1
|
Giampazolias E, Schulz O, Lim KHJ, Rogers NC, Chakravarty P, Srinivasan N, Gordon O, Cardoso A, Buck MD, Poirier EZ, Canton J, Zelenay S, Sammicheli S, Moncaut N, Varsani-Brown S, Rosewell I, Reis e Sousa C. Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell 2021; 184:4016-4031.e22. [PMID: 34081922 PMCID: PMC8320529 DOI: 10.1016/j.cell.2021.05.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.
Collapse
Affiliation(s)
- Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kok Haw Jonathan Lim
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Naren Srinivasan
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Gordon
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Enzo Z Poirier
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Johnathan Canton
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Santiago Zelenay
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefano Sammicheli
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Natalia Moncaut
- Genetic Modification Services, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sunita Varsani-Brown
- Genetic Modification Services, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian Rosewell
- Genetic Modification Services, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
2
|
Menon V, Ghaffari S. Erythroid enucleation: a gateway into a "bloody" world. Exp Hematol 2021; 95:13-22. [PMID: 33440185 PMCID: PMC8147720 DOI: 10.1016/j.exphem.2021.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Erythropoiesis is an intricate process starting in hematopoietic stem cells and leading to the daily production of 200 billion red blood cells (RBCs). Enucleation is a greatly complex and rate-limiting step during terminal maturation of mammalian RBC production involving expulsion of the nucleus from the orthochromatic erythroblasts, resulting in the formation of reticulocytes. The dynamic enucleation process involves many factors ranging from cytoskeletal proteins to transcription factors to microRNAs. Lack of optimum terminal erythroid maturation and enucleation has been an impediment to optimum RBC production ex vivo. Major efforts in the past two decades have exposed some of the mechanisms that govern the enucleation process. This review focuses in detail on mechanisms implicated in enucleation and discusses the future perspectives of this fascinating process.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
3
|
Lees JG, White D, Keating BA, Barkl-Luke ME, Makker PGS, Goldstein D, Moalem-Taylor G. Oxaliplatin-induced haematological toxicity and splenomegaly in mice. PLoS One 2020; 15:e0238164. [PMID: 32877416 PMCID: PMC7467301 DOI: 10.1371/journal.pone.0238164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Haematological toxicities occur in patients receiving oxaliplatin. Mild anaemia (grade 1-2) is a common side effect and approximately 90% of recipients develop measurable spleen enlargement. Although generally asymptomatic, oxaliplatin-induced splenomegaly is independently associated with complications following liver resection for colorectal liver metastasis and separately with poorer patient outcomes. Here, we investigated oxaliplatin-induced haematological toxicities and splenomegaly in mice treated with escalating dosages comparable to those prescribed to colorectal cancer patients. METHODS Blood was analysed, and smears assessed using Wright-Giemsa staining. Paw coloration was quantified as a marker of anaemia. Spleen weight and morphology were assessed for abnormalities relating to splenomegaly and a flow cytometry and multiplex cytokine array assessment was performed on splenocytes. The liver was assessed for sinusoidal obstructive syndrome. RESULTS Blood analysis showed dose dependent decreases in white and red blood cell counts, and significant changes in haematological indices. Front and hind paws exhibited dose dependent and dramatic discoloration indicative of anaemia. Spleen weight was significantly increased indicating splenomegaly, and red pulp tissue exhibited substantial dysplasia. Cytokines and chemokines within the spleen were significantly affected with temporal upregulation of IL-6, IL-1α and G-CSF and downregulation of IL-1β, IL-12p40, MIP-1β, IL-2 and RANTES. Flow cytometric analysis demonstrated alterations in splenocyte populations, including a significant reduction in CD45+ cells. Histological staining of the liver showed no evidence of sinusoidal obstructive syndrome but there were signs suggestive of extramedullary haematopoiesis. CONCLUSION Chronic oxaliplatin treatment dose dependently induced haematological toxicity and splenomegaly characterised by numerous physiological and morphological changes, which occurred independently of sinusoidal obstructive syndrome.
