen free reagents with 0.1 mg/mL RCP μ-piece for 7 days (step 1), followed by addition of histone deacetylase inhibitor for 14 days (step 2). Generated IPCs were strongly stained with dithizone, anti-insulin antibody at day 21, and microstructures resembling insulin secretory granules were detected by electron microscopy. Glucose stimulation index (maximum value, 4.9) and MAFA mRNA expression were significantly higher in 3D cultured cells compared with conventionally cultured cells (P < 0.01 and P < 0.05, respectively). The hyperglycaemic state of streptozotocin-induced diabetic nude mice converted to normoglycaemic state around 14 days after transplantation of 96 IPCs under kidney capsule or intra-mesentery. Histological evaluation revealed that insulin and C-peptide positive structures existed at day 120. Our established xeno-antigen free and RCP petaloid μ-piece 3D culture method for generating IPCs may be suitable for clinical application, due to the proven effectiveness in vitro and in vivo.
Collapse
|
40
|
Braham MVJ, Li Yim ASP, Garcia Mateos J, Minnema MC, Dhert WJA, Öner FC, Robin C, Alblas J. A Human Hematopoietic Niche Model Supporting Hematopoietic Stem and Progenitor Cells In Vitro. Adv Healthc Mater 2019; 8:e1801444. [PMID: 30941927 DOI: 10.1002/adhm.201801444] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Indexed: 12/23/2022]
Abstract
Niches in the bone marrow regulate hematopoietic stem and progenitor cell (HSPC) fate and behavior through cell-cell interactions and soluble factor secretion. The niche-HSPC crosstalk is a very complex process not completely elucidated yet. To aid further investigation of this crosstalk, a functional in vitro 3D model that closely represents the main supportive compartments of the bone marrow is developed. Different combinations of human stromal cells and hydrogels are tested for their potential to maintain CD34+ HSPCs. Cell viability, clonogenic hematopoietic potential, and surface marker expression are assessed over time. Optimal HSPC support is obtained in presence of adipogenic and osteogenic cells, together with progenitor derived endothelial cells. When cultured in a bioactive hydrogel, the supportive cells self-assemble into a hypoxic stromal network, stimulating CD34+ CD38+ cell formation, while maintaining the pool of CD34+ 38- HSPCs. HSPC clusters colocalize with the stromal networks, in close proximity to sinusoidal clusters of CD31+ endothelial cells. Importantly, the primary in vitro niche model supports HSPCs with no cytokine addition. Overall, the engineered primary 3D bone marrow environment provides an easy and reliable model to further investigate interactions between HSPCs and their endosteal and perivascular niches, in the context of normal hematopoiesis or blood-related diseases.
Collapse
Affiliation(s)
- Maaike V. J. Braham
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Amélie S. P. Li Yim
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Jara Garcia Mateos
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Monique C. Minnema
- Department of HematologyUniversity Medical Center Utrecht Cancer Center Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Wouter J. A. Dhert
- Faculty of Veterinary MedicineUtrecht University Yalelaan 7 3584 CL Utrecht The Netherlands
| | - F. Cumhur Öner
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Catherine Robin
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
- Hubrecht Institute‐KNAWUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Jacqueline Alblas
- Department of OrthopaedicsUniversity Medical Center Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands
- Regenerative Medicine CenterUniversity Medical Center Utrecht Uppsalalaan 8 3584 CT Utrecht The Netherlands
| |
Collapse
|
41
|
Chramiec A, Vunjak-Novakovic G. Tissue engineered models of healthy and malignant human bone marrow. Adv Drug Deliv Rev 2019; 140:78-92. [PMID: 31002835 PMCID: PMC6663611 DOI: 10.1016/j.addr.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Tissue engineering is becoming increasingly successful in providing in vitro models of human tissues that can be used for ex vivo recapitulation of functional tissues as well as predictive testing of drug efficacy and safety. From simple tissue models to microphysiological platforms comprising multiple tissue types connected by vascular perfusion, these "tissues on a chip" are emerging as a fast track application for tissue engineering, with great potential for modeling diseases and supporting the development of new drugs and therapeutic targets. We focus here on tissue engineering of the hematopoietic stem and progenitor cell compartment and the malignancies that can develop in the human bone marrow. Our overall goal is to demonstrate the utility and interconnectedness of improvements in bioengineering methods developed in one area of bone marrow studies for the remaining, seemingly disparate, bone marrow fields.
