1
|
Bottardi S, Layne T, Ramòn AC, Quansah N, Wurtele H, Affar EB, Milot E. MNDA, a PYHIN factor involved in transcriptional regulation and apoptosis control in leukocytes. Front Immunol 2024; 15:1395035. [PMID: 38680493 PMCID: PMC11045911 DOI: 10.3389/fimmu.2024.1395035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Taylorjade Layne
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Ailyn C. Ramòn
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Sorigue M. Diagnosis of erythroid dysplasia by flow cytometry: a review. Expert Rev Hematol 2023; 16:1049-1062. [PMID: 38018383 DOI: 10.1080/17474086.2023.2289534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION The diagnosis of myelodysplastic syndrome (MDS) is complex. Flow cytometric analysis of the myelomonocytic compartment can be helpful, but it is highly subjective and reproducibility by non-specialized groups is unclear. Analysis of the erythroid lineage by flow cytometry is emerging as potentially more reproducible and easier to conduct, while keeping a high diagnostic performance. AREAS COVERED We review the evidence in this area, including 1) the use of well-established markers - CD71 and CD36 - and other less well-established markers and parameters; 2) the use of flow cytometric scores for the erythroid lineage; and 3) additional aspects, including the emergence of computational tools and the roles of flow cytometry beyond diagnosis. Finally, we discuss the limitations with the current evidence, including 1) the impact of the sample processing protocol and reagents on the results, 2) the lack of a standard gating strategy, and 3) conceptualization and design issues in the available publications. EXPERT OPINION We end by offering our recommendations for the current use - and our personal take on the value - of the analysis of erythroid lineage by flow cytometry.
Collapse
Affiliation(s)
- Marc Sorigue
- Medical Department, Trialing Health, Barcelona, Spain
| |
Collapse
|
3
|
van de Loosdrecht AA, Kern W, Porwit A, Valent P, Kordasti S, Cremers E, Alhan C, Duetz C, Dunlop A, Hobo W, Preijers F, Wagner-Ballon O, Chapuis N, Fontenay M, Bettelheim P, Eidenschink-Brodersen L, Font P, Johansson U, Loken MR, Te Marvelde JG, Matarraz S, Ogata K, Oelschlaegel U, Orfao A, Psarra K, Subirá D, Wells DA, Béné MC, Della Porta MG, Burbury K, Bellos F, van der Velden VHJ, Westers TM, Saft L, Ireland R. Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European LeukemiaNet International MDS-Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:77-86. [PMID: 34897979 DOI: 10.1002/cyto.b.22044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
This article discusses the rationale for inclusion of flow cytometry (FCM) in the diagnostic investigation and evaluation of cytopenias of uncertain origin and suspected myelodysplastic syndromes (MDS) by the European LeukemiaNet international MDS Flow Working Group (ELN iMDS Flow WG). The WHO 2016 classification recognizes that FCM contributes to the diagnosis of MDS and may be useful for prognostication, prediction, and evaluation of response to therapy and follow-up of MDS patients.
Collapse
Affiliation(s)
- Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Anna Porwit
- Department of Clinical Sciences, Division of Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Eline Cremers
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Université Paris-Est Créteil, Inserm U955, Créteil, France
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon - IiSGM, Madrid, Spain
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Jeroen G Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus TU Dresden, Dresden, Germany
| | - Alberto Orfao
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Dolores Subirá
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | | - Marie C Béné
- Hematology Biology, Nantes University Hospital and CRCINA, Nantes, France
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne, Australia
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Leonie Saft
- Department of Clinical Pathology, Division of Hematopathology, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Kern W, Westers TM, Bellos F, Bene MC, Bettelheim P, Brodersen LE, Burbury K, Chu SC, Cullen M, Porta MD, Dunlop AS, Johansson U, Matarraz S, Oelschlaegel U, Ogata K, Porwit A, Preijers F, Psarra K, Saft L, Subirá D, Weiß E, van der Velden VHJ, van de Loosdrecht A. Multicenter prospective evaluation of diagnostic potential of flow cytometric aberrancies in myelodysplastic syndromes by the ELN iMDS flow working group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:51-65. [PMID: 36416672 DOI: 10.1002/cyto.b.22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) represent a diagnostic challenge. This prospective multicenter study was conducted to evaluate pre-defined flow cytometric markers in the diagnostic work-up of MDS and chronic myelomonocytic leukemia (CMML). METHODS Thousand six hundred and eighty-two patients with suspected MDS/CMML were analyzed by both cytomorphology according to WHO 2016 criteria and flow cytometry according to ELN recommendations. Flow cytometric readout was categorized 'non-MDS' (i.e. no signs of MDS/CMML and limited signs of MDS/CMML) and 'in agreement with MDS' (i.e., in agreement with MDS/CMML). RESULTS Flow cytometric readout categorized 60% of patients in agreement with MDS, 28% showed limited signs of MDS and 12% had no signs of MDS. In 81% of cases flow cytometric readouts and cytomorphologic diagnosis correlated. For high-risk MDS, the level of concordance was 92%. A total of 17 immunophenotypic aberrancies were found independently related to MDS/CMML in ≥1 of the subgroups of low-risk MDS, high-risk MDS, CMML. A cut-off of ≥3 of these aberrancies resulted in 80% agreement with cytomorphology (20% cases concordantly negative, 60% positive). Moreover, >3% myeloid progenitor cells were significantly associated with MDS (286/293 such cases, 98%). CONCLUSION Data from this prospective multicenter study led to recognition of 17 immunophenotypic markers allowing to identify cases 'in agreement with MDS'. Moreover, data emphasizes the clinical utility of immunophenotyping in MDS diagnostics, given the high concordance between cytomorphology and the flow cytometric readout. Results from the current study challenge the application of the cytomorphologically defined cut-off of 5% blasts for flow cytometry and rather suggest a 3% cut-off for the latter.
