1
|
Abdelfattah NE, Elsayed GM, Soliman AH, Ebeid EN, El Ashry MS. Copy number alterations in pediatric B-cell precursor acute lymphoblastic leukemia patients and their association with patients' outcome. Ann Hematol 2025; 104:1821-1832. [PMID: 39589495 PMCID: PMC12031935 DOI: 10.1007/s00277-024-06102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Genetic abnormalities provide diagnostic and prognostic information for pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. The aim of this study was to determine the effects of genetic CNAs and RUNX1 gene abnormalities on the outcome of pediatric BCP-ALL patients. This study included 78 de novo-BCP-ALL pediatric patients who presented to the Pediatric Oncology Department of the National Cancer Institute (NCI), Cairo University. We aimed to study the impact of copy number alteration (CNA) of 8 of the most altered genes in BCP-ALL patients, in addition to RUNX1 gene abnormalities, on patient survival and response to treatment. Multiplex ligation-dependent probe amplification (MLPA) was used to detect CNA, while RUNX1 gene alterations were detected by fluorescence in situ hybridization (FISH). CNA of the PAX5 gene was significantly associated with worse overall survival (OS) and event-free survival (EFS) (P = 0.012 and P = 0.025, respectively). An increase in the CNA of ETV6 was associated with an increase in minimal residual disease (MRD) on day 15 (P = 0.041). Although RUNX1 gene abnormalities were not a predictor of shorter OS or EFS, an interesting significant association was found between PAX5 CNA and RUNX1 gene gain and translocation (P = 0.017 and P = 0.041, respectively). PAX5 CNA is an adverse prognostic factor. ETV6 CNA is associated with high MRD on day 15.
Collapse
Affiliation(s)
- Nesma E Abdelfattah
- Clinical Pathology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, 4 Form El Khalig, Cairo, 11796, Egypt.
| | - Ghada M Elsayed
- Clinical Pathology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, 4 Form El Khalig, Cairo, 11796, Egypt
| | - Amira H Soliman
- Clinical Pathology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, 4 Form El Khalig, Cairo, 11796, Egypt
| | - Emad N Ebeid
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S El Ashry
- Clinical Pathology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, 4 Form El Khalig, Cairo, 11796, Egypt
| |
Collapse
|
2
|
Gong X, Hu T, Shen Q, Zhang L, Zhang W, Liu X, Zong S, Li X, Wang T, Yan W, Hu Y, Chen X, Zheng J, Zhang A, Wang J, Feng Y, Li C, Ma J, Gao X, Song Z, Zhang Y, Gale RP, Zhu X, Chen J. Gene expression prognostic of early relapse risk in low-risk B-cell acute lymphoblastic leukaemia in children. EJHAEM 2024; 5:333-345. [PMID: 38633121 PMCID: PMC11020147 DOI: 10.1002/jha2.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukaemia (ALL) and is associated with favorable outcomes, especially in low-risk children. However, as many as 10% of children relapse within 3 years, and such early relapses have poor survival. Identifying children at risk for early relapse is an important challenge. We interrogated data from 87 children with low-risk ETV6::RUNX1-positive B-cell ALL and with available preserved bone marrow samples (discovery cohort). We profiled somatic point mutations in a panel of 559 genes and genome-wide transcriptome and single-nucleotide variants. We found high TIMD4 expression (> 85th-percentile value) at diagnosis was the most important independent prognostic factor of early relapse (hazard ratio [HR] = 5.07 [1.76, 14.62]; p = 0.03). In an independent validation cohort of low-risk ETV6::RUNX1-positive B-cell ALL (N = 68) high TIMD4 expression at diagnosis had an HR = 4.78 [1.07, 21.36] (p = 0.04) for early relapse. In another validation cohort including 78 children with low-risk ETV6::RUNX1-negative B-cell ALL, high TIMD4 expression at diagnosis had an HR = 3.93 [1.31, 11.79] (p = 0.01). Our results suggest high TIMD4 expression at diagnosis in low-risk B-cell ALL in children might be associated with high risk for early relapse.