Collapse
Affiliation(s)
- Justin G. Lees
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (GM-T); (JGL)
| | - Daniel White
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brooke A. Keating
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Mallory E. Barkl-Luke
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Preet G. S. Makker
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - David Goldstein
- Prince of Wales Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (GM-T); (JGL)
| |
Collapse
|
4
|
Yeo JH, Lam YW, Fraser ST. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev 2019; 11:873-894. [PMID: 31418139 PMCID: PMC6874942 DOI: 10.1007/s12551-019-00579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Red blood cells, or erythrocytes, make up approximately a quarter of all cells in the human body with over 2 billion new erythrocytes made each day in a healthy adult human. This massive cellular production system is coupled with a set of cell biological processes unique to mammals, in particular, the elimination of all organelles, and the expulsion and destruction of the condensed erythroid nucleus. Erythrocytes from birds, reptiles, amphibians and fish possess nuclei, mitochondria and other organelles: erythrocytes from mammals lack all of these intracellular components. This review will focus on the dynamic changes that take place in developing erythroid cells that are interacting with specialized macrophages in multicellular clusters termed erythroblastic islands. Proerythroblasts enter the erythroblastic niche as large cells with active nuclei, mitochondria producing heme and energy, and attach to the central macrophage via a range of adhesion molecules. Proerythroblasts then mature into erythroblasts and, following enucleation, in reticulocytes. When reticulocytes exit the erythroblastic island, they are smaller cells, without nuclei and with few mitochondria, possess some polyribosomes and have a profoundly different surface molecule phenotype. Here, we will review, step-by-step, the biophysical mechanisms that regulate the remarkable process of erythropoiesis with a particular focus on the events taking place in the erythroblastic island niche. This is presented from the biological perspective to offer insight into the elements of red blood cell development in the erythroblastic island niche which could be further explored with biophysical modelling systems.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- School of Chemistry, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Stuart T Fraser
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia.
- University of Sydney Nano Institute, Sydney, Australia.
| |
Collapse
|
5
|
Han SY, Lee EM, Choi HS, Chun BH, Baek EJ. The effects of plasma gelsolin on human erythroblast maturation for erythrocyte production. Stem Cell Res 2018; 29:64-75. [DOI: 10.1016/j.scr.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
|
6
|
Uras IZ, Scheicher RM, Kollmann K, Glösmann M, Prchal-Murphy M, Tigan AS, Fux DA, Altamura S, Neves J, Muckenthaler MU, Bennett KL, Kubicek S, Hinds PW, von Lindern M, Sexl V. Cdk6 contributes to cytoskeletal stability in erythroid cells. Haematologica 2017; 102:995-1005. [PMID: 28255017 PMCID: PMC5451331 DOI: 10.3324/haematol.2016.159947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/22/2017] [Indexed: 12/03/2022] Open
Abstract
Mice lacking Cdk6 kinase activity suffer from mild anemia accompanied by elevated numbers of Ter119+ cells in the bone marrow. The animals show hardly any alterations in erythroid development, indicating that Cdk6 is not required for proliferation and maturation of erythroid cells. There is also no difference in stress erythropoiesis following hemolysis in vivo. However, Cdk6−/− erythrocytes have a shortened lifespan and are more sensitive to mechanical stress in vitro, suggesting differences in cytoskeletal architecture. Erythroblasts contain both Cdk4 and Cdk6, while mature erythrocytes apparently lack Cdk4 and their Cdk6 is partly associated with the cytoskeleton. We used mass spectrometry to show that Cdk6 interacts with a number of proteins involved in cytoskeleton organization. Cdk6−/− erythroblasts show impaired F-actin formation and lower levels of gelsolin, which interacts with Cdk6. We also found that Cdk6 regulates the transcription of a panel of genes involved in actin (de-)polymerization. Cdk6-deficient cells are sensitive to drugs that interfere with the cytoskeleton, suggesting that our findings are relevant to the treatment of patients with anemia – and may be relevant to cancer patients treated with the new generation of CDK6 inhibitors.
Collapse
Affiliation(s)
- Iris Z Uras
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Ruth M Scheicher
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Anca S Tigan
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Daniela A Fux
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Germany
| | - Joana Neves
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Germany
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philip W Hinds
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Tufts Cancer Center, Boston, MA, USA
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Wölwer CB, Pase LB, Russell SM, Humbert PO. Calcium Signaling Is Required for Erythroid Enucleation. PLoS One 2016; 11:e0146201. [PMID: 26731108 PMCID: PMC4701494 DOI: 10.1371/journal.pone.0146201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/13/2015] [Indexed: 12/31/2022] Open
Abstract
Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.
Collapse
Affiliation(s)
- Christina B. Wölwer
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Luke B. Pase
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah M. Russell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Immune Signaling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
8
|
Fraser ST. The modern primitives: applying new technological approaches to explore the biology of the earliest red blood cells. ISRN HEMATOLOGY 2013; 2013:568928. [PMID: 24222861 PMCID: PMC3814094 DOI: 10.1155/2013/568928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/25/2013] [Indexed: 01/01/2023]
Abstract
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.
Collapse
Affiliation(s)
- Stuart T. Fraser
- Disciplines of Physiology, Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, Medical Foundation Building K25, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|