Collapse
Affiliation(s)
| | - Theresia M Westers
- Department of Hematology, Amsterdam University Medical Centers, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | - Peter Bettelheim
- Department of Hematology, Elisabethinen Hospital, Linz, Upper Austria, Austria
| | | | - Kate Burbury
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Matthew Cullen
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Matteo Della Porta
- Department of Biomedical Sciences, IRCCS Humanitas Research Hospital, Humanitas University, Milan, Italy
| | | | - Ulrika Johansson
- Laboratory Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sergio Matarraz
- Cytometry Service (NUCLEUS), Department of Medicine and IBSAL, Cancer Research Center (IBMCC, University of Salamanca-CSIC), Salamanca, Spain and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital of Technical University Dresden, Dresden, Germany
| | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Anna Porwit
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frank Preijers
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Nijmegen, The Netherlands
| | - Katherina Psarra
- Immunology Histocompatibility Department, Evangelismos Hospital, Athens, Greece
| | - Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Dolores Subirá
- Department of Medical Immunology, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Arjan van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Centers, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Dhingra G, Dass J, Arya V, Gupta N, Saraf A, Langer S, Aggarwal S, Kotwal J, Bhargava M. Evaluation of multiparametric flow cytometry in diagnosis & prognosis of myelodysplastic syndrome in India. Indian J Med Res 2020; 152:254-262. [PMID: 33107485 PMCID: PMC7881827 DOI: 10.4103/ijmr.ijmr_924_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background & objectives: Diagnosis of myelodysplastic syndromes (MDS) is subjective in low-grade cases with <5 per cent blasts or <15 per cent ring sideroblasts. Flow cytometry (FCM) has been used to diagnose MDS; but, it still has only an adjunctive role. This study was conducted to evaluate the role of FCM to diagnose MDS and correlate the number of aberrancies with revised international prognostic scoring system (R-IPSS). Methods: This study included 44 consecutive clinically suspected cases of MDS with refractory cytopenia(s) and 10 controls. Patients were divided into two groups: (i) proven MDS cases (n=26), and (ii) suspected MDS (n=18). Ogata quantitative approach, pattern analysis and aberrant antigen expression were studied. Results: Ogata score ≥2 correctly diagnosed 80.7 per cent (21/26) while aberrant antigen and pattern analysis with flow score of ≥3 could diagnose 92.3 per cent (24/26) patients with proven MDS. Combination of both with flow score ≥3 could diagnose 100 per cent patients. Eight patients in suspected MDS group with persistent cytopenia on follow up were labelled as probable MDS. Ogata score ≥2 was present in 5 of 8 and pattern analysis score ≥3 was present in six probable MDS patients. Combination of both with flow score ≥3 was present in seven of eight patients. Spearman's correlation between Ogata score and R-IPSS, pattern analysis and R-IPSS and combination of both scores and R-IPSS showed significant positive correlation in proven MDS as well as when proven and probable MDS patients were combined. Interpretation & conclusions: Our results showed that combined Ogata approach and pattern analysis, demonstration of ≥3 aberrancies in >1 cell compartment could diagnose most MDS patients. Patients with high flow scores had high R-IPSS scores. Patient with flow score ≥3 and borderline cytomorphology should be observed closely for the development of MDS.
Collapse
Affiliation(s)
- Gaurav Dhingra
- Department of Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | - Jasmita Dass
- Department of Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | - Vandana Arya
- Department of Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | - Nitin Gupta
- Department of Clinical Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | - Amrita Saraf
- Department of Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | - Sabina Langer
- Department of Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | - Shyam Aggarwal
- Department of Medical Oncology, Sir Ganga Ram Hospital, New Delhi, India
| | - Jyoti Kotwal
- Department of Hematology, Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
6
|
Frisanco Oliveira A, Tansini A, Toledo TR, Balceiro R, Onofre Vidal D, de Martino Lee ML, Lorand-Metze I, Lopes LF. Immunophenotypic characteristics of juvenile myelomonocytic leukaemia and their relation with the molecular subgroups of the disease. Br J Haematol 2020; 192:129-136. [PMID: 32966606 DOI: 10.1111/bjh.17098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
The diagnosis of juvenile myelomonocytic leukaemia (JMML) is based on clinical, laboratory and molecular features but immunophenotyping [multiparametric flow cytometry (MFC)] has not been used routinely. In the present study, we describe the flow cytometric features at diagnosis with special attention to the distribution of monocytic subsets and the relation between MFC and molecular subgroups. MFC was performed with an eight-colour platform based on Euroflow. We studied 33 JMML cases. CD34+ /CD117+ /CD13+ cells >2% was found in 25 cases, and 51·5% presented an aberrant expression of CD7. A decrease of CD34+ /CD19+ /CD10+ cells was seen in eight cases and in four they were absent. The granulocytic population had a decreased side scatter in 29 cases. Bone marrow monocytic precursors were increased in 28 patients, with a decrease in classical monocytes (median 80·7%) and increase in CD16+ (intermediate and non-classical). A more pronounced increase in myeloid CD34+ cells was seen in patients with Neurofibromatosis type 1 (NF1) and tyrosine-protein phosphatase non-receptor type 11 (PTPN11), with aberrant CD7 expression in four of six and 10/12 patients respectively. Thus, JMML shows an immunophenotypic profile similar to myelodysplastic syndromes, and a different monocyte subset distribution when compared with chronic MML. MFC proved to be an important diagnostic tool that can help in differential diagnosis with other clonal diseases with monocytosis.
Collapse
Affiliation(s)
- Anita Frisanco Oliveira
- Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil.,Brazilian Co-operative Study Group for Paediatric Myelodysplastic Syndrome (GCB-SMD-PED) - Morphology and Flow Cytometry Committee, Barretos, São Paulo, Brazil
| | - Aline Tansini
- Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil.,GCB-SMD-PED - Flow cytometry Committee, Barretos, São Paulo, Brazil
| | - Thais Regina Toledo
- Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil.,GCB-SMD-PED - Flow cytometry Committee, Barretos, São Paulo, Brazil
| | - Rafael Balceiro
- Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil.,Brazilian Co-operative Study Group for Paediatric Myelodysplastic Syndrome (GCB-SMD-PED) - Morphology and Flow Cytometry Committee, Barretos, São Paulo, Brazil
| | - Daniel Onofre Vidal
- GCB-SMD-PED - Molecular Biology and Genetic Committee, Barretos, São Paulo, Brazil
| | - Maria Lucia de Martino Lee
- Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil.,GCB-SMD-PED - Morphology and Myeloproliferative Diseases Committee, Barretos, São Paulo, Brazil
| | - Irene Lorand-Metze
- Brazilian Co-operative Study Group for Paediatric Myelodysplastic Syndrome (GCB-SMD-PED) - Morphology and Flow Cytometry Committee, Barretos, São Paulo, Brazil.,GCB-SMD-PED - Chairman, Barretos, São Paulo, Brazil
| | - Luiz Fernando Lopes
- Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil.,GCB-SMD-PED - Chairman, Barretos, São Paulo, Brazil
| |
Collapse
|
7
|
Menssen AJ, Walter MJ. Genetics of progression from MDS to secondary leukemia. Blood 2020; 136:50-60. [PMID: 32430504 PMCID: PMC7332895 DOI: 10.1182/blood.2019000942] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the genetics of acute myeloid leukemia (AML) development from myelodysplastic syndrome (MDS) has advanced significantly as a result of next-generation sequencing technology. Although differences in cell biology and maturation exist between MDS and AML secondary to MDS, these 2 diseases are genetically related. MDS and secondary AML cells harbor mutations in many of the same genes and functional categories, including chromatin modification, DNA methylation, RNA splicing, cohesin complex, transcription factors, cell signaling, and DNA damage, confirming that they are a disease continuum. Differences in the frequency of mutated genes in MDS and secondary AML indicate that the order of mutation acquisition is not random during progression. In almost every case, disease progression is associated with clonal evolution, typically defined by the expansion or emergence of a subclone with a unique set of mutations. Monitoring tumor burden and clonal evolution using sequencing provides advantages over using the blast count, which underestimates tumor burden, and could allow for early detection of disease progression prior to clinical deterioration. In this review, we outline advances in the study of MDS to secondary AML progression, with a focus on the genetics of progression, and discuss the advantages of incorporating molecular genetic data in the diagnosis, classification, and monitoring of MDS to secondary AML progression. Because sequencing is becoming routine in the clinic, ongoing research is needed to define the optimal assay to use in different clinical situations and how the data can be used to improve outcomes for patients with MDS and secondary AML.
Collapse
Affiliation(s)
- Andrew J Menssen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
- Siteman Cancer Center, Washington University, St. Louis, MO
| |
Collapse
|
8
|
Enumeration of CD34+ blasts by immunohistochemistry in bone marrow biopsies from MDS patients may have significant impact on final WHO classification. J Hematop 2020. [DOI: 10.1007/s12308-020-00394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractThe percentage of blasts cells in the bone marrow (BM) of MDS patients is one of the key parameters for MDS classification and for the differential diagnosis with acute myeloid leukemia (AML). Currently, the gold standard to determine the blast percentage is conventional cytomorphology. To assess the possible impact of blast cell enumeration in BM biopsies from MDS patients on the final WHO classification using CD34 immunohistochemistry (IHC) a total of 156 BM samples from MDS and MDS-AML patients were studied and compared to blast counts by cytomorphology (CM). Eighty-nine BM aspirates were also studied by flow cytometry (FCM). Percentages of CD34+ blasts by IHC were determined blindly by two hematopathologists. Automated CD34-cell count was performed in 25 cases. Good overall agreement was found for CM and FCM with respect to critical blast thresholds (5%, 10%, 20%) (p < 0.05). However, in 17% of patients, CD34+ blast counts by IHC were higher as compared to CM with possible impact on MDS subclassification. In 7 of 21 AML patients, diagnosis was established on BM histology, while the blast percentage by CM was below the AML threshold. The assessment of CD34+ cells by IHC showed high interobserver agreement (Spearman R 0.95, p < 0.01), while automated CD34 counts were not optimal due to interference with other cellular and stromal elements. BM histology including CD34 IHC improves the diagnostic accuracy in MDS and AML. The quantification of blast cells should be based on the integration of all three methods for reliable disease classification and risk assessment.
Collapse
|
9
|
Alayed K, Meyerson JB, Osei ES, Blidaru G, Schlegelmilch J, Johnson M, Meyerson HJ. CD177 Enhances the Detection of Myelodysplastic Syndrome by Flow Cytometry. Am J Clin Pathol 2020; 153:554-565. [PMID: 32011681 DOI: 10.1093/ajcp/aqz196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Previously we demonstrated that a decreased percentage of CD177-positive granulocytes detected by flow cytometry (FCM) was associated with myelodysplastic syndrome (MDS). Here we expand on those findings to more rigorously evaluate the utility of CD177 for the detection of MDS. METHODS Two hundred patient samples (100 MDS and 100 controls) were evaluated for granulocyte expression of CD177 and 11 other flow cytometric parameters known to be associated with MDS. RESULTS We show that CD177, as a single analyte, is highly correlated with MDS with a receiver operating characteristic area under curve value of 0.8. CD177 expression below 30% demonstrated a sensitivity of 51% and a specificity of 94% for detecting MDS with a positive predictive value of 89.5%. In multivariate analysis of 12 MDS-associated FCM metrics, CD177 and the Ogata parameters were significant indicators of MDS, and CD177 increased sensitivity of the Ogata score by 16% (63%-79%) for predicting MDS. Finally, diagnostic criteria incorporating these parameters with a 1% blast cutoff level and CD177 resulted in a sensitivity of 90% and specificity of 91% for detecting MDS. CONCLUSIONS The findings indicate CD177 is a useful FCM marker for MDS.
Collapse
Affiliation(s)
- Khaled Alayed
- Department of Pathology, King Saud University, Riyadh, Saudi Arabia
| | | | - Ebenezer S Osei
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Georgeta Blidaru
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | | | - Michael Johnson
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Howard J Meyerson
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
10
|
Mannelli F, Gesullo F, Rotunno G, Pacilli A, Bencini S, Annunziato F, Zanotti R, Scaffidi L, Giona F, Santopietro M, Grifoni F, Pieri L, Guglielmelli P, Vannucchi AM. Myelodysplasia as assessed by multiparameter flow cytometry refines prognostic stratification provided by genotypic risk in systemic mastocytosis. Am J Hematol 2019; 94:845-852. [PMID: 31056768 DOI: 10.1002/ajh.25506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Systemic mastocytosis (SM) is characterized by extreme heterogeneity of manifestations and prognosis. Several disease-related biomarkers, including clinical, hematological and molecular variables, have been correlated with prognosis. Although relevant, the mutation profile closely reflects the WHO classification that has per se prognostic value. High-risk mutations (HRM) are largely confined to advanced forms, and thus fail in providing information regarding progression and outcome in the not-advanced variants. In this work, we studied hematopoietic cells by multi-parameter flow cytometry (MFC) in order to highlight dysplastic traits that might provide insights into outcome. A score previously validated for myelodysplastic syndromes, with high reproducibility in standard diagnostics, was used. The application of an MFC score to a cohort of 71 SM cases, concurrently genotyped for configuring a HRM category, resulted in the identification of two separate patients' categories (MFC+ and MFC-) characterized by significantly different clinical and laboratory features at presentation. The extent of dysplasia by MFC tended to parallel WHO-category and genotype-related stratification. MFC+ patients had shorter survival compared to MFC- ones, for whom the incidence of progression and/or death was virtually null. Of note, MFC score remained prognostically informative in unadvanced subsets. Furthermore, the integration of MFC and HRM was an independent predictor for outcome, also overcoming WHO-categories in multivariate analysis for EFS. Our results support the use of MFC analysis in the evaluation of patients with SM, alone and in combination with HRM, for refinement of prognosis assessment.
Collapse
Affiliation(s)
- Francesco Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence CenterUniversità degli Studi Firenze Italy
| | - Francesca Gesullo
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence CenterUniversità degli Studi Firenze Italy
| | - Giada Rotunno
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence CenterUniversità degli Studi Firenze Italy
| | - Annalisa Pacilli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence CenterUniversità degli Studi Firenze Italy
| | - Sara Bencini
- Centro Diagnostico di Citofluorimetria e Immunoterapia, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaDenothe Excellence Center Firenze Italy
| | - Francesco Annunziato
- Centro Diagnostico di Citofluorimetria e Immunoterapia, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e ClinicaDenothe Excellence Center Firenze Italy
| | - Roberta Zanotti
- Multidisplinary Outpatients Clinic for Mastocytosis (GISM)Azienda Ospedaliera Universitaria Integrata of Verona Verona Italy
- Department of Medicine, Haematology UnitAzienda Ospedaliera Universitaria Integrata of Verona Verona Italy
| | - Luigi Scaffidi
- Multidisplinary Outpatients Clinic for Mastocytosis (GISM)Azienda Ospedaliera Universitaria Integrata of Verona Verona Italy
- Department of Medicine, Haematology UnitAzienda Ospedaliera Universitaria Integrata of Verona Verona Italy
| | - Fiorina Giona
- EmatologiaDipartimento di Medicina Traslazionale e di Precisione, Università Sapienza Roma Italy
| | - Michelina Santopietro
- EmatologiaDipartimento di Medicina Traslazionale e di Precisione, Università Sapienza Roma Italy
| | - Federica Grifoni
- UOC EmatologiaFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Milano Italy
| | - Lisa Pieri
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence CenterUniversità degli Studi Firenze Italy
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence CenterUniversità degli Studi Firenze Italy
| | - Alessandro M. Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence CenterUniversità degli Studi Firenze Italy
| |
Collapse
|
11
|
Sanz-De Pedro M, Wang W, Kanagal-Shamanna R, Khoury JD. Myelodysplastic Syndromes: Laboratory Workup in the Context of New Concepts and Classification Criteria. Curr Hematol Malig Rep 2019; 13:467-476. [PMID: 30338456 DOI: 10.1007/s11899-018-0483-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review provides a comprehensive update of myelodysplastic syndromes (MDS) and their diagnostic criteria, with emphasis on novel concepts and state-of-the-art laboratory workup, including multiparameter/multicolor flow cytometry, chromosome analysis, and mutation profiling. RECENT FINDINGS Recent advances in genetics and molecular technologies have provided unprecedented insights into the pathogenic mechanisms and genomic landscape of MDS and its precursor lesions. This has resulted in revised diagnostic criteria in the World Health Organization (WHO) classification and proposed new terminology for early lesions such as clonal hematopoiesis of indeterminate potential (CHIP). Against this landscape, a thorough understanding of the advantages and limitations of laboratory tests employed in the evaluation of patients with cytopenia has gained unprecedented importance. Healthcare providers involved in the care of patients with hematologic diseases should be aware of the intricacies of laboratory workup of such patients, particularly in view of the novel concepts and classification criteria of MDS.
Collapse
Affiliation(s)
- Maria Sanz-De Pedro
- Department of Laboratory Medicine, La Paz University Hospital, Madrid, Spain
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Duetz C, Westers TM, van de Loosdrecht AA. Clinical Implication of Multi-Parameter Flow Cytometry in Myelodysplastic Syndromes. Pathobiology 2018; 86:14-23. [PMID: 30227408 PMCID: PMC6482988 DOI: 10.1159/000490727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a challenging group of diseases for clinicians and researchers, as both disease course and pathobiology are highly heterogeneous. In (suspected) MDS patients, multi-parameter flow cytometry can aid in establishing diagnosis, risk stratification and choice of therapy. This review addresses the developments and future directions of multi-parameter flow cytometry scores in MDS. Additionally, we propose an integrated diagnostic algorithm for suspected MDS.