Collapse
|
3
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Hu GH, Zhang XH, Liu KY, Xu LP, Wang Y, Cheng YF, Huang XJ. Outcome and Prognostic Factors of Haploidentical Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Relapsed or Refractory ETV6/RUNX1-Positive Acute Lymphoblastic Leukemia. Acta Haematol 2024; 147:534-542. [PMID: 38246140 DOI: 10.1159/000536396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION The role of haploidentical allogeneic hematopoietic stem cell transplantation (haplo-HSCT) in pediatric patients with relapsed or refractory (R/R) ETV6/RUNX1-positive acute lymphoblastic leukemia (ALL) is unclear. This study aimed to identify prognostic factors and explore the role of haplo-HSCT in the treatment of ETV6/RUNX1-positive ALL. METHODS We analyzed the clinical characteristics and treatment outcomes of 20 pediatric patients who were diagnosed with ETV6/RUNX1-positive ALL and received chemotherapy/chimeric antigen receptor T-cell bridged to haplo-HSCT between 2016 and 2021 at our institution. RESULTS With a median follow-up time of 47 months, the 3-year cumulative incidence of relapse, disease-free survival, and overall survival were 35.9% (95% confidence interval (CI): 15.3-57.1%), 59.1% (95% CI: 37.2-81.0%), and 75.0% (95% CI: 56.0-94.0%), respectively. Multivariate analysis revealed that pre-HSCT measurable residual disease (MRD) positivity (hazard ratio, 13.275; 95% CI: 2.406-73.243; p = 0.003) had a significant negative impact on relapse. A total of 7 patients experienced positive ETV6/RUNX1 gene expression at a median of 7.2 months after haplo-HSCT, and 5 of them experienced relapse at a median time of 12.1 months after haplo-HSCT. ROC curve analysis was performed to analyze the significance of pre-HSCT and post-HSCT ETV6/RUNX1 transcripts for predicting relapse; the AUC were 0.798 (95% CI: 0.567-1.0, p = 0.035) and 0.875 (95% CI: 0.690-1.0, p = 0.008), respectively. The optimal cut-off points to predict an inevitable relapse were 0.011% and 0.0019%, respectively. CONCLUSION Patients with R/R ETV6/RUNX1-positive ALL may benefit from haplo-HSCT. Deeply eliminating pre-HSCT MRD and preemptive treatment for post-HSCT MRD may be crucial to further improving the prognosis.
Collapse
Affiliation(s)
- Guan-Hua Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Zapilko V, Moisio S, Parikka M, Heinäniemi M, Lohi O. Generation of a Zebrafish Knock-In Model Recapitulating Childhood ETV6::RUNX1-Positive B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:5821. [PMID: 38136366 PMCID: PMC10871125 DOI: 10.3390/cancers15245821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Approximately 25% of children with B-cell precursor acute lymphoblastic leukemia (pB-ALL) harbor the t(12;21)(p13;q22) translocation, leading to the ETV6::RUNX1 (E::R) fusion gene. This translocation occurs in utero, but the disease is much less common than the prevalence of the fusion in newborns, suggesting that secondary mutations are required for overt leukemia. The role of these secondary mutations remains unclear and may contribute to treatment resistance and disease recurrence. We developed a zebrafish model for E::R leukemia using CRISPR/Cas9 to introduce the human RUNX1 gene into zebrafish etv6 intron 5, resulting in E::R fusion gene expression controlled by the endogenous etv6 promoter. As seen by GFP fluorescence at a single-cell level, the model correctly expressed the fusion protein in the right places in zebrafish embryos. The E::R fusion expression induced an expansion of the progenitor cell pool and led to a low 2% frequency of leukemia. The introduction of targeted pax5 and cdkn2a/b gene mutations, mimicking secondary mutations, in the E::R line significantly increased the incidence in leukemia. Transcriptomics revealed that the E::R;pax5mut leukemias exclusively represented B-lineage disease. This novel E::R zebrafish model faithfully recapitulates human disease and offers a valuable tool for a more detailed analysis of disease biology in this subtype.
Collapse
Affiliation(s)
- Veronika Zapilko
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Sanni Moisio
- The Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (S.M.); (M.H.)
| | - Mataleena Parikka
- Laboratory of Infection Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (S.M.); (M.H.)
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Department of Pediatrics and Tays Cancer Center, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| |
Collapse
|
6
|
Yan C, He X, Qi R, Cao L, Zheng S, Huang C, Yang P, Wang J, Zhu M, Li S, Dong G, Jing H, Zhang W, Liu X. Prediction and prognostic potential of NR3C1 gene expression level in DLBCL patients. Hematology 2023; 28:2251199. [PMID: 37650932 DOI: 10.1080/16078454.2023.2251199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Objective: Diffuse Large B-Cell Lymphoma (DLBCL) is a common and frequently occurring subtype of Non-Hodgkin Lymphoma (NHL). The effective treatment and prognosis of DLBCL are still urgently needed to be explored. This article aims to shed light on the connection between DLBCL survival and NR3C1 expression levels. Methods: First, we divided the 952 DLBCL patients into an NR3C1 high-expression group and an NR3C1 low-expression group and compared the baseline characteristics of the two groups. Second, we used multivariate analysis to predict the dependent variable for age, pathology, ECOG score, lactate dehydrogenase (LDH) ratio, and NR3C1 expression level. Finally, we analyzed the progression-free survival (PFS) and overall survival rate (OS) of DLBCL patients with high or low NR3C1 expression. Results: DLBCL patients with high NR3C1 expression had a better prognosis than those with low NR3C1 expression (OS, P < 0.0001). In DLBCL patients of CHOP therapy, high NR3C1 expression was associated with a good survival prognosis in OS (OS, P = 0.028). Conclusion: In multivariate analysis, NR3C1 high expression was an independent prognostic factor that predicted a longer OS of DLBCL (OS, P = 0.0003). NR3C1 is considered an independent predictor of DLBCL patients and can be used as a biomarker for the prognosis of DLBCL.
Collapse
Affiliation(s)
- Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ruiying Qi
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ling Cao
- Nanyang Second General Hospital, Nanyang, People's Republic of China
| | - Siping Zheng
- Gannan Medical University, Ganzhou, People's Republic of China
| | - Chunyuan Huang
- Gannan Medical University, Ganzhou, People's Republic of China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Shaoxiang Li
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoni Liu
- Department of Respiratory Medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
7
|
Sharma G, Tran TM, Bansal I, Beg MS, Bhardwaj R, Bassi J, Tan Y, Jaiswal AK, Tso C, Jain A, Singh J, Chattopadhyay P, Singh A, Chopra A, Bakhshi S, Casero D, Rao DS, Palanichamy JK. RNA binding protein IGF2BP1 synergizes with ETV6-RUNX1 to drive oncogenic signaling in B-cell Acute Lymphoblastic Leukemia. J Exp Clin Cancer Res 2023; 42:231. [PMID: 37670323 PMCID: PMC10478443 DOI: 10.1186/s13046-023-02810-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/27/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy, with ETV6::RUNX1 being the most prevalent translocation whose exact pathogenesis remains unclear. IGF2BP1 (Insulin-like Growth Factor 2 Binding Protein 1) is an oncofetal RNA binding protein seen to be specifically overexpressed in ETV6::RUNX1 positive B-ALL. In this study, we have studied the mechanistic role of IGF2BP1 in leukemogenesis and its synergism with the ETV6::RUNX1 fusion protein. METHODS Gene expression was analyzed from patient bone marrow RNA using Real Time RT-qPCR. Knockout cell lines were created using CRISPR-Cas9 based lentiviral vectors. RNA-Seq and RNA Immunoprecipitation sequencing (RIP-Seq) after IGF2BP1 pulldown were performed using the Illumina platform. Mouse experiments were done by retroviral overexpression of donor HSCs followed by lethal irradiation of recipients using a bone marrow transplant model. RESULTS We observed specific overexpression of IGF2BP1 in ETV6::RUNX1 positive patients in an Indian cohort of pediatric ALL (n=167) with a positive correlation with prednisolone resistance. IGF2BP1 expression was essential for tumor cell survival in multiple ETV6::RUNX1 positive B-ALL cell lines. Integrated analysis of transcriptome sequencing after IGF2BP1 knockout and RIP-Seq after IGF2BP1 pulldown in Reh cell line revealed that IGF2BP1 targets encompass multiple pro-oncogenic signalling pathways including TNFα/NFκB and PI3K-Akt pathways. These pathways were also dysregulated in primary ETV6::RUNX1 positive B-ALL patient samples from our center as well as in public B-ALL patient datasets. IGF2BP1 showed binding and stabilization of the ETV6::RUNX1 fusion transcript itself. This positive feedback loop led to constitutive dysregulation of several oncogenic pathways. Enforced co-expression of ETV6::RUNX1 and IGF2BP1 in mouse bone marrow resulted in marrow hypercellularity which was characterized by multi-lineage progenitor expansion and strong Ki67 positivity. This pre-leukemic phenotype confirmed their synergism in-vivo. Clonal expansion of cells overexpressing both ETV6::RUNX1 and IGF2BP1 was clearly observed. These mice also developed splenomegaly indicating extramedullary hematopoiesis. CONCLUSION Our data suggest a combined impact of the ETV6::RUNX1 fusion protein and RNA binding protein, IGF2BP1 in activating multiple oncogenic pathways in B-ALL which makes IGF2BP1 and these pathways as attractive therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ishu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Mohammad Sabique Beg
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Ruchi Bhardwaj
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jaspal Bassi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yuande Tan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Amit Kumar Jaiswal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Christine Tso
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jay Singh
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Parthaprasad Chattopadhyay
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India.
| |
Collapse
|
8
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
9
|
Mohiuddin Malla T, Amin Shah Z, Hussain Bhat A, Ahmad Malik M, Anjum Baba R, Rasool R, Rasool J, Ashaq S, Haq F. Fishing for ETV6/RUNX1 fusion and MLL gene rearrangements and their additional abnormalities in childhood acute lymphoblastic leukemia patients of Kashmir. Gene 2023; 856:147128. [PMID: 36565795 DOI: 10.1016/j.gene.2022.147128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence suggests that ETV6/RUNX1 translocation in pediatric acute lymphocytic leukemia shows geographical variation. Therefore, the present study aimed at unveiling the incidence of ETV6/RUNX1 fusion in pediatric acute lymphocytic leukemia cases of this region using fluorescent in-situ hybridization. Besides, we aimed to determine the incidence of MLL gene rearrangement and the pattern of chromosomal abnormalities in this study group. METHODS Samples from 57 acute lymphocytic leukemia cases of pediatric age group were subjected to fluorescent in-situ hybridization and conventional cytogenetic analysis using standard methods. RESULTS Conventional cytogenetic analysis revealed chromosomal abnormalities in 19.3% cases. The other major chromosomal abnormalities reported were monosomies in 10.5%, hypodiploidy in 7%, marker chromosomes in 3.5% and deletions in 3.5% cases. We found a 44,XX,-7,-18, r(5), i(17q) complex karyotype in one of the cases. Fluorescent in-situ hybridization analysis revealed ETV6/RUNX1 translocation to be present in 28.07% cases and MLL gene rearrangement in 3.5% cases. 12.5% of ETV6/RUNX1 fusion positive cases were found to have a loss of ETV6 allele. Besides, 8.8% cases were found to exhibit a signal pattern suggestive of RUNX1 amplification. ETV6 gene deletion and MLL gene amplification was detected in 3.5% cases each, of our study. CONCLUSIONS Frequency of ETV6/RUNX1 fusion oncogene was found to be higher in pediatric ALL cases of Kashmir region as compared to that reported from other parts of India. Besides, a case was found to have a karyotype viz 44,XX,-7,-18, r(5), i(17q) that has not been reported elsewhere in the childhood ALL.
Collapse
Affiliation(s)
- Tahir Mohiuddin Malla
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Zafar Amin Shah
- Department of Immunology & Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India.
| | - Aashiq Hussain Bhat
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Manzoor Ahmad Malik
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Rafia Anjum Baba
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Roohi Rasool
- Department of Immunology & Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Javaid Rasool
- Department of Hematology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Sozi Ashaq
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Faizanul Haq
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
10
|
Kaczmarska A, Derebas J, Pinkosz M, Niedźwiecki M, Lejman M. The Landscape of Secondary Genetic Rearrangements in Pediatric Patients with B-Cell Acute Lymphoblastic Leukemia with t(12;21). Cells 2023; 12:cells12030357. [PMID: 36766699 PMCID: PMC9913634 DOI: 10.3390/cells12030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The most frequent chromosomal rearrangement in childhood B-cell acute lymphoblastic leukemia (B-ALL) is translocation t(12;21)(p13;q22). It results in the fusion of the ETV6::RUNX1 gene, which is active in the regulation of multiple crucial cellular pathways. Recent studies hypothesize that many translocations are influenced by RAG-initiated deletions, as well as defects in the RAS and NRAS pathways. According to a "two-hit" model for the molecular pathogenesis of pediatric ETV6::RUNX1-positive B-ALL, the t(12;21) translocation requires leukemia-causing secondary mutations. Patients with ETV6::RUNX1 express up to 60 different aberrations, which highlights the heterogeneity of this B-ALL subtype and is reflected in differences in patient response to treatment and chances of relapse. Most studies of secondary genetic changes have concentrated on deletions of the normal, non-rearranged ETV6 allele. Other predominant structural changes included deletions of chromosomes 6q and 9p, loss of entire chromosomes X, 8, and 13, duplications of chromosome 4q, or trisomy of chromosomes 21 and 16, but the impact of these changes on overall survival remains unclarified. An equally genetically diverse group is the recently identified new B-ALL subtype ETV6::RUNX1-like ALL. In our review, we provide a comprehensive description of recurrent secondary mutations in pediatric B-ALL with t(12;21) to emphasize the value of investigating detailed molecular mechanisms in ETV6::RUNX1-positive B-ALL, both for our understanding of the etiology of the disease and for future clinical advances in patient treatment and management.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Justyna Derebas
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Michalina Pinkosz
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
11
|
Standing S, Tran S, Murguia-Favela L, Kovalchuk O, Bose P, Narendran A. Identification of Altered Primary Immunodeficiency-Associated Genes and Their Implications in Pediatric Cancers. Cancers (Basel) 2022; 14:5942. [PMID: 36497424 PMCID: PMC9741011 DOI: 10.3390/cancers14235942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of disease-related mortality in children and malignancies are more frequently observed in individuals with primary immunodeficiencies (PIDs). This study aimed to identify and highlight the molecular mechanisms, such as oncogenesis and immune evasion, by which PID-related genes may lead to the development of pediatric cancers. METHOD We implemented a novel bioinformatics framework using patient data from the TARGET database and performed a comparative transcriptome analysis of PID-related genes in pediatric cancers between normal and cancer tissues, gene ontology enrichment, and protein-protein interaction analyses, and determined the prognostic impacts of commonly mutated and differentially expressed PID-related genes. RESULTS From the Fulgent Genetics Comprehensive Primary Immunodeficiency panel of 472 PID-related genes, 89 genes were significantly differentially expressed between normal and cancer tissues, and 20 genes were mutated in two or more patients. Enrichment analysis highlighted many immune system processes as well as additional pathways in the mutated PID-related genes related to oncogenesis. Survival outcomes for patients with altered PID-related genes were significantly different for 75 of the 89 DEGs, often resulting in a poorer prognosis. CONCLUSIONS Overall, multiple PID-related genes demonstrated the connection between PIDs and cancer development and should be studied further, with hopes of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Shaelene Standing
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Son Tran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology and Immunology, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Pinaki Bose
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Aru Narendran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| |
Collapse
|
12
|
Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23073795. [PMID: 35409154 PMCID: PMC8999045 DOI: 10.3390/ijms23073795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients' outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids' mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.
Collapse
Affiliation(s)
- Kamil Kośmider
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Katarzyna Karska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Agata Kozakiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
13
|
Penter L, Gohil SH, Wu CJ. Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics. Front Immunol 2022; 12:788891. [PMID: 35046946 PMCID: PMC8761982 DOI: 10.3389/fimmu.2021.788891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Blood malignancies provide unique opportunities for longitudinal tracking of disease evolution following therapeutic bottlenecks and for the monitoring of changes in anti-tumor immunity. The expanding development of multi-modal single-cell sequencing technologies affords newer platforms to elucidate the mechanisms underlying these processes at unprecedented resolution. Furthermore, the identification of molecular events that can serve as in-vivo barcodes now facilitate the tracking of the trajectories of malignant and of immune cell populations over time within primary human samples, as these permit unambiguous identification of the clonal lineage of cell populations within heterogeneous phenotypes. Here, we provide an overview of the potential for chromosomal copy number changes, somatic nuclear and mitochondrial DNA mutations, single nucleotide polymorphisms, and T and B cell receptor sequences to serve as personal natural barcodes and review technical implementations in single-cell analysis workflows. Applications of these methodologies include the study of acquired therapeutic resistance and the dissection of donor- and host cellular interactions in the context of allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Satyen H. Gohil
- Department of Academic Haematology, University College London Cancer Institute, London, United Kingdom
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Wandler AM, Huang BJ, Craig JW, Hayes K, Yan H, Meyer LK, Scacchetti A, Monsalve G, Dail M, Li Q, Wong JC, Weinberg O, Hasserjian RP, Kogan SC, Jonsson P, Yamamoto K, Sampath D, Nakitandwe J, Downing JR, Zhang J, Aster JC, Taylor BS, Shannon K. Loss of glucocorticoid receptor expression mediates in vivo dexamethasone resistance in T-cell acute lymphoblastic leukemia. Leukemia 2020; 34:2025-2037. [PMID: 32066867 PMCID: PMC7440098 DOI: 10.1038/s41375-020-0748-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Despite decades of clinical use, mechanisms of glucocorticoid resistance are poorly understood. We treated primary murine T lineage acute lymphoblastic leukemias (T-ALLs) with the glucocorticoid dexamethasone (DEX) alone and in combination with the pan-PI3 kinase inhibitor GDC-0941 and observed a robust response to DEX that was modestly enhanced by GDC-0941. Continuous in vivo treatment invariably resulted in outgrowth of drug-resistant clones, ~30% of which showed markedly reduced glucocorticoid receptor (GR) protein expression. A similar proportion of relapsed human T-ALLs also exhibited low GR protein levels. De novo or preexisting mutations in the gene encoding GR (Nr3c1) occurred in relapsed clones derived from multiple independent parental leukemias. CRISPR/Cas9 gene editing confirmed that loss of GR expression confers DEX resistance. Exposing drug-sensitive T-ALLs to DEX in vivo altered transcript levels of multiple genes, and this response was attenuated in relapsed T-ALLs. These data implicate reduced GR protein expression as a frequent cause of glucocorticoid resistance in T-ALL.
Collapse
Affiliation(s)
- Anica M Wandler
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jeffrey W Craig
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Kathryn Hayes
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Hannah Yan
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Lauren K Meyer
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Alessandro Scacchetti
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Gabriela Monsalve
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Monique Dail
- Department of Translational Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Qing Li
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine C Wong
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Olga Weinberg
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | | | - Scott C Kogan
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Philip Jonsson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keith Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Deepak Sampath
- Department of Translational Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon C Aster
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Barry S Taylor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
15
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|
16
|
de Barrios O, Meler A, Parra M. MYC's Fine Line Between B Cell Development and Malignancy. Cells 2020; 9:E523. [PMID: 32102485 PMCID: PMC7072781 DOI: 10.3390/cells9020523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor MYC is transiently expressed during B lymphocyte development, and its correct modulation is essential in defined developmental transitions. Although temporary downregulation of MYC is essential at specific points, basal levels of expression are maintained, and its protein levels are not completely silenced until the B cell becomes fully differentiated into a plasma cell or a memory B cell. MYC has been described as a proto-oncogene that is closely involved in many cancers, including leukemia and lymphoma. Aberrant expression of MYC protein in these hematological malignancies results in an uncontrolled rate of proliferation and, thereby, a blockade of the differentiation process. MYC is not activated by mutations in the coding sequence, and, as reviewed here, its overexpression in leukemia and lymphoma is mainly caused by gene amplification, chromosomal translocations, and aberrant regulation of its transcription. This review provides a thorough overview of the role of MYC in the developmental steps of B cells, and of how it performs its essential function in an oncogenic context, highlighting the importance of appropriate MYC regulation circuitry.
Collapse
Affiliation(s)
| | | | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Barcelona, Spain (A.M.)
| |
Collapse
|
17
|
Montaño A, Ordoñez JL, Alonso-Pérez V, Hernández-Sánchez J, Santos S, González T, Benito R, García-Tuñón I, Hernández-Rivas JM. ETV6/ RUNX1 Fusion Gene Abrogation Decreases the Oncogenicity of Tumour Cells in a Preclinical Model of Acute Lymphoblastic Leukaemia. Cells 2020; 9:E215. [PMID: 31952221 PMCID: PMC7017301 DOI: 10.3390/cells9010215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The t(12;21)(p13;q22), which fuses ETV6 and RUNX1 genes, is the most common genetic abnormality in children with B-cell precursor acute lymphoblastic leukaemia. The implication of the fusion protein in leukemogenesis seems to be clear. However, its role in the maintenance of the disease continues to be controversial. METHODS Generation of an in vitroETV6/RUNX1 knock out model using the CRISPR/Cas9 gene editing system. Functional characterization by RNA sequencing, proliferation assays, apoptosis and pharmacologic studies, and generation of edited-cell xenograft model. RESULTS The expression of ETV6/RUNX1 fusion gene was completely eliminated, thus generating a powerful model on which to study the role of the fusion gene in leukemic cells. The loss of fusion gene expression led to the deregulation of biological processes affecting survival such as apoptosis resistance and cell proliferation capacity. Tumour cells showed higher levels of apoptosis, lower proliferation rate and a greater sensitivity to PI3K inhibitors in vitro along as a decrease in tumour growth in xenografts models after ETV6/RUNX1 fusion gene abrogation. CONCLUSIONS ETV6/RUNX1 fusion protein seems to play an important role in the maintenance of the leukemic phenotype and could thus become a potential therapeutic target.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Jose Luis Ordoñez
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
- Department of Biochemistry and Molecular Biology, University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Verónica Alonso-Pérez
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Jesús Hernández-Sánchez
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Sandra Santos
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Teresa González
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
- Department of Hematology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Ignacio García-Tuñón
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Jesús María Hernández-Rivas
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
- Department of Hematology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Medicine, Universidad de Salamanca and CIBERONC, 37007 Salamanca, Spain
| |
Collapse
|
18
|
SYK Targeting Represents a Potential Therapeutic Option for Relapsed Resistant Pediatric ETV6-RUNX1 B-Acute Lymphoblastic Leukemia Patients. Int J Mol Sci 2019; 20:ijms20246175. [PMID: 31817853 PMCID: PMC6940898 DOI: 10.3390/ijms20246175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The presence of the chromosomal rearrangement t(12;21)(ETV6-RUNX1) in childhood B-acute lymphoblastic leukemia (B-ALL) is an independent predictor of favorable prognosis, however relapses still occur many years later after stopping therapy, and patients often display resistance to current treatments. Since spleen tyrosine kinase (SYK), a cytosolic nonreceptor tyrosine kinase interacting with immune receptors, has been previously associated with malignant transformation and cancer cell proliferation, we aimed to assess its role in ETV6-RUNX1 cell survival and prognosis. We evaluated the effects on cell survival of three SYK inhibitors and showed that all of them, in particular entospletinib, are able to induce cell death and enhance the efficacy of conventional chemotherapeutics. By using reverse phase protein arrays we next revealed that activated SYK is upregulated at diagnosis in pediatric ETV6-RUNX1 patients who will experience relapse, and, importantly, hyperactivation is maintained at a high level also at relapse occurrence. We thus treated primary cells from patients both at diagnosis and relapse with the combination entospletinib + chemotherapeutics and observed that SYK inhibition is able to sensitize resistant primary cells to conventional drugs. Entospletinib could thus represent a new therapeutic option supporting conventional chemotherapy for relapsed ETV6-RUNX1 patients, and these evidences encourage further studies on SYK for treatment of other relapsed resistant acute lymphoblastic leukemia (ALL) subgroups.
Collapse
|
19
|
Xiao H, Ding Y, Gao Y, