1
|
Chukwuemeka CG, Ndubueze CW, Kolawole AV, Joseph JN, Oladipo IH, Ofoezie EF, Annor-Yeboah SA, Bello ARE, Ganiyu SO. In vitro erythropoiesis: the emerging potential of induced pluripotent stem cells (iPSCs). BLOOD SCIENCE 2025; 7:e00215. [PMID: 39726795 PMCID: PMC11671056 DOI: 10.1097/bs9.0000000000000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Due to global blood shortages and restricted donor blood storage, the focus has switched to the in vitro synthesis of red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) as a potential solution. Many processes are required to synthesize RBCs from iPSCs, including the production of iPSCs from human or animal cells, differentiation of iPSCs into hematopoietic stem cells, culturing, and maturation of the hematopoietic stem cells (HSC) to make functional erythrocytes. Previous investigations on the in vitro production of erythrocytes have shown conflicting results. Some studies have demonstrated substantial yields of functional erythrocytes, whereas others have observed low yields of enucleated cells. Before large-scale in vitro RBC production can be achieved, several challenges which have limited its application in the clinic must be overcome. These issues include optimizing differentiation techniques to manufacture vast amounts of functional RBCs, upscaling the manufacturing process, cost-effectiveness, and assuring the production of RBCs with good manufacturing practices (GMP) before they can be used for therapeutic purposes.
Collapse
Affiliation(s)
| | - Chizaram W. Ndubueze
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Adeola V. Kolawole
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Joshua N. Joseph
- College of Science, University of Massey, Tennent Drive, Massey University, Palmerston North 4410, New Zealand
- Resilient Agriculture, AgResearch Limited, Grasslands Research Centre Tennent Drive, Fitzherbert Palmerston North 4410, New Zealand
| | - Ifeoluwa H. Oladipo
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Ezichi F. Ofoezie
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | | | - Abdur-Rahman Eneye Bello
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
- Department of Biochemistry, Confluence University of Science and Technology, Osara, Kogi State, Nigeria
| | - Sodiq O. Ganiyu
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| |
Collapse
|
2
|
Lv A, Chen M, Zhang S, Zhao W, Li J, Lin S, Zheng Y, Lin N, Xu L, Huang H. Upregulation of miR‑6747‑3p affects red blood cell lineage development and induces fetal hemoglobin expression by targeting BCL11A in β‑thalassemia. Mol Med Rep 2025; 31:7. [PMID: 39450557 PMCID: PMC11529187 DOI: 10.3892/mmr.2024.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
In β‑thalassemia, excessive α‑globin chain impedes the normal development of red blood cells resulting in anemia. Numerous miRNAs, including miR‑6747‑3p, are aberrantly expressed in β‑thalassemia major (β‑TM), but there are no reports on the mechanism of miR‑6747‑3p in regulating red blood cell lineage development and fetal hemoglobin (HbF) expression. In the present study, RT‑qPCR was utilized to confirm miR‑6747‑3p expression in patients with β‑TM and the healthy controls. Electrotransfection was employed to introduce the miR‑6747‑3p mimic and inhibitor in both HUDEP‑2 and K562 cells, and red blood cell lineage development was evaluated by CCK‑8 assay, flow cytometry, Wright‑Giemsa staining and Benzidine blue staining. B‑cell lymphoma/leukemia 11A (BCL11A) was selected as a candidate target gene of miR‑6747‑3p for further validation through FISH assay, dual luciferase assay and Western blotting. The results indicated that miR‑6747‑3p expression was notably higher in patients with β‑TM compared with healthy controls and was positively related to HbF levels. Functionally, miR‑6747‑3p overexpression resulted in the hindrance of cell proliferation, promotion of cell apoptosis, facilitation of cellular erythroid differentiation and γ‑globin expression in HUDEP‑2 and K562 cells. Mechanistically, miR‑6747‑3p could specifically bind to the 546‑552 loci of BCL11A 3'‑UTR and induce γ‑globin expression. These data indicate that upregulation of miR‑6747‑3p affects red blood cell lineage development and induces HbF expression by targeting BCL11A in β‑thalassemia, highlighting miR‑6747‑3p as a potential molecular target for β‑thalassemia therapy.
Collapse
Affiliation(s)
- Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Siwen Zhang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Siyang Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Yanping Zheng
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
3
|
Mohanraj L, Carter C, Liu J, Swift-Scanlan T. MicroRNA Profiles in Hematopoietic Stem Cell Transplant Recipients. Biol Res Nurs 2024; 26:559-568. [PMID: 38819871 DOI: 10.1177/10998004241257847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Background: Hematopoietic Stem Cell Transplant (HCT) is a potentially curative treatment for hematologic malignancies, including multiple myeloma. Biomarker investigation can guide identification of HCT recipients at-risk for poor outcomes. MicroRNAs (miRNAs) are a class of non-coding RNAs involved in the modulation and regulation of pathological processes and are emerging as prognostic and predictive biomarkers for multiple health conditions. This pilot study aimed to examine miRNA profiles associated with HCT-related risk factors and outcomes in patients undergoing autologous HCT. Methods: Patients eligible for autologous HCT were recruited and blood samples and HCT-related variables were collected. Differential expression analysis of miRNA was conducted on 24 patient samples to compare changes in miRNA profile in HCT eligible patients before and after transplant. Results: Unsupervised clustering of differentially expressed (p < .05) miRNAs pre- and post- HCT identified clusters of up- and down-regulated miRNAs. Four miRNAs (miR-125a-5p, miR-99b-5p, miR-382-5p, miR-145-5p) involved in hematopoiesis (differentiation of progenitor cells, granulocyte function, thrombopoiesis, and tumor suppression) were significantly downregulated post-HCT. Correlation analyses identified select miRNAs associated with risk factors (such as frailty, fatigue, cognitive decline) and quality of life pre- and post-HCT. Select miRNAs were correlated with platelet engraftment. Conclusion: Future studies should examine miRNA signatures in larger cohorts in association with HCT outcomes; and expand investigations in patients receiving allogeneic transplants. This will lead to identification of biomarkers for risk stratification of HCT recipients.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing Systems, School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, School of Population Health, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
4
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Srivastava J, Kundal K, Rai B, Saxena P, Katiyar S, Tripathy N, Yadav S, Gupta R, Kumar R, Nityanand S, Chaturvedi CP. Global microRNA profiling of bone marrow-MSC derived extracellular vesicles identifies miRNAs associated with hematopoietic dysfunction in aplastic anemia. Sci Rep 2024; 14:19654. [PMID: 39179703 PMCID: PMC11343855 DOI: 10.1038/s41598-024-70369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Recently, we have reported that extracellular vesicles (EVs) from the bone marrow mesenchymal stromal cells (BM-MSC) of aplastic anemia (AA) patients inhibit hematopoietic stem and progenitor cell (HSPC) proliferative and colony-forming ability and promote apoptosis. One mechanism by which AA BM-MSC EVs might contribute to these altered HSPC functions is through microRNAs (miRNAs) encapsulated in EVs. However, little is known about the role of BM-MSC EVs derived miRNAs in regulating HSPC functions in AA. Therefore, we performed miRNA profiling of EVs from BM-MSC of AA (n = 6) and normal controls (NC) (n = 6) to identify differentially expressed miRNAs. The Integrated DEseq2 analysis revealed 34 significantly altered mature miRNAs, targeting 235 differentially expressed HSPC genes in AA. Hub gene analysis revealed 10 HSPC genes such as IGF-1R, IGF2R, PAK1, PTPN1, etc., which are targeted by EV miRNAs and had an enrichment of chemokine, MAPK, NK cell-mediated cytotoxicity, Rap1, PI3k-Akt, mTOR signalling pathways which are associated with hematopoietic homeostasis. We further showed that miR-139-5p and its target, IGF-1R (hub-gene), might regulate HSPC proliferation and apoptosis, which may serve as potential therapeutic targets in AA. Overall, the study highlights that AA BM-MSC EV miRNAs could contribute to impaired HSPC functions in AA.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Kavita Kundal
- Computational Genomics and Transcriptomics Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Hyderabad, 502285, Telangana, India
| | - Bhuvnesh Rai
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Pragati Saxena
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Shobhita Katiyar
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Naresh Tripathy
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Sanjeev Yadav
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Ruchi Gupta
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Rahul Kumar
- Computational Genomics and Transcriptomics Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Hyderabad, 502285, Telangana, India
| | - Soniya Nityanand
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India.
- King George's Medical University, Lucknow, India.
| | - Chandra Prakash Chaturvedi
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
6
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Jani PK, Petkau G, Kawano Y, Klemm U, Guerra GM, Heinz GA, Heinrich F, Durek P, Mashreghi MF, Melchers F. The miR-221/222 cluster regulates hematopoietic stem cell quiescence and multipotency by suppressing both Fos/AP-1/IEG pathway activation and stress-like differentiation to granulocytes. PLoS Biol 2023; 21:e3002015. [PMID: 37983263 PMCID: PMC10695376 DOI: 10.1371/journal.pbio.3002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/04/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Throughout life, hematopoietic stem cells (HSCs), residing in bone marrow (BM), continuously regenerate erythroid/megakaryocytic, myeloid, and lymphoid cell lineages. This steady-state hematopoiesis from HSC and multipotent progenitors (MPPs) in BM can be perturbed by stress. The molecular controls of how stress can impact hematopoietic output remain poorly understood. MicroRNAs (miRNAs) as posttranscriptional regulators of gene expression have been found to control various functions in hematopoiesis. We find that the miR-221/222 cluster, which is expressed in HSC and in MPPs differentiating from them, perturbs steady-state hematopoiesis in ways comparable to stress. We compare pool sizes and single-cell transcriptomes of HSC and MPPs in unperturbed or stress-perturbed, miR-221/222-proficient or miR-221/222-deficient states. MiR-221/222 deficiency in hematopoietic cells was induced in C57BL/6J mice by conditional vav-cre-mediated deletion of the floxed miR-221/222 gene cluster. Social stress as well as miR-221/222 deficiency, alone or in combination, reduced HSC pools 3-fold and increased MPPs 1.5-fold. It also enhanced granulopoisis in the spleen. Furthermore, combined stress and miR-221/222 deficiency increased the erythroid/myeloid/granulocytic precursor pools in BM. Differential expression analyses of single-cell RNAseq transcriptomes of unperturbed and stressed, proficient HSC and MPPs detected more than 80 genes, selectively up-regulated in stressed cells, among them immediate early genes (IEGs). The same differential single-cell transcriptome analyses of unperturbed, miR-221/222-proficient with deficient HSC and MPPs identified Fos, Jun, JunB, Klf6, Nr4a1, Ier2, Zfp36-all IEGs-as well as CD74 and Ly6a as potential miRNA targets. Three of them, Klf6, Nr4a1, and Zfp36, have previously been found to influence myelogranulopoiesis. Together with increased levels of Jun, Fos forms increased amounts of the heterodimeric activator protein-1 (AP-1), which is known to control the expression of the selectively up-regulated expression of the IEGs. The comparisons of single-cell mRNA-deep sequencing analyses of socially stressed with miR-221/222-deficient HSC identify 5 of the 7 Fos/AP-1-controlled IEGs, Ier2, Jun, Junb, Klf6, and Zfp36, as common activators of HSC from quiescence. Combined with stress, miR-221/222 deficiency enhanced the Fos/AP-1/IEG pathway, extended it to MPPs, and increased the number of granulocyte precursors in BM, inducing selective up-regulation of genes encoding heat shock proteins Hspa5 and Hspa8, tubulin-cytoskeleton-organizing proteins Tuba1b, Tubb 4b and 5, and chromatin remodeling proteins H3f3b, H2afx, H2afz, and Hmgb2. Up-regulated in HSC, MPP1, and/or MPP2, they appear as potential regulators of stress-induced, miR-221/222-dependent increased granulocyte differentiation. Finally, stress by serial transplantations of miR-221/222-deficient HSC selectively exhausted their lymphoid differentiation capacities, while retaining their ability to home to BM and to differentiate to granulocytes. Thus, miR-221/222 maintains HSC quiescence and multipotency by suppressing Fos/AP-1/IEG-mediated activation and by suppressing enhanced stress-like differentiation to granulocytes. Since miR-221/222 is also expressed in human HSC, controlled induction of miR-221/222 in HSC should improve BM transplantations.
Collapse
Affiliation(s)
- Peter K. Jani
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | - Georg Petkau
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | - Yohei Kawano
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | - Uwe Klemm
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | - Pawel Durek
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
| | | | - Fritz Melchers
- Deutsches Rheuma Forschungszentrum (DRFZ), Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
8
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
9
|
MiRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24065436. [PMID: 36982511 PMCID: PMC10049736 DOI: 10.3390/ijms24065436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/14/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common kind of pediatric cancer. Although the cure rates in ALL have significantly increased in developed countries, still 15–20% of patients relapse, with even higher rates in developing countries. The role of non-coding RNA genes as microRNAs (miRNAs) has gained interest from researchers in regard to improving our knowledge of the molecular mechanisms underlying ALL development, as well as identifying biomarkers with clinical relevance. Despite the wide heterogeneity reveled in miRNA studies in ALL, consistent findings give us confidence that miRNAs could be useful to discriminate between leukemia linages, immunophenotypes, molecular groups, high-risk-for-relapse groups, and poor/good responders to chemotherapy. For instance, miR-125b has been associated with prognosis and chemoresistance in ALL, miR-21 has an oncogenic role in lymphoid malignancies, and the miR-181 family can act either as a oncomiR or tumor suppressor in several hematological malignancies. However, few of these studies have explored the molecular interplay between miRNAs and their targeted genes. This review aims to state the different ways in which miRNAs could be involved in ALL and their clinical implications.
Collapse
|
10
|
Edirithilake T, Nanayakkara N, Lin XX, Biggs PJ, Chandrajith R, Lokugalappatti S, Wickramasinghe S. Urinary MicroRNA Analysis Indicates an Epigenetic Regulation of Chronic Kidney Disease of Unknown Etiology in Sri Lanka. Microrna 2023; 12:156-163. [PMID: 36733246 DOI: 10.2174/2211536612666230202152932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic kidney disease of unknown etiology (CKDu) is reported among male paddy farmers in the dry zone of Sri Lanka. The exact cause of this disease remains undetermined. Genetic susceptibility is identified as a major risk factor for CKDu Objectives: In this study, small urinary RNAs were characterized in CKDu patients, healthy endemic and non-endemic controls. Differently expressed urinary miRNAs and their associated pathways were identified in the study population. METHODS Healthy and diseased male volunteers (n = 9) were recruited from Girandurukotte (endemic) and Mawanella (non-endemic) districts. Urinary small RNAs were purified and sequenced using Illumina MiSeqTM. The sequence trace files were assembled and analyzed. Differentially ex-pressed miRNAs among these three groups were identified and pathway analysis was conducted. RESULTS The urine samples contained 130,623 sequence reads identified as non-coding RNAs, PIWI-interacting RNAs (piRNA), and miRNAs. Approximately four percent of the total small RNA reads represented miRNA, and 29% represented piRNA. A total of 409 miRNA species were ex-pressed in urine. Interestingly, both diseased and endemic controls population showed significantly low expression of miRNA and piRNA. Regardless of the health status, the endemic population ex-pressed significantly low levels of miR-10a, miR-21, miR-148a, and miR-30a which have been linked with several environmental toxins Conclusion: Significant downregulation of miRNA and piRNA expression in both diseased and healthy endemic samples indicates an epigenetic regulation of CKDu involving genetic and environmental interaction. Further studies of specific miRNA species are required to develop a miRNA panel to identify individuals susceptible to CKDu.
Collapse
Affiliation(s)
- Thanuri Edirithilake
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | - Xiao Xiao Lin
- Massey Genome Service, School of Natural Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Patrick J Biggs
- Molecular Epidemiology & Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Rohana Chandrajith
- Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Sampath Lokugalappatti
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Saumya Wickramasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Food Science and Technology, University of California, Davis, 95616, USA
| |
Collapse
|
11
|
Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial. Leukemia 2022; 36:2443-2452. [PMID: 35999259 DOI: 10.1038/s41375-022-01680-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Despite the effectiveness of tyrosine kinase inhibitors (TKIs) against chronic myeloid leukemia (CML), they are not usually curative as some patients develop drug-resistance or are at risk of disease relapse when treatment is discontinued. Studies have demonstrated that primitive CML cells display unique miRNA profiles in response to TKI treatment. However, the utility of miRNAs in predicting treatment response is not yet conclusive. Here, we analyzed differentially expressed miRNAs in CD34+ CML cells pre- and post-nilotinib (NL) therapy from 58 patients enrolled in the Canadian sub-analysis of the ENESTxtnd phase IIIb clinical trial which correlated with sensitivity of CD34+ cells to NL treatment in in vitro colony-forming cell (CFC) assays. We performed Cox Proportional Hazard (CoxPH) analysis and applied machine learning algorithms to generate multivariate miRNA panels which can predict NL response at treatment-naïve or post-treatment time points. We demonstrated that a combination of miR-145 and miR-708 are effective predictors of NL response in treatment-naïve patients whereas miR-150 and miR-185 were significant classifiers at 1-month and 3-month post-NL therapy. Interestingly, incorporation of NL-CFC output in these panels enhanced predictive performance. Thus, this novel predictive model may be developed into a prognostic tool for use in the clinic.
Collapse
|
12
|
Liccardo F, Iaiza A, Śniegocka M, Masciarelli S, Fazi F. Circular RNAs Activity in the Leukemic Bone Marrow Microenvironment. Noncoding RNA 2022; 8:50. [PMID: 35893233 PMCID: PMC9326527 DOI: 10.3390/ncrna8040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy originating from defective hematopoietic stem cells in the bone marrow. In spite of the recent approval of several molecular targeted therapies for AML treatment, disease recurrence remains an issue. Interestingly, increasing evidence has pointed out the relevance of bone marrow (BM) niche remodeling during leukemia onset and progression. Complex crosstalk between AML cells and microenvironment components shapes the leukemic BM niche, consequently affecting therapy responsiveness. Notably, circular RNAs are a new class of RNAs found to be relevant in AML progression and chemoresistance. In this review, we provided an overview of AML-driven niche remodeling. In particular, we analyzed the role of circRNAs and their possible contribution to cell-cell communication within the leukemic BM microenvironment. Understanding these mechanisms will help develop a more effective treatment for AML.
Collapse
Affiliation(s)
| | | | | | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy; (F.L.); (A.I.); (M.Ś.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy; (F.L.); (A.I.); (M.Ś.)
| |
Collapse
|
13
|
Papasavva PL, Patsali P, Loucari CC, Kurita R, Nakamura Y, Kleanthous M, Lederer CW. CRISPR Editing Enables Consequential Tag-Activated MicroRNA-Mediated Endogene Deactivation. Int J Mol Sci 2022; 23:1082. [PMID: 35163006 PMCID: PMC8834719 DOI: 10.3390/ijms23031082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.
Collapse
Affiliation(s)
- Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Constantinos C. Loucari
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Koto-ku, Tokyo 135-8521, Japan;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan;
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
14
|
Ganesan S, Mathews V, Vyas N. Microenvironment and drug resistance in acute myeloid leukemia: Do we know enough? Int J Cancer 2021; 150:1401-1411. [PMID: 34921734 DOI: 10.1002/ijc.33908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AMLs), as the name suggests, often develop suddenly and are very progressive forms of cancer. Unlike in acute promyelocytic leukemia, a subtype of AML, the outcomes in most other AMLs remain poor. This is mainly attributed to the acquired drug resistance and lack of targeted therapy. Different studies across laboratories suggest that the cellular mechanisms to impart therapy resistance are often very dynamic and should be identified in a context-specific manner. Our review highlights the progress made so far in identifying the different cellular mechanisms of mutation-independent therapy resistance in AML. It reiterates that for more effective outcomes cancer therapies should acquire a more tailored approach where the protective interactions between the cancer cells and their niches are identified and targeted.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Neha Vyas
- Division of Molecular Medicine, St. John's Research Institute, SJNAHS, Bengaluru, India
| |
Collapse
|
15
|
Darden DB, Mira JC, Lopez MC, Stortz JA, Fenner BP, Kelly LS, Nacionales DC, Budharaju A, Loftus TJ, Baker HV, Moore FA, Brakenridge SC, Moldawer LL, Mohr AM, Efron PA. Identification of unique microRNA expression patterns in bone marrow hematopoietic stem and progenitor cells after hemorrhagic shock and multiple injuries in young and old adult mice. J Trauma Acute Care Surg 2021; 91:692-699. [PMID: 34252063 PMCID: PMC8463436 DOI: 10.1097/ta.0000000000003350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND After severe trauma, the older host experiences more dysfunctional hematopoiesis of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs), and dysfunctional differentiation of circulating myeloid cells into effective innate immune cells. Our main objective was to compare BM HSPC microRNA (miR) responses of old and young mice in a clinically relevant model of severe trauma and shock. METHODS C57BL/6 adult male mice aged 8 to 12 weeks (young) and 18 to 24 months (old) underwent multiple injuries and hemorrhagic shock (polytrauma [PT]) that engenders the equivalent of major trauma (Injury Severity Score, >15). Pseudomonas pneumonia (PNA) was induced in some young and old adult mice 24 hours after PT. MicroRNA expression patterns were determined from lineage-negative enriched BM HSPCs isolated from PT and PT-PNA mice at 24 and 48 hours postinjury, respectively. Genome-wide expression and pathway analyses were also performed on bronchoalveolar lavage (BAL) leukocytes from both mouse cohorts. RESULTS MicroRNA expression significantly differed among all experimental conditions (p < 0.05), except for old-naive versus old-injured (PT or PT-PNA) mice, suggesting an inability of old mice to mount a robust early miR response to severe shock and injury. In addition, young adult mice had significantly more leukocytes obtained from their BAL, and there were greater numbers of polymorphonuclear cells compared with old mice (59.8% vs. 2.2%, p = 0.0069). Despite increased gene expression changes, BAL leukocytes from old mice demonstrated a more dysfunctional transcriptomic response to PT-PNA than young adult murine BAL leukocytes, as reflected in predicted upstream functional pathway analysis. CONCLUSION The miR expression pattern in BM HSPCs after PT (+/-PNA) is dissimilar in old versus young adult mice. In the acute postinjury phase, old adult mice are unable to mount a robust miR HSPC response. Hematopoietic stem and progenitor cell miR expression in old PT mice reflects a diminished functional status and a blunted capacity for terminal differentiation of myeloid cells.
Collapse
Affiliation(s)
- Dijoia B. Darden
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Juan C. Mira
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Julie A. Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Brittany P. Fenner
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S. Kelly
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Dina C. Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Ashrita Budharaju
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Tyler J. Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Frederick A. Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Scott C. Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Alicia M. Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A. Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
16
|
Challagundla N, Agrawal-Rajput R. microRNAs (miR 9, 124, 155 and 224) transdifferentiate mouse macrophages to neurons. Exp Cell Res 2021; 402:112563. [PMID: 33757809 DOI: 10.1016/j.yexcr.2021.112563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Development is an irreversible process of differentiating the undifferentiated cells to functional cells. Brain development involves generation of cells with varied phenotype and functions, which is limited during adulthood, stress, damage/degeneration. Cellular reprogramming makes differentiation reversible process with reprogramming somatic/stem cells to alternative fate with/without stem cells. Exogenously expressed transcription factors or small molecule inhibitors have driven reprogramming of stem/somatic cells to neurons providing alternative approach for pre-clinical/clinical testing and therapeutics. Here in, we report a novel approach of microRNA (miR)- induced trans-differentiation of macrophages (CD11b high) to induced neuronal cells (iNCs) (neuronal markershigh- Nestin, Nurr1, Map2, NSE, Tubb3 and Mash1) without exogenous use of transcription factors. miR 9, 124, 155 and 224 successfully transdifferentiated macrophages to neurons with transient stem cell-like phenotype. We report trans differentiation efficacy 18% and 21% with miR 124 and miR 155. in silico(String 10.0, miR gator, mESAdb, TargetScan 7.0) and experimental analysis indicate that the reprogramming involves alteration of pluripotencygenes like Oct4, Sox2, Klf4, Nanog and pluripotency miR, miR 302. iNCs also shifted to G0 phase indicating manipulation of cell cycle by these miRs. Further, CD133+ intermediate cells obtained during current protocol could be differentiated to iNCs using miRs. The syanpsin+ neurons were functionally active and displayed intracellular Ca+2 evoke on activation. miRs could also transdifferentiate bone marrow-derived macrophages and peripheral blood mononuclear cells to neuronal cells. The current protocol could be employed for direct in vivo reprogramming of macrophages to neurons without teratoma formation for transplantation and clinical studies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab,Indian Institute of Advanced Research [IIAR], Gandhinagar, Gujarat, 382427, India.
| | - Reena Agrawal-Rajput
- Immunology Lab,Indian Institute of Advanced Research [IIAR], Gandhinagar, Gujarat, 382427, India.
| |
Collapse
|
17
|
Ghafouri-Fard S, Niazi V, Taheri M. Role of miRNAs and lncRNAs in hematopoietic stem cell differentiation. Noncoding RNA Res 2021; 6:8-14. [PMID: 33385102 PMCID: PMC7770514 DOI: 10.1016/j.ncrna.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have diverse roles in the differentiation of hematopoietic cells. Among these transcripts, long ncRNAs (lncRNAs) and microRNAs (miRNAs) have especial contribution in this regard particularly by affecting levels of transcription factors that define differentiation of each linage. miR-222, miR-10a, miR-126, miR-106, miR-10b, miR-17, miR-20, miR-146, miR-155, miR-223, miR-221, miR-92, miR-150, miR-126 and miR-142 are among miRNAs that partake in the differentiation of hematopoietic stem cells. Meanwhile, this process is controlled by a number of lncRNAs such as PU.1-AS, AlncRNA-EC7, EGO, HOTAIRM1, Fas-AS1, LincRNA-EPS and lncRNA-CSR. Manipulation of expression of these transcripts has functional significance in the treatment of cancers and in cell therapy. In this paper, we have provided a brief summary of the role of miRNAs and lncRNAs in the regulation of hematopoietic stem cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Luinenburg DG, Dinitzen AB, Flohr Svendsen A, Cengiz R, Ausema A, Weersing E, Bystrykh L, de Haan G. Persistent expression of microRNA-125a targets is required to induce murine hematopoietic stem cell repopulating activity. Exp Hematol 2021; 94:47-59.e5. [PMID: 33333212 DOI: 10.1016/j.exphem.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression posttranscriptionally by binding to the 3' untranslated regions of their target mRNAs. The evolutionarily conserved microRNA-125a (miR-125a) is highly expressed in both murine and human hematopoietic stem cells (HSCs), and previous studies have found that miR-125 strongly enhances self-renewal of HSCs and progenitors. In this study we explored whether temporary overexpression of miR-125a would be sufficient to permanently increase HSC self-renewal or, rather, whether persistent overexpression of miR-125a is required. We used three complementary in vivo approaches to reversibly enforce expression of miR-125a in murine HSCs. Additionally, we interrogated the underlying molecular mechanisms responsible for the functional changes that occur in HSCs on overexpression of miR-125a. Our data indicate that continuous expression of miR-125a is required to enhance HSC activity. Our molecular analysis confirms changes in pathways that explain the characteristics of miR-125a overexpressing HSCs. Moreover, it provides several novel putative miR-125a targets, but also highlights the complex molecular changes that collectively lead to enhanced HSC function.
Collapse
Affiliation(s)
- Daniëlle G Luinenburg
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander Bak Dinitzen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur Flohr Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roza Cengiz
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen Weersing
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Leonid Bystrykh
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Huang F, Tang W, Lei Y. MicroRNA-107 promotes apoptosis of acute myelocytic leukemia cells by targeting RAD51. Arch Med Sci 2021; 17:1044-1055. [PMID: 34336032 PMCID: PMC8314419 DOI: 10.5114/aoms.2020.92860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the role of microRNA (miRNA) that affects acute myelocytic leukemia (AML) and its potential molecular mechanism by constructing a miRNA-mRNA interaction network using bioinformatics methods. MATERIAL AND METHODS MicroRNA expression data of AML were retrieved from Gene Expression Omnibus (GEO) and analyzed by microarray analysis. Expression levels of miR-107 and RAD51 mRNA were detected by quantitative real time polymerase chain reaction (qRT-PCR). Protein expression of RAD51, pro-apoptotic protein Bax, apoptosis related protein CytC and anti-apoptotic protein Bcl-2 were determined by Western blot. The rate of cell apoptosis was detected by Annexin-V/PI. The predicted targeting relationship between miR-107 and the 3'UTR of RAD51 was first predicted by the online application TargetScan and then verified by dual-luciferase assay. RESULTS Acute myelocytic leukemia-associated genes (n = 197) and miRNAs (n = 1701) were retrieved from the database, the interaction network of miRNA-mRNA was constructed and the core position was occupied by RAD51. miR-107 exhibited a regulatory effect on RAD51 in which the mRNA and protein expression of RAD51 were both significantly inhibited by miR-107 mimics in vitro. Additionally, down-regulated expression of miR107 as well as up-regulated expression of RAD51 were detected not only in the plasma of AML patients compared to healthy volunteers, but also in AML cell lines compared to the normal bone marrow stromal cell line. Further study found that increased expression of miR-107 and the consequent down-regulation of RAD51 could aggravate the apoptosis of AML cells in vitro. CONCLUSIONS Our present results showed that the crucial role of RAD51 and miR-107 in the apoptosis of AML cells, i.e., miR-107 promotes the apoptosis of AML cells through down-regulating the expression of RAD51.
Collapse
Affiliation(s)
- Fengxia Huang
- Department of Medical Technology Clinical and Hematological Laboratory Office, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Wei Tang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Lei
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Translational Medical Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
20
|
Chattopadhyaya S, Banerjee S. miRNA 146b mediates the regulation of nucleolar size and activity in polyploid megakaryocytes. Biol Cell 2020; 113:118-129. [PMID: 33278308 DOI: 10.1111/boc.202000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND INFORMATION Megakaryocytes (MKs) follow a unique cell cycle duplication process, called endomitosis, resulting in polyploidisation of cells. It is hypothesised that polyploidy, as well as an increment in cytoplasm volume, allow more efficient platelets generation from MKs. Although polyploidy leads to an increase in the DNA amount, which impacts gene expression, little is known about ribosomal biogenesis in these polylobulated polyploid cells. RESULTS The nucleolus acts as a hub for ribosomal biogenesis, which in turn governs the protein synthesis rate of the cells. We therefore estimated the size and activity of the nucleolus in polyploid cells during megakaryopoiesis in vitro. Polyploid megakaryocytic cell lines and in vitro cultured MKs, which were obtained from human cord blood-derived CD 34+ cells, revealed that miRNA 146b regulated the activity of nucleolar and coiled-body phosphoprotein 1, which plays an integral role in determining nucleolar size and activity. Additionally, miRNA-146b was up-regulated during endomitosis and was found to promote megakaryopoiesis. CONCLUSION We propose that miRNA 146b regulates not only nucleolar size and activity, but also megakaryopoiesis. SIGNIFICANCE This study highlights the importance of nucleolar activity and miRNA in the progression of megakaryopoiesis and thrombopoiesis.
Collapse
Affiliation(s)
- Saran Chattopadhyaya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Bidhannagar, Kolkata, 700064, India
| | - Subrata Banerjee
- School of Biological Sciences, Ramkrishna Mission Vivekananda Educational & Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| |
Collapse
|
21
|
Zaro BW, Noh JJ, Mascetti VL, Demeter J, George B, Zukowska M, Gulati GS, Sinha R, Flynn RA, Banuelos A, Zhang A, Wilkinson AC, Jackson P, Weissman IL. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. eLife 2020; 9:e62210. [PMID: 33236985 PMCID: PMC7688314 DOI: 10.7554/elife.62210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.
Collapse
Affiliation(s)
- Balyn W Zaro
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Victoria L Mascetti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Benson George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Monika Zukowska
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Ryan A Flynn
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peter Jackson
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology and the Stanford UC-Berkeley Stem Cell InstituteStanfordUnited States
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
22
|
Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11:483. [PMID: 33198819 PMCID: PMC7667818 DOI: 10.1186/s13287-020-01998-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Abstract
We report a systematic unbiased analysis of small RNA molecule expression in 11 different tissues of the model organism mouse. We discovered uncharacterized noncoding RNA molecules and identified that ∼30% of total noncoding small RNA transcriptome are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. Distinct distribution patterns of small RNA across the body suggest the existence of tissue-specific mechanisms involved in noncoding RNA processing. Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease.
Collapse
|
24
|
Morhayim J, Ghebes CA, Erkeland SJ, Ter Borg MND, Hoogenboezem RM, Bindels EMJ, van Alphen FPJ, Kassem M, van Wijnen AJ, Cornelissen JJ, van Leeuwen JP, van der Eerden BCJ, Voermans C, van de Peppel J, Braakman E. Identification of osteolineage cell-derived extracellular vesicle cargo implicated in hematopoietic support. FASEB J 2020; 34:5435-5452. [PMID: 32086861 PMCID: PMC7136136 DOI: 10.1096/fj.201902610r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Osteolineage cell‐derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non‐stimulatory osteolineage EVs by next‐generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV‐derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood‐derived CD34+ HSPCs with stimulatory EVs‐altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell‐HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.
Collapse
Affiliation(s)
- Jess Morhayim
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mariëtte N D Ter Borg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Moustapha Kassem
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | | | - Jan J Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johannes P van Leeuwen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric Braakman
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Guo SS, Li BX, Zou DB, Yang SJ, Sheng LX, Ouyang GF, Mu QT, Huang H. Tip of the iceberg: roles of circRNAs in hematological malignancies. Am J Cancer Res 2020; 10:367-382. [PMID: 32195014 PMCID: PMC7061755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a new class of covalently closed RNA molecules whose 3'- and 5'-ends are linked by a back-splicing event. Emerging evidence has shown that circRNAs play a vital role in the occurrence and development of many diseases and are promising biomarkers and therapeutic targets. However, knowledge of circRNAs in hematological malignancies is limited. In this review, the biogenesis, categories, characteristics, and functions of circRNAs are summarized, especially the roles of circRNAs in hematopoiesis and hematological malignancies.
Collapse
Affiliation(s)
- Shan-Shan Guo
- Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Bi-Xia Li
- Ningbo University School of MedicineNingbo, Zhejiang, PR China
| | - Duo-Bing Zou
- Laboratory of Stem Cell Transplantation, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Shu-Jun Yang
- Laboratory of Stem Cell Transplantation, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
- Department of Hematology, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Li-Xia Sheng
- Department of Hematology, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Gui-Fang Ouyang
- Department of Hematology, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Qi-Tian Mu
- Laboratory of Stem Cell Transplantation, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, PR China
| |
Collapse
|
26
|
microRNA-22 promotes megakaryocyte differentiation through repression of its target, GFI1. Blood Adv 2020; 3:33-46. [PMID: 30617215 DOI: 10.1182/bloodadvances.2018023804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Precise control of microRNA expression contributes to development and the establishment of tissue identity, including in proper hematopoietic commitment and differentiation, whereas aberrant expression of various microRNAs has been implicated in malignant transformation. A small number of microRNAs are upregulated in megakaryocytes, among them is microRNA-22 (miR-22). Dysregulation of miR-22 leads to various hematologic malignancies and disorders, but its role in hematopoiesis is not yet well established. Here we show that upregulation of miR-22 is a critical step in megakaryocyte differentiation. Megakaryocytic differentiation in cell lines is promoted upon overexpression of miR-22, whereas differentiation is disrupted in CRISPR/Cas9-generated miR-22 knockout cell lines, confirming that miR-22 is an essential mediator of this process. RNA-sequencing reveals that miR-22 loss results in downregulation of megakaryocyte-associated genes. Mechanistically, we identify the repressive transcription factor, GFI1, as the direct target of miR-22, and upregulation of GFI1 in the absence of miR-22 inhibits megakaryocyte differentiation. Knocking down aberrant GFI1 expression restores megakaryocytic differentiation in miR-22 knockout cells. Furthermore, we have characterized hematopoiesis in miR-22 knockout animals and confirmed that megakaryocyte differentiation is similarly impaired in vivo and upon ex vivo megakaryocyte differentiation. Consistently, repression of Gfi1 is incomplete in the megakaryocyte lineage in miR-22 knockout mice and Gfi1 is aberrantly expressed upon forced megakaryocyte differentiation in explanted bone marrow from miR-22 knockout animals. This study identifies a positive role for miR-22 in hematopoiesis, specifically in promoting megakaryocyte differentiation through repression of GFI1, a target antagonistic to this process.
Collapse
|
27
|
Ibáñez-Cabellos JS, Seco-Cervera M, Osca-Verdegal R, Pallardó FV, García-Giménez JL. Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis. Front Genet 2019; 10:1104. [PMID: 31798626 PMCID: PMC6863924 DOI: 10.3389/fgene.2019.01104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accepted that epigenetic pathways play an essential role in the development and function of the immune system. Although many published studies have attempted to elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone post-translational modifications, miRNAs) and autoimmune disorders, the contribution of epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. This review attempts to shed light from a critical point of view on the identification of the most relevant epigenetic mechanisms related to RA and SS by explaining intricate regulatory processes and phenotypic features of both autoimmune diseases. Moreover, we point out some epigenetic markers which can be used to monitor the inflammation status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience of using epigenetic data obtained from bulk immune cell populations instead specific immune cell subpopulations.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
28
|
Jia W, Jia S, Chen P, He Y. Construction and Analysis of a Long Non-Coding RNA (lncRNA)-Associated ceRNA Network in β-Thalassemia and Hereditary Persistence of Fetal Hemoglobin. Med Sci Monit 2019; 25:7079-7086. [PMID: 31541070 PMCID: PMC6767942 DOI: 10.12659/msm.915946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Higher fetal hemoglobin (HbF) levels can ameliorate the clinical severity of β-thalassemia. The use of integrative strategies to combine results from gene microarray expression profiling, experimental evidence, and bioinformatics helps reveal functional long noncoding RNAs (lncRNAs) in β-thalassemia and HbF induction. Material/Methods In a previous study, a microarray profiling was performed of 7 individuals with high HbF levels and 7 normal individuals. Thirteen paired samples were used for validation. lncRNA NR_001589 and uc002fcj.1 were chosen for further research. The quantitative reverse transcription-PCR was used to detect the expression levels of 2 lncRNAs. The Spearman correlation test was employed. The nuclear and cytoplasmic distribution experiment in K562 cells was used to verify the subcellular localization of 2 lncRNAs. Potential relationships among lncRNAs, predicted microRNAs (miRNAs), and target gene HBG1/2 were based on competitive endogenous RNA theory and bioinformatics analysis. Results Average expression levels of NR_001589 and uc002fcj.1 were significantly higher in the high-HbF group than in the control group. A positive correlation existed between NR_001589, uc002fcj.1, and HbF. The expression of NR_001589 was in both the cytoplasm and the nucleus, mostly (77%) in the cytoplasm. The expression of uc002fcj.1 was in both the cytoplasm and the nucleus; the cytoplasmic proportion was 43% of the total amount. A triple lncRNA-miRNA-mRNA network was established. Conclusions Novel candidate genetic factors associated with the HBG1/2 expression were identified. Further functional investigation of NR_001589 and uc002fcj.1 can help deepen the understanding of molecular mechanisms in β-thalassemia.
Collapse
Affiliation(s)
- Wenguang Jia
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| | - Siyuan Jia
- Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ping Chen
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| | - Yunyan He
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| |
Collapse
|
29
|
Ducray SP, Natarajan K, Garland GD, Turner SD, Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers (Basel) 2019; 11:cancers11081074. [PMID: 31366041 PMCID: PMC6721376 DOI: 10.3390/cancers11081074] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies.
Collapse
Affiliation(s)
- Stephen P Ducray
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | | | - Gavin D Garland
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK.
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria.
| |
Collapse
|
30
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Global MicroRNA Profiling Uncovers miR-206 as a Negative Regulator of Hematopoietic Commitment in Human Pluripotent Stem Cells. Int J Mol Sci 2019; 20:ijms20071737. [PMID: 30965622 PMCID: PMC6479521 DOI: 10.3390/ijms20071737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/08/2023] Open
Abstract
Although human pluripotent stem cells (hPSCs) can theoretically differentiate into any cell type, their ability to produce hematopoietic cells is highly variable from one cell line to another. The underlying mechanisms of this heterogeneity are not clearly understood. Here, using a whole miRNome analysis approach in hPSCs, we discovered that their hematopoietic competency was associated with the expression of several miRNAs and conversely correlated to that of miR-206 specifically. Lentiviral-based miR-206 ectopic expression in H1 hematopoietic competent embryonic stem (ES) cells markedly impaired their differentiation toward the blood lineage. Integrative bioinformatics identified a potential miR-206 target gene network which included hematopoietic master regulators RUNX1 and TAL1. This work sheds light on the critical role of miR-206 in the generation of blood cells off hPSCs. Our results pave the way for future genetic manipulation of hPSCs aimed at increasing their blood regenerative potential and designing better protocols for the generation of bona fide hPSC-derived hematopoietic stem cells.
Collapse
|
32
|
Ajami M, Sadeghian MH, Soleimani M, Keramati MR, Ajami M, Anbarlou A, Atashi A. Comparison of miRNA Profiles of Cord Blood Stem Cells in Identical and Fraternal Twins. CELL JOURNAL 2019; 21:78-85. [PMID: 30507092 PMCID: PMC6275421 DOI: 10.22074/cellj.2019.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The role of epigenetic in regulating of the gene expression profile the embryo has been documented. MicroRNAs (miRNAs) are one of these epigenetic mechanisms. Twins are valuable models in determining the relative contributions of genetics and the environment. In this study, we compared differences in the expression levels of 44 miRNAs in hematopoietic stem cells (HSCs) of identical twins to that of fraternal twins as a controls. MATERIALS AND METHODS In this experimental study, CD133+ HSCs were isolated from cord blood of identical and fraternal twins via magnetic-activated cell sorting (MACS). Variation in of gene expression levels of 44 miRNAs were evaluated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Significant differences in expression were observed in both fraternal and identical twins to varying degrees, but variations alteration in expression of the miRNAs were higher in fraternal twins. CONCLUSION Identical twins had a positive correlation in miRNA expression, while the correlation was not statistically significant in fraternal twins. Altogether, more differences in miRNA expression level in fraternal twins can be attributed to the both genetics and the intrauterine environment. The contribution of the intrauterine environment and genetics to miRNAs expression in HSCs was estimated 8 and 92%, respectively. By comparing of miRNA expression in identical and fraternal twins and identification of their target genes and biological pathways, it could be possible to estimate the effects of genetics and the environment on a number of biological pathways.
Collapse
Affiliation(s)
- Monireh Ajami
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic Address:
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | - Mohammad Reza Keramati
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoureh Ajami
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Anbarlou
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
33
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
34
|
Jia W, Liang D, Li N, Liu M, Dong Z, Li J, Dong X, Yue Y, Hu P, Yao J, Zhao Q. Zebrafish microRNA miR-210-5p inhibits primitive myelopoiesis by silencing foxj1b and slc3a2a mRNAs downstream of gata4/5/6 transcription factor genes. J Biol Chem 2018; 294:2732-2743. [PMID: 30593510 DOI: 10.1074/jbc.ra118.005079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/22/2018] [Indexed: 12/21/2022] Open
Abstract
Zebrafish gata4/5/6 genes encode transcription factors that lie on the apex of the regulatory hierarchy in primitive myelopoiesis. However, little is known about the roles of microRNAs in gata4/5/6-regulated processes. Performing RNA-Seq deep sequencing analysis of the expression changes of microRNAs in gata4/5/6-knockdown embryos, we identified miR-210-5p as a regulator of zebrafish primitive myelopoiesis. Knocking down gata4/5/6 (generating gata5/6 morphants) significantly increased miR-210-5p expression, whereas gata4/5/6 overexpression greatly reduced its expression. Consistent with inhibited primitive myelopoiesis in the gata5/6 morphants, miR-210-5p overexpression repressed primitive myelopoiesis, indicated by reduced numbers of granulocytes and macrophages. Moreover, knocking out miR-210 partially rescued the defective primitive myelopoiesis in zebrafish gata4/5/6-knockdown embryos. Furthermore, we show that the restrictive role of miR-210-5p in zebrafish primitive myelopoiesis is due to impaired differentiation of hemangioblast into myeloid progenitor cells. By comparing the set of genes with reduced expression levels in the gata5/6 morphants to the predicted target genes of miR-210-5p, we found that foxj1b and slc3a2a, encoding a forkhead box transcription factor and a solute carrier family 3 protein, respectively, are two direct downstream targets of miR-210-5p that mediate its inhibitory roles in zebrafish primitive myelopoiesis. In summary, our results reveal that miR-210-5p has an important role in the genetic network controlling zebrafish primitive myelopoiesis.
Collapse
Affiliation(s)
- Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Dong Liang
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Nan Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Meijing Liu
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Ping Hu
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Jihua Yao
- the State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061,
| |
Collapse
|
35
|
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
Collapse
Affiliation(s)
- Michelle M J Mens
- Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 2018; 46:8168-8180. [PMID: 30124921 PMCID: PMC6144802 DOI: 10.1093/nar/gky721] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells differentiate into a broad range of specialized blood cells. This process is tightly regulated and depends on transcription factors, micro-RNAs, and long non-coding RNAs. Recently, also circular RNA (circRNA) were found to regulate cellular processes. Their expression pattern and their identity is however less well defined. Here, we provide the first comprehensive analysis of circRNA expression in human hematopoietic progenitors, and in differentiated lymphoid and myeloid cells. We here show that the expression of circRNA is cell-type specific, and increases upon maturation. CircRNA splicing variants can also be cell-type specific. Furthermore, nucleated hematopoietic cells contain circRNA that have higher expression levels than the corresponding linear RNA. Enucleated blood cells, i.e. platelets and erythrocytes, were suggested to use RNA to maintain their function, respond to environmental factors or to transmit signals to other cells via microvesicles. Here we show that platelets and erythrocytes contain the highest number of circRNA of all hematopoietic cells, and that the type and numbers of circRNA changes during maturation. This cell-type specific expression pattern of circRNA in hematopoietic cells suggests a hithero unappreciated role in differentiation and cellular function.
Collapse
Affiliation(s)
- Benoit P Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Sander Engels
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
37
|
Lai K, Jia S, Yu S, Luo J, He Y. Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in β-thalassemia and hereditary persistence of fetal hemoglobin. Oncotarget 2018. [PMID: 28624809 PMCID: PMC5564818 DOI: 10.18632/oncotarget.18263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The implications of lncRNAs regarding fetal hemoglobin (HbF) induction in hemoglobin disorders remain poorly understood. In this study, microarray analysis was performed to profile lncRNAs, miRNAs and mRNAs in individuals with hereditary persistence of fetal hemoglobin (HPFH), β-thalassemia carriers with high HbF levels and healthy controls. The results show aberrant expression of 862 lncRNAs, 568 mRNAs and 63 miRNAs in the high-HbF group compared with the control group. Altered NR_001589, NR_120526, T315543, miR-486-3p, miR-19b-1-5p and miR-20a-3p expression was confirmed by quantitative reverse transcription-polymerase chain reaction, and Spearman correlation coefficients revealed significant positive correlations with HbF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed the hematopoietic cell lineage and apoptosis to be most significantly dysregulated in HbF induction. We analyzed coding genes near the lncRNAs and constructed a coding-noncoding co-expression network. Based on the results, lncRNAs likely contribute to increased HbF levels by activating expression of HBE1 and hematopoietic cell lineage-inducible molecules and by inhibiting that of apoptosis-inducible molecules. Finally, through construction of a competing endogenous RNA network, we found that 6 lncRNAs could bind competitively with miR-486-3p, resulting in increased HbF levels. Taken together, our findings provide new insights into the mechanisms of HbF induction and potentially provide new targets for the treatment of β-thalassemia major.
Collapse
Affiliation(s)
- Ketong Lai
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China.,Guangxi Key Laboratory of Thalassemia Research, Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Siyuan Jia
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Shanjuan Yu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China.,Guangxi Key Laboratory of Thalassemia Research, Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yunyan He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China.,Guangxi Key Laboratory of Thalassemia Research, Guangxi Zhuang Autonomous Region, Nanning 530021, China
| |
Collapse
|
38
|
Clinical utility of miR-143/miR-182 levels in prognosis and risk stratification specificity of BFM-treated childhood acute lymphoblastic leukemia. Ann Hematol 2018; 97:1169-1182. [PMID: 29556721 DOI: 10.1007/s00277-018-3292-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022]
Abstract
Although childhood acute lymphoblastic leukemia (ALL) is characterized by high remission rates, there are still patients who experience poor response to therapy or toxic effects due to intensive treatment. In the present study, we examined the expression profile of miR-143 and miR-182 in childhood ALL and evaluated their clinical significance for patients receiving Berlin-Frankfurt-Münster (BFM) protocol. Bone marrow specimens from 125 childhood ALL patients upon diagnosis and the end-of-induction (EoI; day 33), as well as from 64 healthy control children undergone RNA extraction, polyadenylation, and reverse transcription. Expression levels of miRNAs were quantified by qPCR analysis. Patients' cytogenetic, immunohistotype and MRD evaluation was performed according to international guidelines. Median follow-up time was 86.0 months (95% CI 74.0-98.0), while patients' mean DFS and OS intervals were 112.0 months (95% CI 104.2-119.8) and 109.2 months (95% CI 101.2-117.3), respectively. Bone marrow levels of miR-143/miR-182 were significantly decreased in childhood ALL patients at diagnosis and increased in more than 90% of patients at the EoI. Patients' survival analysis highlighted that children overexpressing miR-143/miR-182 at the EoI presented significantly higher risk for short-term relapse (log-rank test: p = 0.021; Cox regression: HR = 4.911, p = 0.038) and death (log-rank test: p = 0.028; Cox regression: HR = 4.590, p = 0.046). Finally, the evaluation of the miR-143/miR-182 EoI levels along with the established disease prognostic markers resulted to improved prediction of BFM-treated patients' survival outcome and response to therapy and additionally to superior BFM risk stratification specificity. Concluding, miR-143 and miR-182 could serve as novel prognostic molecular markers for pediatric ALL treated with BFM chemotherapy.
Collapse
|
39
|
Ultimo S, Martelli AM, Zauli G, Vitale M, Calin GA, Neri LM. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. J Cell Physiol 2018; 233:5642-5654. [DOI: 10.1002/jcp.26290] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM)University of ParmaParmaItaly
- CoreLabHospital‐University of ParmaParmaItaly
| | - George A. Calin
- Departments of Experimental Therapeutics and LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Center for RNA Interference and Non‐Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| |
Collapse
|
40
|
Nowicki M, Szemraj J, Wierzbowska A, Misiewicz M, Małachowski R, Pluta A, Grzybowska-Izydorczyk O, Robak T, Szmigielska-Kapłon A. miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 expressions in autologous hematopoietic stem cell transplantation and their impact on engraftment. Eur J Haematol 2018; 100:426-435. [PMID: 29380440 DOI: 10.1111/ejh.13036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE MicroRNAs engaged in angiogenesis and hematopoiesis can influence hematopoietic stem cells (HSCs) homing after transplantation by targeting bone marrow niche microenvironment. This study aimed to examine the kinetics of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 in autologous HSC transplantation settings. METHODS The study comprised of 51 patients with hematological malignancies (42 multiple myeloma, 9 lymphoma). Samples were taken at four time points: before conditioning, after chemotherapy but prior to autologous HSC transplantation (day 0), on day +7, and +14 days after HSCT. The miRNA levels were evaluated by the real-time PCR method. RESULTS A significant, steady decline of all tested microRNAs in the course of transplantation, as compared to the baseline, was found. The study revealed that higher levels of miRNA-15a, miRNA-16, miRNA-126, and miRNA-146a on day 0 correlated with longer time to engraftment. Additionally, a positive correlation between the levels of miRNA-15a, miRNA-146a, and miRNA-223 assessed on day +7 and the time to engraftment was observed. CONCLUSIONS In conclusion, all investigated microRNAs changed significantly in the course of transplantation. Our results suggest that the miRNAs may participate in hematopoietic recovery in the early post-transplant period and influence engraftment efficiency after HSCT.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Roman Małachowski
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Olga Grzybowska-Izydorczyk
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Anna Szmigielska-Kapłon
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
41
|
|
42
|
Hojjati MT, Azarkeivan A, Pourfathollah AA, Amirizadeh N. Comparison of MicroRNAs Mediated in Reactivation of the γ-Globin in β-Thalassemia Patients, Responders and Non-Responders to Hydroxyurea. Hemoglobin 2017; 41:110-115. [PMID: 28696844 DOI: 10.1080/03630269.2017.1290651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drug induction of Hb F seems to be an ideal therapy for patients with hemoglobin (Hb) disorders, and many efforts have been made to reveal the mechanism behind it. Thus, we examined in vivo expression of some microRNAs (miRNAs) that are thought to be involved in this process. Among β-thalassemia (β-thal) patients who were undergoing hydroxyurea (HU) therapy in the past 3 months and five healthy individuals, five responders and five non-responders, were also included in the study. Erythroid progenitors were isolated by magnetic activated cell sorting (MACS) and miRNA expression analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We showed that γ-globin, miR-210 and miR-486-3p had higher levels in the responders than the non-responders group. Moreover, miR-150 and miR-320 had higher levels in the healthy group than both non-responders and responders groups, but the expression of miR-96 did not show any significant difference between the study groups. To the best of our knowledge, this is the first study proposing that 'induction of cellular hypoxic condition by Hb F inducing agents' could be the milestone of possible mechanisms that explain why responders are able to reactivate γ-globin genes and subsequently, more production of Hb F, in response to these agents in comparison to non-responders. However, further investigations need to be performed to verify this hypothesis.
Collapse
Affiliation(s)
- Mohammad T Hojjati
- a Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| | - Azita Azarkeivan
- b Blood Transfusion Research Centre, High Institute for Research and Education, and Thalassaemia Clinic , Tehran , Iran
| | - Ali A Pourfathollah
- a Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| | - Naser Amirizadeh
- a Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| |
Collapse
|
43
|
Benmoussa A, Ly S, Shan ST, Laugier J, Boilard E, Gilbert C, Provost P. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow's milk. J Extracell Vesicles 2017; 6:1401897. [PMID: 29904572 PMCID: PMC5994974 DOI: 10.1080/20013078.2017.1401897] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small gene-regulatory RNAs that are found in various biological fluids, including milk, where they are often contained inside extracellular vesicles (EVs), like exosomes. In a previous study, we reported that commercial dairy cow's milk microRNAs resisted simulated digestion and were not exclusively associated with canonical exosomes. Here, we report the characterization of a milk EV subset that sediments at lower ultracentrifugation speeds and that contains the bulk of microRNAs. Milk EVs were isolated by differential ultracentrifugation and Iodixanol density gradient (IDG), and analysed for (1) microRNA enrichment by reverse transcription and quantitative polymerase chain reaction (RT-qPCR), and (2) EV-associated proteins by Western blot. Milk EVs were characterized further by dynamic light scattering (DLS), density measurements, fluorescent DiR and RNA labelling, high-sensitivity flow cytometry (HS-FCM), transmission electron microscopy (TEM), proteinase K and RNase A assay, and liquid chromatography tandem-mass spectrometry (LC-MS/MS). We found that the bulk of milk microRNAs (e.g., bta-miR-125b, bta-miR-148a, etc.) sediment at 12,000 g and 35,000 g. Their distribution pattern was different from that of exosome-enriched proteins, but similar to that of several proteins commonly found in milk fat globule membranes (MFGM), including xanthine dehydrogenase (XDH). These low-speed ultracentrifugation pellets contained cytoplasm-enclosing phospholipid bilayered membrane vesicles of a density comprised between 1.11 and 1.14 g/mL in Iodixanol. This milk EV subset of ~100 nm in diameter/~200 nm hydrodynamic size resisted to proteinase K digestion and protected their microRNA content from RNase A digestion. Our results support the existence of a milk EV subset pelleting at low ultracentrifugations speeds, with a protein coating comparable with MFGM, which contains and protects the bulk of milk microRNAs from degradation. This milk EV subset may represent a new EV population of interest, whose content in microRNAs and proteins supports its potential bioactivity.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL Pavilion, Quebec City, Canada
- Department of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sophia Ly
- CHUQ Research Center/CHUL Pavilion, Quebec City, Canada
- Department of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Si Ting Shan
- CHUQ Research Center/CHUL Pavilion, Quebec City, Canada
- Department of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Jonathan Laugier
- CHUQ Research Center/CHUL Pavilion, Quebec City, Canada
- Department of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eric Boilard
- CHUQ Research Center/CHUL Pavilion, Quebec City, Canada
- Department of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Caroline Gilbert
- CHUQ Research Center/CHUL Pavilion, Quebec City, Canada
- Department of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL Pavilion, Quebec City, Canada
- Department of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
44
|
Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression. Int J Mol Sci 2017; 18:ijms18102167. [PMID: 29039805 PMCID: PMC5666848 DOI: 10.3390/ijms18102167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis.
Collapse
|
45
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
46
|
Wu S, Wang J, Li F. Dysregulation of miRNA-146a contributes to the development of lupus nephritis via targeting of TRAF6. Per Med 2017; 14:131-139. [PMID: 29754557 DOI: 10.2217/pme-2016-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aim: The objective of this study was to identify the association between genotypes of miR-146a rs2910164 and expression of TRAF6 as well as the risk of lupus nephritis (LN). Results: A total of 567 systemic lupus erythematosus patients both with and without LN were included in the study. The luciferase activity of cells that carried miR-146a mimics was much lower than control and the miR-146a mRNA expression with the GG SNP was significantly overexpressed compared with that in GC and CC groups. Expressions of TRAF6 mRNA and protein with GG were markedly lower than those in GC and CC groups. Mesangial cells treated with miR-146a inhibitors displayed higher expression of TRAF6 mRNA and protein compared with scramble control, miR-146a mimics and TRAF6 siRNA groups. Conclusion: Rs2910164 is associated with the risk of LN and could function as a therapeutic target of the disease.
Collapse
Affiliation(s)
- Shupeng Wu
- Department of Rheumatism & Immunology, Tai'an Central Hospital, Taian, China
| | - Jing Wang
- Department of Geriatric Diseases, Tai'an Central Hospital, Taian, China
| | - Fang Li
- Department of Rheumatism & Immunology, Tai'an Central Hospital, Taian, China
| |
Collapse
|
47
|
Wurm AA, Tenen DG, Behre G. The Janus-faced Nature of miR-22 in Hematopoiesis: Is It an Oncogenic Tumor Suppressor or Rather a Tumor-Suppressive Oncogene? PLoS Genet 2017; 13:e1006505. [PMID: 28081132 PMCID: PMC5230742 DOI: 10.1371/journal.pgen.1006505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Daniel G. Tenen
- Cancer Science Institute, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gerhard Behre
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
- * E-mail:
| |
Collapse
|
48
|
Ramamurthy R, Hughes M, Morris V, Bolouri H, Gerbing RB, Wang YC, Loken MR, Raimondi SC, Hirsch BA, Gamis AS, Oehler VG, Alonzo TA, Meshinchi S. miR-155 expression and correlation with clinical outcome in pediatric AML: A report from Children's Oncology Group. Pediatr Blood Cancer 2016; 63:2096-2103. [PMID: 27511899 PMCID: PMC5497493 DOI: 10.1002/pbc.26157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/22/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aberrant expression of microRNA-155 (miR-155) has been implicated in acute myeloid leukemia (AML) and associated with clinical outcome. PROCEDURE We evaluated miR-155 expression in 198 children with normal karyotype AML (NK-AML) enrolled in Children's Oncology Group (COG) AML trial AAML0531 and correlated miR-155 expression levels with disease characteristics and clinical outcome. Patients were divided into quartiles (Q1-Q4) based on miR-155 expression level, and disease characteristics were then evaluated and correlated with miR-155 expression. RESULTS MiR-155 expression varied over 4-log10-fold range relative to its expression in normal marrow with a median expression level of 0.825 (range 0.043-25.630) for the entire study cohort. Increasing miR-155 expression was highly associated with the presence of FLT3/ITD mutations (P < 0.001) and high-risk disease (P < 0.001) and inversely associated with standard-risk (P = 0.008) and low-risk disease (P = 0.041). Patients with highest miR-155 expression had a complete remission (CR) rate of 46% compared with 82% in low expressers (P < 0.001) with a correspondingly lower event-free (EFS) and overall survival (OS) (P < 0.001 and P = 0.002, respectively). In a multivariate model that included molecular risk factors, high miR-155 expression remained a significant independent predictor of OS (P = 0.022) and EFS (0.019). CONCLUSIONS High miR-155 expression is an adverse prognostic factor in pediatric NK-AML patients. Specifically, high miR-155 expression not only correlates with FLT3/ITD mutation status and high-risk disease but it is also an independent predictor of worse EFS and OS.
Collapse
Affiliation(s)
| | - Maya Hughes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Seattle Children's Hospital, Seattle, Washington
| | - Valerie Morris
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hamid Bolouri
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | - Susana C. Raimondi
- Children's Oncology Group, Monrovia, California,Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Betsy A. Hirsch
- Children's Oncology Group, Monrovia, California,Division of Laboratory Medicine, University of Minnesota Medical Center-Fairview, Minneapolis, Minnesota
| | - Alan S. Gamis
- Children's Oncology Group, Monrovia, California,Children's Mercy Hospitals & Clinics, Kansas City, Missiouri
| | - Vivian G. Oehler
- University of Washington School of Medicine, Seattle, Washington,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Todd A. Alonzo
- Keck School of Medical Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Soheil Meshinchi
- University of Washington School of Medicine, Seattle, Washington. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Seattle Children's Hospital, Seattle, Washington. .,Children's Oncology Group, Monrovia, California.
| |
Collapse
|
49
|
Vathipadiekal V, Farrell JJ, Wang S, Edward HL, Shappell H, Al-Rubaish A, Al-Muhanna F, Naserullah Z, Alsuliman A, Qutub HO, Simkin I, Farrer LA, Jiang Z, Luo HY, Huang S, Mostoslavsky G, Murphy GJ, Patra PK, Chui DH, Alsultan A, Al-Ali AK, Sebastiani P, Steinberg MH. A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia. Am J Hematol 2016; 91:1118-1122. [PMID: 27501013 DOI: 10.1002/ajh.24527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/30/2022]
Abstract
Fetal hemoglobin (HbF) levels are higher in the Arab-Indian (AI) β-globin gene haplotype of sickle cell anemia compared with African-origin haplotypes. To study genetic elements that effect HbF expression in the AI haplotype we completed whole genome sequencing in 14 Saudi AI haplotype sickle hemoglobin homozygotes-seven selected for low HbF (8.2% ± 1.3%) and seven selected for high HbF (23.5% ± 2.6%). An intronic single nucleotide polymorphism (SNP) in ANTXR1, an anthrax toxin receptor (chromosome 2p13), was associated with HbF. These results were replicated in two independent Saudi AI haplotype cohorts of 120 and 139 patients, but not in 76 Saudi Benin haplotype, 894 African origin haplotype and 44 AI haplotype patients of Indian origin, suggesting that this association is effective only in the Saudi AI haplotype background. ANTXR1 variants explained 10% of the HbF variability compared with 8% for BCL11A. These two genes had independent, additive effects on HbF and together explained about 15% of HbF variability in Saudi AI sickle cell anemia patients. ANTXR1 was expressed at mRNA and protein levels in erythroid progenitors derived from induced pluripotent stem cells (iPSCs) and CD34+ cells. As CD34+ cells matured and their HbF decreased ANTXR1 expression increased; as iPSCs differentiated and their HbF increased, ANTXR1 expression decreased. Along with elements in cis to the HbF genes, ANTXR1 contributes to the variation in HbF in Saudi AI haplotype sickle cell anemia and is the first gene in trans to HBB that is associated with HbF only in carriers of the Saudi AI haplotype. Am. J. Hematol. 91:1118-1122, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vinod Vathipadiekal
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - John J. Farrell
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Shuai Wang
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Heather L. Edward
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Heather Shappell
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - A.M. Al-Rubaish
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Fahad Al-Muhanna
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Z. Naserullah
- Al-Omran Scientific Chair for Hematological Diseases; King Faisal University; Al-Ahsa Kingdom of Saudi Arabia
- Department of Pediatrics; Maternity and Child Hospital; Dammam Kingdom of Saudi Arabia
| | - A. Alsuliman
- Alomran Scientific Chair; King Faisal University, King Fahd Hospital; Hafof Al-Ahsa Kingdom of Saudi Arabia
| | - Hatem Othman Qutub
- Alomran Scientific Chair; King Faisal University; Al-Ahsa Kingdom of Saudi Arabia
| | - Irene Simkin
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Zhihua Jiang
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Hong-Yuan Luo
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Shengwen Huang
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Gustavo Mostoslavsky
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - George J. Murphy
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Pradeep K. Patra
- Department of Biochemistry; Pt. J. N. M. Medical College; Raipur Chattisgarh India
| | - David H.K. Chui
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Abdulrahman Alsultan
- Sickle Cell Disease Research Center and Department of Pediatrics; College of Medicine, King Saud University; Riyadh Saudi Arabia
| | - Amein K. Al-Ali
- Center for Research and Medical Consultation; University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Paola Sebastiani
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| |
Collapse
|
50
|
Persano S, Guevara ML, Wolfram J, Blanco E, Shen H, Ferrari M, Pompa PP. Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection. ACS OMEGA 2016; 1:448-455. [PMID: 27713932 PMCID: PMC5046170 DOI: 10.1021/acsomega.6b00109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/06/2016] [Indexed: 05/11/2023]
Abstract
We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associated with breast cancer, and attomolar sensitivity was demonstrated. The assay was validated in cell culture lysates from breast cancer cells and in serum from a mouse model of breast cancer.
Collapse
Affiliation(s)
- Stefano Persano
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
- Istituto
Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
- Università
del Salento, Via Provinciale
Monteroni, 73100 Lecce, Italy
| | - Maria L. Guevara
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
| | - Joy Wolfram
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
| | - Elvin Blanco
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
| | - Haifa Shen
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
- Department of Cell
and Developmental Biology and Department of Medicine, Weill Cornell Medicine, 1330 York Avenue, New York 10065, New York, United
States
| | - Mauro Ferrari
- Department
of Nanomedicine, Houston Methodist Research
Institute, 6670 Bertner
Avenue, Houston 77030, Texas, United States
- Department of Cell
and Developmental Biology and Department of Medicine, Weill Cornell Medicine, 1330 York Avenue, New York 10065, New York, United
States
| | - Pier Paolo Pompa
- Istituto
Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
| |
Collapse
|