Collapse
|
42
|
Wu J, Zheng Z, Chong Y, Li X, Pu L, Tang Q, Yang L, Wang X, Wang F, Liang G. Immune Responsive Release of Tacrolimus to Overcome Organ Transplant Rejection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805018. [PMID: 30255648 DOI: 10.1002/adma.201805018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Transplant rejection is the key problem in organ transplantation and, in clinic, immunosuppressive agents such as tacrolimus are directly administered to the recipients after surgery for T-cell inhibition. However, direct administration of tacrolimus may bring severe side effects to the recipients. Herein, by rational design of two hydrogelators NapPhePheGluTyrOH (1) and Nap d-Phe dPheGluTyrOH (2), a facile method of immune responsive release of tacrolimus is developed from their hydrogels to overcome organ transplantation rejection. Upon incubation with protein tyrosine kinase, which is activated in T cells after organ transplantation, the tacrolimus-encapsulating Gel 1 or Gel 2 is disassembled to release tacrolimus. Cell experiments show that both Gel 1 and Gel 2 have better inhibition effect on the activated T cells than free drug tacrolimus. Liver transplantation experiments indicate that, after 7 days of treatment of same dose tacrolimus, the recipient rats in the Gel 2 group show significantly extended median survival time of 22 days while the recipients treated with conventional tacrolimus medication have a median survival time of 13 days. It is expected herein that this "smart" facile method of immune responsive release of tacrolimus can be applied to overcome organ transplantation rejection in clinic in the near future.
Collapse
Affiliation(s)
- Jindao Wu
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Zhen Zheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yuanyuan Chong
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Xiangcheng Li
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Liyong Pu
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Qiyun Tang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Liu Yang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Fuqiang Wang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
43
|
Liu FD, Tam K, Pishesha N, Poon Z, Van Vliet KJ. Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther 2018; 9:268. [PMID: 30352620 PMCID: PMC6199758 DOI: 10.1186/s13287-018-0982-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Efficient and sustained hematopoietic recovery after hematopoietic stem cell or bone marrow transplantation is supported by paracrine signaling from specific subpopulations of mesenchymal stromal cells (MSCs). Here, we considered whether in vitro mechanopriming of human MSCs could be administered to predictively and significantly improve in vivo hematopoietic recovery after irradiation injury. METHODS First, we implemented regression modeling to identify eight MSC-secreted proteins that correlated strongly with improved rescue from radiation damage, including hematopoietic recovery, in a murine model of hematopoietic failure. Using these partial least squares regression (PLSR) model parameters, we then predicted recovery potential of MSC populations that were culture expanded on substrata of varying mechanical stiffness. Lastly, we experimentally validated these predictions using an in vitro co-culture model of hematopoiesis and using new in vivo experiments for the same irradiation injury model used to generate survival predictions. RESULTS MSCs grown on the least stiff (elastic moduli ~ 1 kPa) of these polydimethylsiloxane (PDMS) substrata secreted high concentrations of key proteins identified in regression modeling, at concentrations comparable to those secreted by minor subpopulations of MSCs shown previously to be effective in supporting such radiation rescue. We confirmed that these MSCs expanded on PDMS could promote hematopoiesis in an in vitro co-culture model with hematopoietic stem and progenitor cells (HSPCs). Further, MSCs cultured on PDMS of highest stiffness (elastic moduli ~ 100 kPa) promoted expression of CD123+ HSPCs, indicative of myeloid differentiation. Systemic administration of mechanoprimed MSCs resulted in improved mouse survival and weight recovery after bone marrow ablation, as compared with both standard MSC expansion on stiffer materials and with biophysically sorted MSC subpopulations. Additionally, we observed recovery of white blood cells, platelets, and red blood cells, indicative of complete recovery of all hematopoietic lineages. CONCLUSIONS These results demonstrate that computational techniques to identify MSC biomarkers can be leveraged to predict and engineer therapeutically effective MSC phenotypes defined by mechanoprimed secreted factors, for translational applications including hematopoietic recovery.
Collapse
Affiliation(s)
- Frances D. Liu
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
| | - Kimberley Tam
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
| | - Novalia Pishesha
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02139 USA
| | - Zhiyong Poon
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
| | - Krystyn J. Van Vliet
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Biosystems and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602 Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
44
|
Karimpoor M, Yebra-Fernandez E, Parhizkar M, Orlu M, Craig D, Khorashad JS, Edirisinghe M. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells. J R Soc Interface 2018; 15:20170928. [PMID: 29695605 PMCID: PMC5938583 DOI: 10.1098/rsif.2017.0928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells.