Collapse
Affiliation(s)
- Carolien Duetz
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Aires A, Teixeira MDA, Lau C, Moreira C, Spínola A, Mota A, Freitas I, Coutinho J, Lima M. A pilot study on the usefulness of peripheral blood flow cytometry for the diagnosis of lower risk myelodysplastic syndromes: the "MDS thermometer". BMC HEMATOLOGY 2018; 18:6. [PMID: 29564138 PMCID: PMC5850915 DOI: 10.1186/s12878-018-0101-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Abstract
Background Immunophenotypic analysis of the bone marrow (BM) cells has proven to be helpful in the diagnosis of Myelodysplastic Syndromes (MDS). However, the usefulness of flow cytometry (FCM) for the detection of myelodysplasia in the peripheral blood (PB) still needs to be investigated. The aim of this pilot study was to evaluate the value of FCM-based PB neutrophil and monocyte immunophenotyping for the diagnosis of lower risk MDS (LR-MDS). Methods We evaluated by 8-color FCM the expression of multiple cell surface molecules (CD10, CD11b, CD11c, CD13, CD14, CD15, CD16, CD34, CD45, CD56, CD64 and HLA-DR) in PB neutrophils and monocytes from a series of 14 adult LR-MDS patients versus 14 normal individuals. Results Peripheral blood neutrophils from patients with LR-MDS frequently had low forward scatter (FSC) and side scatter (SSC) values and low levels of CD11b, CD11c, CD10, CD16, CD13 and CD45 expression, in that order, as compared to normal neutrophils. In addition, patients with LR-MDS commonly display a higher fraction of CD14+CD56+ and a lower fraction of CD14+CD16+ monocytes in the PB. Based on these results, we proposed an immunophenotyping score based on which PB samples from patients with LR-MDS could be distinguished from normal PB samples with a sensitivity 93% and a specificity of 100%. In addition, we used this score to construct the MDS Thermometer, a screening tool for detection and monitoring of MDS in the PB in clinical practice. Conclusions Peripheral blood neutrophil and monocyte immunophenotyping provide useful information for the diagnosis of LR-MDS, as a complement to cytomorphology. If validated by subsequent studies in larger series of MDS patients and extended to non-MDS patients with cytopenias, our findings may improve the diagnostic assessment and avoid invasive procedures in selected groups of MDS patients. Electronic supplementary material The online version of this article (10.1186/s12878-018-0101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Aires
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal.,3Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS/UP), Porto, Portugal
| | - Maria Dos Anjos Teixeira
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal.,4Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal.,Laboratório de Citometria, Serviço de Hematologia, Hospital de Santo António, Centro Hospitalar do Porto, instalações do Ex-CICAP, Rua D. Manuel II, s/n, 4099-001 Porto, Portugal
| | - Catarina Lau
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal.,4Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal.,Laboratório de Citometria, Serviço de Hematologia, Hospital de Santo António, Centro Hospitalar do Porto, instalações do Ex-CICAP, Rua D. Manuel II, s/n, 4099-001 Porto, Portugal
| | - Cláudia Moreira
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Ana Spínola
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Alexandra Mota
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal.,3Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS/UP), Porto, Portugal
| | - Inês Freitas
- 2Department of Pathology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal.,4Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Jorge Coutinho
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Margarida Lima
- 1Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal.,3Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS/UP), Porto, Portugal.,4Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal.,Laboratório de Citometria, Serviço de Hematologia, Hospital de Santo António, Centro Hospitalar do Porto, instalações do Ex-CICAP, Rua D. Manuel II, s/n, 4099-001 Porto, Portugal
| |
Collapse
|
14
|
Shi M, Nguyen P, Jevremovic D. Flow Cytometric Assessment of Chronic Myeloid Neoplasms. Clin Lab Med 2017; 37:803-819. [DOI: 10.1016/j.cll.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kárai B, Bedekovics J, Miltényi Z, Gergely L, Szerafin L, Ujfalusi A, Kappelmayer J, Hevessy Z. A single-tube flow cytometric procedure for enhancing the diagnosis and prognostic classification of patients with myelodysplastic syndromes. Int J Lab Hematol 2017. [DOI: 10.1111/ijlh.12700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- B. Kárai
- Department of Laboratory Medicine; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - J. Bedekovics
- Department of Pathology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - Zs. Miltényi
- Department of Medicine; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - L. Gergely
- Department of Medicine; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - L. Szerafin
- Department of Hematology; Jósa András County Hospital; Nyíregyháza Hungary
| | - A. Ujfalusi
- Department of Laboratory Medicine; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - J. Kappelmayer
- Department of Laboratory Medicine; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - Zs. Hevessy
- Department of Laboratory Medicine; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| |
Collapse
|
16
|
Westers TM, Cremers EMP, Oelschlaegel U, Johansson U, Bettelheim P, Matarraz S, Orfao A, Moshaver B, Brodersen LE, Loken MR, Wells DA, Subirá D, Cullen M, Te Marvelde JG, van der Velden VHJ, Preijers FWMB, Chu SC, Feuillard J, Guérin E, Psarra K, Porwit A, Saft L, Ireland R, Milne T, Béné MC, Witte BI, Della Porta MG, Kern W, van de Loosdrecht AA. Immunophenotypic analysis of erythroid dysplasia in myelodysplastic syndromes. A report from the IMDSFlow working group. Haematologica 2016; 102:308-319. [PMID: 27758818 DOI: 10.3324/haematol.2016.147835] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Current recommendations for diagnosing myelodysplastic syndromes endorse flow cytometry as an informative tool. Most flow cytometry protocols focus on the analysis of progenitor cells and the evaluation of the maturing myelomonocytic lineage. However, one of the most frequently observed features of myelodysplastic syndromes is anemia, which may be associated with dyserythropoiesis. Therefore, analysis of changes in flow cytometry features of nucleated erythroid cells may complement current flow cytometry tools. The multicenter study within the IMDSFlow Working Group, reported herein, focused on defining flow cytometry parameters that enable discrimination of dyserythropoiesis associated with myelodysplastic syndromes from non-clonal cytopenias. Data from a learning cohort were compared between myelodysplasia and controls, and results were validated in a separate cohort. The learning cohort comprised 245 myelodysplasia cases, 290 pathological, and 142 normal controls; the validation cohort comprised 129 myelodysplasia cases, 153 pathological, and 49 normal controls. Multivariate logistic regression analysis performed in the learning cohort revealed that analysis of expression of CD36 and CD71 (expressed as coefficient of variation), in combination with CD71 fluorescence intensity and the percentage of CD117+ erythroid progenitors provided the best discrimination between myelodysplastic syndromes and non-clonal cytopenias (specificity 90%; 95% confidence interval: 84-94%). The high specificity of this marker set was confirmed in the validation cohort (92%; 95% confidence interval: 86-97%). This erythroid flow cytometry marker combination may improve the evaluation of cytopenic cases with suspected myelodysplasia, particularly when combined with flow cytometry assessment of the myelomonocytic lineage.
Collapse
Affiliation(s)
- Theresia M Westers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Eline M P Cremers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Uta Oelschlaegel
- Department of Internal Medicine, Universitätsklinikum "Carl-Gustav-Carus", Dresden, Germany
| | - Ulrika Johansson
- Department of Haematology, University Hospitals NHS Foundation Trust, Bristol, UK
| | | | - Sergio Matarraz
- Servicio Central de Citometría (NUCLEUS) and Department of Medicine, Centro de Investigación del Cáncer, Instituto de Biologia Celular y Molecular del Cáncer, (CSIC/USAL and IBSAL), Universidad de Salamanca, Spain
| | - Alberto Orfao
- Servicio Central de Citometría (NUCLEUS) and Department of Medicine, Centro de Investigación del Cáncer, Instituto de Biologia Celular y Molecular del Cáncer, (CSIC/USAL and IBSAL), Universidad de Salamanca, Spain
| | | | | | | | | | - Dolores Subirá
- Department of Hematology, Hospital Universitario de Guadalajara, Spain
| | | | - Jeroen G Te Marvelde
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Frank W M B Preijers
- Department of Laboratory Medicine - Laboratory for Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Jean Feuillard
- Laboratoire d'Hématologie, CHU Dupuytren, Limoges, France
| | - Estelle Guérin
- Laboratoire d'Hématologie, CHU Dupuytren, Limoges, France
| | - Katherina Psarra
- Department of Immunology-Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Anna Porwit
- Department of Pathobiology and Laboratory Medicine, University of Toronto, University Health Network, Toronto General Hospital, ON, Canada.,Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Leonie Saft
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Marie C Béné
- Laboratoire d'Hématologie, CHU de Nantes, France
| | - Birgit I Witte
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Matteo G Della Porta
- Department of Hematology and Oncology, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Italy
| | | | | | | |
Collapse
|
17
|
The World Health Organization revisits the classification of the myelodysplastic syndromes: Improvement and insufficiencies. Blood Cells Mol Dis 2016; 60:12-5. [DOI: 10.1016/j.bcmd.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022]
|
18
|
Aanei CM, Picot T, Tavernier E, Guyotat D, Campos Catafal L. Diagnostic Utility of Flow Cytometry in Myelodysplastic Syndromes. Front Oncol 2016; 6:161. [PMID: 27446807 PMCID: PMC4921489 DOI: 10.3389/fonc.2016.00161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are clonal disorders of hematopoiesis that exhibit heterogeneous clinical presentation and morphological findings, which complicates diagnosis, especially in early stages. Recently, refined definitions and standards in the diagnosis and treatment of MDS were proposed, but numerous questions remain. Multiparameter flow cytometry (MFC) is a helpful tool for the diagnostic workup of patients with suspected MDS, and various scores using MFC data have been developed. However, none of these methods have achieved the sensitivity that is required for a reassuring diagnosis in the absence of morphological abnormalities. One reason may be that each score evaluates one or two lineages without offering a broad view of the dysplastic process. The combination of two scores (e.g., Ogata and Red Score) improved the sensitivity from 50-60 to 88%, but the positive (PPV) and negative predictive values (NPV) must be improved. There are prominent differences between study groups when these scores are tested. Further research is needed to maximize the sensitivity of flow cytometric analysis in MDS. This review focuses on the application of flow cytometry for MDS diagnosis and discusses the advantages and limitations of different approaches.
Collapse
Affiliation(s)
- Carmen Mariana Aanei
- CNRS UMR5239, Université de Lyon, Saint-Etienne, France
- Laboratoire d’Hématologie, CHU de Saint-Etienne, Saint-Etienne, France
| | - Tiphanie Picot
- CNRS UMR5239, Université de Lyon, Saint-Etienne, France
- Laboratoire d’Hématologie, CHU de Saint-Etienne, Saint-Etienne, France
| | - Emmanuelle Tavernier
- CNRS UMR5239, Université de Lyon, Saint-Etienne, France
- Institut de Cancérologie Lucien Neuwirth, Saint Priest en Jarez, France
| | - Denis Guyotat
- CNRS UMR5239, Université de Lyon, Saint-Etienne, France
- Institut de Cancérologie Lucien Neuwirth, Saint Priest en Jarez, France
| | - Lydia Campos Catafal
- CNRS UMR5239, Université de Lyon, Saint-Etienne, France
- Laboratoire d’Hématologie, CHU de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
19
|
Gangat N, Patnaik MM, Tefferi A. Myelodysplastic syndromes: Contemporary review and how we treat. Am J Hematol 2016; 91:76-89. [PMID: 26769228 DOI: 10.1002/ajh.24253] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal stem cell disorders with an inherent tendency for leukemic transformation. Diagnosis is currently based on the presence of peripheral blood cytopenias, peripheral blood and bone marrow dysplasia/blasts, and clonal cytogenetic abnormalities. With the advent of next generation sequencing, recurrent somatic mutations in genes involved in epigenetic regulation (TET2, ASXL1, EZH2, DNMT3A, IDH1/2), RNA splicing (SF3B1, SRSF2, U2AF1, ZRSR2), DNA damage response (TP53), transcriptional regulation (RUNX1, BCOR, ETV6) and signal transduction (CBL, NRAS, JAK2) have been identified in MDS. Conventional prognostication is by the revised International prognostic scoring system (IPSS-R) with additional adverse prognosis conferred by presence of ASXL1, EZH2, or TP53 mutations. Currently Food and Drug administration (FDA)-approved drugs for the treatment of MDS are not curative and their effect on survival is limited; they include the hypomethylating agents (HMA) azacitidine and decitabine and lenalidomide for MDS with isolated del(5q). To date, allogeneic stem cell transplant (ASCT) remains the only treatment option for possible cure. Given the current lack of drugs with convincing evidence of favorable effect on survival, we consider ASCT as the treatment of choice for most patients with symptomatic disease, and especially for those with high-risk disease. For nontransplant candidates, participation in clinical trials is preferred over conventional therapy. There is not one right way of treatment for patients who are not candidates for either ASCT or clinical trials and palliative drugs of choice depend on the clinical problem, such as symptomatic anemia (ESAs, danazol, HMA), thrombocytopenia (HMA), or neutropenia (myeloid growth factors). Conversely, there is no controlled evidence to support the use of iron chelating agents in MDS. Going forward, we believe it is time to incorporate mutation information in clinically derived prognostic models in MDS and encourage development of novel drugs with disease-modifying activity.
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology; Mayo Clinic Rochester; Minnesota
| | | | - Ayalew Tefferi
- Division of Hematology; Mayo Clinic Rochester; Minnesota
| |
Collapse
|
20
|
Cremers EMP, Westers TM, Alhan C, Cali C, Wondergem MJ, Poddighe PJ, Ossenkoppele GJ, van de Loosdrecht AA. Multiparameter flow cytometry is instrumental to distinguish myelodysplastic syndromes from non-neoplastic cytopenias. Eur J Cancer 2015; 54:49-56. [PMID: 26720403 DOI: 10.1016/j.ejca.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/02/2015] [Accepted: 11/10/2015] [Indexed: 01/06/2023]
Abstract
Mandatory for the diagnosis of myelodysplastic syndromes (MDS) is the presence of dysplasia in >10% of cells within one or more cell lineages or presence of >15% ring sideroblasts or presence of MDS-associated cytogenetic (CG) abnormalities. Discrimination between neo-plastic and non-neoplastic causes of cytopenias can be challenging when dysplastic features by cytomorphology (CM) are minimal and CG abnormalities are absent or non-discriminating from other myeloid neoplastic disorders. This study evaluated a standard diagnostic approach in 379 patients with unexplained cytopenias and highlights the additional value of flow cytometry (FC) in patients with indeterminate CM and CG. CM reached no clear-cut diagnosis in 44% of the patients. Here, CG was able to identify two additional patients with MDS; other CG results did not reveal abnormalities or were not contributory. Based on the FC results, patients without a diagnosis by CM and CG were categorized 'no MDS-related features' (65%), 'limited number of MDS-related changes' (24%), and 'consistent with MDS' (11%). Patients were followed over time in an attempt to establish or confirm a diagnosis (median follow-up 391 d, range 20-1764). The specificity (true negative) of MDS-FC analysis calculated after follow-up was 95%. FC can aid as a valuable tool to exclude MDS when CM and additional CG are not conclusive in patients with cytopenia.
Collapse
Affiliation(s)
- Eline M P Cremers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Theresia M Westers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Canan Alhan
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Claudia Cali
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Mariëlle J Wondergem
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Pino J Poddighe
- Department of Clinical Genetics, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam (VUmc CCA), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
21
|
The shadowlands of MDS: idiopathic cytopenias of undetermined significance (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP). Hematology 2015; 2015:299-307. [DOI: 10.1182/asheducation-2015.1.299] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractThe WHO classification provides the best diagnostic approach to myelodysplastic syndromes (MDS). However, biologic and analytic limitations have emerged in the criteria currently adopted to establish the diagnosis and to classify MDS. The provisional category of idiopathic cytopenia of undetermined significance (ICUS) has been proposed to describe patients in whom MDS is possible but not proven. To formulate a diagnosis of ICUS, a thorough diagnostic work-up is required and repeated tests should be performed to reach a conclusive diagnosis. Recent studies provided consistent evidence of age-related hematopoietic clones (clonal hematopoiesis of indeterminate potential; CHIP), driven by mutations of genes that are recurrently mutated in myeloid neoplasms and associated with increase in the risk of hematologic cancer. A subset of mutated genes, mainly involved in epigenetic regulation, are likely initiating lesions driving the expansion of a premalignant clone. However, in a fraction of subjects the detected clone may be a small malignant clone expanding under the drive of the detected and additional undetected mutations. In addition, several experimental evidences suggest the potential relevance of an abnormal bone marrow environment in the selection and evolution of hematopoietic clones in MDS. The spreading of massively parallel sequencing techniques is offering translational opportunities in the clinical approach to myeloid neoplasms. Although several issues remain to be clarified, targeted gene sequencing may be of potential value in the dissection between clonal myelodysplasia, nonclonal cytopenia, and clonal hematopoiesis arising upon aging or in the context of acquired marrow failure.
Collapse
|
22
|
Mannelli F, Ponziani V, Bonetti MI, Bencini S, Cutini I, Gianfaldoni G, Scappini B, Pancani F, Rondelli T, Benelli M, Caporale R, Grazia Gelli AM, Peruzzi B, Longo G, Bosi A. Multilineage dysplasia as assessed by immunophenotype has no impact on clinical-biological features and outcome of NPM1-mutated acute myeloid leukemia. Exp Hematol 2015; 43:869-879.e22. [DOI: 10.1016/j.exphem.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
23
|
Shen Q, Ouyang J, Tang G, Jabbour EJ, Garcia-Manero G, Routbort M, Konoplev S, Bueso-Ramos C, Medeiros LJ, Jorgensen JL, Wang SA. Flow cytometry immunophenotypic findings in chronic myelomonocytic leukemia and its utility in monitoring treatment response. Eur J Haematol 2015; 95:168-76. [PMID: 25354960 DOI: 10.1111/ejh.12477] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm, characterized by persistent monocytosis. Due to the lack of unique surface markers expressed by neoplastic monocytes and the frequent CD34-negative blast immunophenotype, the diagnostic value of flow cytometric immunophenotyping (FCI) in CMML is rarely studied. In this study, by using a multicolor FCI assay, we assessed bone marrow (BM) immunophenotypical alterations in 118 CMML patients and follow-up BM samples in 35 of these patients. The median BM monocytes as determined by FCI were 14% (1-63%), correlated with morphologic count (P = 0.0004). FCI alterations in monocytes were observed in 96% and granulocytes in 83% of cases. The percentage of CD34(+) myeloblasts by FCI was low [median 0.6% (0.02-12.6%)], but exhibiting frequent aberrancies [median 6 (2-12)]. CD34(+) B-cell precursors were absent in 93% of cases. In 35 patients with follow-up BM samples assessed, the CD34(+) myeloblasts showed persistent FCI aberrancies in all 29 patients treated with hypomethylating agents and 3 patients on observation, but became normal in 3 patients following stem cell transplant. In conclusion, CMML exhibit numerous FCI alterations in monocytes, granulocytes, and more profound/frequent in CD34(+) myeloblasts. These findings provide solid evidence for using FCI as an ancillary test in CMML diagnosis and also, in assessment of treatment responses.
Collapse
Affiliation(s)
- Qi Shen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Ouyang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey L Jorgensen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Bellos F, Kern W. Flow cytometry in the diagnosis of myelodysplastic syndromes and the value of myeloid nuclear differentiation antigen. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 92:200-206. [DOI: 10.1002/cyto.b.21190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022]
|
25
|
Porwit A. Is There a Role for Flow Cytometry in the Evaluation of Patients With Myelodysplastic Syndromes? Curr Hematol Malig Rep 2015; 10:309-17. [DOI: 10.1007/s11899-015-0272-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Cremers EM, Alhan C, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Immunophenotyping for diagnosis and prognosis in MDS: Ready for general application? Best Pract Res Clin Haematol 2015; 28:14-21. [DOI: 10.1016/j.beha.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
|
27
|
Ouyang J, Zheng W, Shen Q, Goswami M, Jorgensen JL, Medeiros LJ, Wang SA. Flow cytometry immunophenotypic analysis of Philadelphia-negative myeloproliferative neoplasms: Correlation with histopathologic features. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 88:236-43. [PMID: 25557358 DOI: 10.1002/cyto.b.21215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/02/2014] [Accepted: 12/10/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Compared with the proven utility of flow cytometry immunophenotyping (FCI) analysis in the workup of myelodysplastic syndromes (MDS), immunophenotypic alterations in myeloproliferative neoplasms (MPN) have been less studied and the potential utility of FCI is not defined. METHODS Bone marrow (BM) samples of 83 Philadelphia-negative MPN patients were assessed by multicolor FCI including 27 with essential thrombocythemia (ET); 17 polycythemia vera (PV); 33 primary myelofibrosis (PMF) and 6 MPN-unclassifiable (MPN-U). The time interval from initial diagnosis of MPN to FCI analysis was 18 months (0-370). Ninety-five age-matched MDS patients with a similar BM blast count were included for comparison. RESULTS Immunophenotypic alterations, either in CD34(+) cells or myelomonocytic cells, were detected in 82 of 83 (99%) MPN cases. FCI abnormalities were more frequently observed in cases with substantial myelofibrosis but not different between PMF and fibrotic stage of ET/PV. Furthermore, FCI abnormalities were more frequent in cases with ≥5% BM blasts and/or circulating blasts (P = 0.006); as well as cases with an abnormal karyotype (P = 0.036); but not associated with morphologic dysplasia or JAK2 mutation status. Comparing with MDS, FCI abnormalities were overall less pronounced in MPN cases (P = 0.001). CONCLUSIONS MPNs exhibit frequent immunophenotypic alterations, more pronounced in cases with adverse histopathologic features. These findings illustrate that immunophenotypic alterations are a part of constellational findings in MPN, and correlate progressively with disease stage. The study results also suggest a role of FCI in diagnosis of MPN and monitoring disease over time and after therapy.
Collapse
Affiliation(s)
- Juan Ouyang
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenli Zheng
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Hematology Oncology, the Second Affiliated Hospital of Xiangya Medical School Central South University, Changsha, Hunan, China
| | - Qi Shen
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maitrayee Goswami
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey L Jorgensen
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - S A Wang
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
28
|
Eidenschink Brodersen L, Menssen AJ, Wangen JR, Stephenson CF, de Baca ME, Zehentner BK, Wells DA, Loken MR. Assessment of erythroid dysplasia by "difference from normal" in routine clinical flow cytometry workup. CYTOMETRY PART B-CLINICAL CYTOMETRY 2014; 88:125-35. [PMID: 25490867 DOI: 10.1002/cyto.b.21199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/06/2023]
Abstract
INTRODUCTION While multidimensional flow cytometry (MDF) has great utility in diagnostic workups of patients with suspected myelodysplastic syndromes (MDS), only the myeloid lineage has demonstrated reproducible abnormalities from multiple laboratories. With the effects of ammonium chloride (NH4 Cl) lysis on erythroid progenitors previously described, we applied this protocol to a patient cohort with diagnosed MDS to investigate phenotypic abnormalities that indicate erythroid dysplasia. METHOD Bone marrow specimens [39 MDS, 9 acute myeloid leukemia (AML), 7 JAK2(V617F) positive myeloproliferative neoplasms (MPN), and 5 nutritional deficiencies] were processed by NH4 Cl lysis and Ficoll preparation and evaluated by MDF using a difference from normal algorithm. RESULTS For the MDS cohort, phenotypic abnormalities on the mature erythroid progenitors were frequent for CD71 and CD36 (36% for each antigen); abnormalities for CD235a (8%) were observed. Among immature erythroid progenitors, abnormal maturation patterns (≤5%), and increased CD105 intensity (9%) were seen. Increased frequency of CD105 bright cells was observed (18%). While antigenic abnormalities correlated between NH4 Cl lysis and Ficoll preparation, the lysis method demonstrated the most consistent quantitative antigen intensities. Mean erythroid phenotypic abnormalities and prognostic cytogenetic subgroups correlated strongly. Morphologic and erythroid phenotypic abnormalities correlated, as did increasing FCSS and number of erythroid abnormalities, albeit without further increase for AML patients. DISCUSSION These data expand the understanding of erythropoiesis and define immunophenotypic abnormalities that indicate dyserythropoiesis in MDS using a lysis protocol practical for routine implementation in clinical flow cytometric workup. Preliminary studies also indicate strong correlation between phenotypic erythroid dysplasia and poor prognosis, as classified cytogenetically.
Collapse
|
29
|
Burbury KL, Westerman DA. Role of flow cytometry in myelodysplastic syndromes: diagnosis, classification, prognosis and response assessment. Leuk Lymphoma 2013; 55:749-60. [PMID: 23808833 DOI: 10.3109/10428194.2013.820291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms. With the emergence of therapeutic options, attempts to standardize diagnostic, prognostic and response criteria to guide treatment decisions are increasingly important. This has been achieved in part by the revised 2008 World Health Organization classification and consensus guidelines outlining refined definitions and standards. Conventional criteria have limitations in terms of sensitivity and specificity. Multiparameter flow cytometry (FC) can be used real-time, and is a highly reproducible and objective way of assessing the pattern of expression of multiple antigens on a single hematopoietic cell and defined subpopulations. By comparing antigen expression within maturing myelomonocytic populations with that identified on the equivalent normal cells, abnormalities identified may provide a diagnostic indication of stem cell dysmaturation. There are now increasingly robust data demonstrating the capacity of FC to discriminate MDS from non-clonal cytopenias and dysplasia, as well as further refine disease classification and prognostication, which will be reviewed here.
Collapse
Affiliation(s)
- Kate L Burbury
- Division of Cancer Medicine, Peter MacCallum Cancer Centre , East Melbourne, Melbourne , Australia
| | | |
Collapse
|
30
|
Flow cytometric detection of dyserythropoiesis: a sensitive and powerful diagnostic tool for myelodysplastic syndromes. Leukemia 2013; 27:1981-7. [DOI: 10.1038/leu.2013.178] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
|