Collapse
Affiliation(s)
- Mahroo Karimpoor
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Centre for Haematology, Department of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Eva Yebra-Fernandez
- Molecular Pathology, North West London Pathology, Hammersmith Hospital, London, W12 0HS, UK
| | - Maryam Parhizkar
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Mine Orlu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Duncan Craig
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jamshid S Khorashad
- Centre for Haematology, Department of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- Molecular Pathology, North West London Pathology, Hammersmith Hospital, London, W12 0HS, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
45
|
Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med 2018; 215:729-743. [PMID: 29453226 PMCID: PMC5839768 DOI: 10.1084/jem.20172139] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Xenotransplantation of patient-derived samples in mouse models has been instrumental in depicting the role of hematopoietic stem and progenitor cells in the establishment as well as progression of hematological malignancies. The foundations for this field of research have been based on the development of immunodeficient mouse models, which provide normal and malignant human hematopoietic cells with a supportive microenvironment. Immunosuppressed and genetically modified mice expressing human growth factors were key milestones in patient-derived xenograft (PDX) models, highlighting the importance of developing humanized microenvironments. The latest major improvement has been the use of human bone marrow (BM) niche-forming cells to generate human-mouse chimeric BM tissues in PDXs, which can shed light on the interactions between human stroma and hematopoietic cells. Here, we summarize the methods used for human hematopoietic cell xenotransplantation and their milestones and review the latest approaches in generating humanized BM tissues in mice to study human normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Syed A Mian
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haematological Medicine, King's College London School of Medicine, London, England, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, England, UK
| | - William Grey
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| |
Collapse
|
46
|
Jakubikova J, Cholujova D, Hideshima T, Gronesova P, Soltysova A, Harada T, Joo J, Kong SY, Szalat RE, Richardson PG, Munshi NC, Dorfman DM, Anderson KC. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget 2018; 7:77326-77341. [PMID: 27764795 PMCID: PMC5357212 DOI: 10.18632/oncotarget.12643] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022] Open
Abstract
Specific niches within the tumor bone marrow (BM) microenvironment afford a sanctuary for multiple myeloma (MM) clones due to stromal cell-tumor cell interactions, which confer survival advantage and drug resistance. Defining the sequelae of tumor cell interactions within the MM niches on an individualized basis may provide the rationale for personalized therapies. To mimic the MM niche, we here describe a new 3D co-culture ex-vivo model in which primary MM patient BM cells are co-cultured with mesenchymal stem cells (MSC) in a hydrogel 3D system. In the 3D model, MSC with conserved phenotype (CD73+CD90+CD105+) formed compact clusters with active fibrous connections, and retained lineage differentiation capacity. Extracellular matrix molecules, integrins, and niche related molecules including N-cadherin and CXCL12 are expressed in 3D MSC model. Furthermore, activation of osteogenesis (MMP13, SPP1, ADAMTS4, and MGP genes) and osteoblastogenic differentiation was confirmed in 3D MSC model. Co-culture of patient-derived BM mononuclear cells with either autologous or allogeneic MSC in 3D model increased proliferation of MM cells, CXCR4 expression, and SP cells. We carried out immune profiling to show that distribution of immune cell subsets was similar in 3D and 2D MSC model systems. Importantly, resistance to novel agents (IMiDs, bortezomib, carfilzomib) and conventional agents (doxorubicin, dexamethasone, melphalan) was observed in 3D MSC system, reflective of clinical resistance. This 3D MSC model may therefore allow for studies of MM pathogenesis and drug resistance within the BM niche. Importantly, ongoing prospective trials are evaluating its utility to inform personalized targeted and immune therapy in MM.
Collapse
Affiliation(s)
- Jana Jakubikova
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovak Republic
| | - Danka Cholujova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovak Republic
| | - Teru Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paulina Gronesova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovak Republic
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Takeshi Harada
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jungnam Joo
- Biometric Research Branch, Division of Cancer Epidemiology and Prevention, Research Institute & Hospital, National Cancer Center, Goyang-si Gyeonggi-do, South Korea
| | - Sun-Young Kong
- Department of Laboratory Medicine and Translational Epidemiology Branch, Research Institute & Hospital, National Cancer Center, Goyang-si Gyeonggi-do, South Korea
| | - Raphael E Szalat
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nikhil C Munshi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Costa MHG, de Soure AM, Cabral JMS, Ferreira FC, da Silva CL. Hematopoietic Niche - Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnol J 2017; 13. [PMID: 29178199 DOI: 10.1002/biot.201700088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Indexed: 12/19/2022]
Abstract
The adult bone marrow (BM) niche is a complex entity where a homeostatic hematopoietic system is maintained through a dynamic crosstalk between different cellular and non-cellular players. Signaling mechanisms triggered by cell-cell, cell-extracellular matrix (ECM), cell-cytokine interactions, and local microenvironment parameters are involved in controlling quiescence, self-renewal, differentiation, and migration of hematopoietic stem/progenitor cells (HSPC). A promising strategy to more efficiently expand HSPC numbers and tune their properties ex vivo is to mimic the hematopoietic niche through integration of adjuvant stromal cells, soluble cues, and/or biomaterial-based approaches in HSPC culture systems. Particularly, mesenchymal stem/stromal cells (MSC), through their paracrine activity or direct contact with HSPC, are thought to be a relevant niche player, positioning HSPC-MSC co-culture as a valuable platform to support the ex vivo expansion of hematopoietic progenitors. To improve the clinical outcome of hematopoietic cell transplantation (HCT), namely when the available HSPC are present in a limited number such is the case of HSPC collected from umbilical cord blood (UCB), ex vivo expansion of HSPC is required without eliminating the long-term repopulating capacity of more primitive HSC. Here, we will focus on depicting the characteristics of co-culture systems, as well as other bioengineering approaches to improve the functionality of HSPC ex vivo.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
48
|
Sieber S, Wirth L, Cavak N, Koenigsmark M, Marx U, Lauster R, Rosowski M. Bone marrow-on-a-chip: Long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J Tissue Eng Regen Med 2017; 12:479-489. [PMID: 28658717 DOI: 10.1002/term.2507] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022]
Abstract
Multipotent haematopoietic stem and progenitor cells (HSPCs) are the source for all blood cell types. The bone marrow stem cell niche in which the HSPCs are maintained is known to be vital for their maintenance. Unfortunately, to date, no in vitro model exists that accurately mimics the aspects of the bone marrow niche and simultaneously allows the long-term culture of HSPCs. In this study, a novel three-dimensional coculture model is presented, based on a hydroxyapatite coated zirconium oxide scaffold, comprising of human mesenchymal stromal cells (MSCs) and cord blood derived HSPCs, enabling successful HSPC culture for a time span of 28 days within the microfluidic multiorgan chip. The HSPCs were found to stay in their primitive state (CD34+ CD38- ) and capable of granulocyte, erythrocyte, macrophage, megakaryocyte colony formation. Furthermore, a microenvironment was formed bearing molecular and structural similarity to the in vivo bone marrow niche containing extracellular matrix and signalling molecules known to play an important role in HSPC homeostasis. Here, a novel human in vitro bone marrow model is presented for the first time, capable of long-term culture of primitive HSPCs in a microfluidic environment.
Collapse
Affiliation(s)
- Stefan Sieber
- Department Medical Biotechnology, Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charitè Campus Virchow Klinikum, Berlin, Germany
| | - Lorenz Wirth
- Department Medical Biotechnology, Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | - Nino Cavak
- Department Medical Biotechnology, Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | - Marielle Koenigsmark
- Department Medical Biotechnology, Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | | | - Roland Lauster
- Department Medical Biotechnology, Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | - Mark Rosowski
- Department Medical Biotechnology, Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| |
Collapse
|
49
|
Liu FD, Pishesha N, Poon Z, Kaushik T, Van Vliet KJ. Material Viscoelastic Properties Modulate the Mesenchymal Stem Cell Secretome for Applications in Hematopoietic Recovery. ACS Biomater Sci Eng 2017; 3:3292-3306. [DOI: 10.1021/acsbiomaterials.7b00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frances D. Liu
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Novalia Pishesha
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Zhiyong Poon
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Tanwi Kaushik
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Krystyn J. Van Vliet
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Janel A, Berger J, Bourgne C, Lemal R, Boiret-Dupré N, Dubois-Galopin F, Déchelotte P, Bothorel C, Hermet E, Chabi S, Bay JO, Lambert C, Pereira B, Pflumio F, Haddad R, Berger MG. Bone marrow hematons: An access point to the human hematopoietic niche. Am J Hematol 2017. [PMID: 28639326 DOI: 10.1002/ajh.24830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To understand the complex interactions between hematopoietic stem cells and the bone marrow niche, a human experimental model is needed. Our hypothesis is that hematons are an appropriate ex vivo model of human bone marrow. We analyzed the hierarchical hematopoietic cell content and the tissue organization of single hematons from healthy donors. Most (>90%) hematons contained precursors of all cell lineages, myeloid progenitors, and LTC-ICs without preferential commitment. Approximately, half of the hematons could generate significant levels of lympho-myeloid hematopoiesis after transplantation in an NSG mouse model, despite the low absolute numbers of transplanted CD34+ cells. Mesenchymal STRO-1+ and/or CD271+ cells formed a critical network that preserved hematon cohesion, and STRO-1+ cells colocalized with most hematopoietic CD34+ cells (68%). We observed an influence of age and gender. These structures represent a particularly attractive model for studying the homeostasis of the bone marrow niche and pathological changes that occur during diseases.
Collapse
Affiliation(s)
- Alexandre Janel
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Biologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
- Université Clermont Auvergne, Equipe d'accueil l'EA 7453 CHELTER; 1 place L. et R. Aubrac, Clermont-Ferrand Cedex 63003 France
| | - Juliette Berger
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Biologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
- Université Clermont Auvergne, Equipe d'accueil l'EA 7453 CHELTER; 1 place L. et R. Aubrac, Clermont-Ferrand Cedex 63003 France
- CHU Clermont-Ferrand, Hôpital Estaing, CRB-Auvergne; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Céline Bourgne
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Biologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
- Université Clermont Auvergne, Equipe d'accueil l'EA 7453 CHELTER; 1 place L. et R. Aubrac, Clermont-Ferrand Cedex 63003 France
| | - Richard Lemal
- Université Clermont Auvergne, Equipe d'accueil l'EA 7453 CHELTER; 1 place L. et R. Aubrac, Clermont-Ferrand Cedex 63003 France
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Clinique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Nathalie Boiret-Dupré
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Biologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Frédérique Dubois-Galopin
- CHU de Toulouse, Hôpital Purpan, Laboratoire d'Hématologie, Place du Docteur Baylac - TSA 40031 31059; Toulouse Cedex 9 France
| | - Pierre Déchelotte
- CHU Clermont-Ferrand, Hôpital Estaing, Anatomie Pathologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Charlotte Bothorel
- CHU Clermont-Ferrand, Hôpital Estaing, Anatomie Pathologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Eric Hermet
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Clinique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Sara Chabi
- INSERM UMR967, CEA/DSV/iRCM, Laboratory of Hematopoietic Stem cells and Leukemic Cells, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université Paris Diderot, Université Paris-Saclay, Univ Paris Sud, Commissariat à l'Energie Atomique et aux Energies Alternatives; Fontenay-aux-Roses 92265 France
| | - Jacques-Olivier Bay
- Université Clermont Auvergne, Equipe d'accueil l'EA 7453 CHELTER; 1 place L. et R. Aubrac, Clermont-Ferrand Cedex 63003 France
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Clinique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Céline Lambert
- CHU Clermont-Ferrand, Département de Recherche Clinique et Innovation, Bd Léon Malfreyt; Clermont-Ferrand France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Département de Recherche Clinique et Innovation, Bd Léon Malfreyt; Clermont-Ferrand France
| | - Françoise Pflumio
- CHU Clermont-Ferrand, Hôpital Estaing, Anatomie Pathologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Rima Haddad
- CHU Clermont-Ferrand, Hôpital Estaing, Anatomie Pathologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| | - Marc G. Berger
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Biologique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
- Université Clermont Auvergne, Equipe d'accueil l'EA 7453 CHELTER; 1 place L. et R. Aubrac, Clermont-Ferrand Cedex 63003 France
- CHU Clermont-Ferrand, Hôpital Estaing, CRB-Auvergne; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
- CHU Clermont-Ferrand, Hôpital Estaing, Hématologie Clinique; 1 place Lucie et Raymond Aubrac, Clermont-Ferrand Cedex 1 63003 France
| |
Collapse
|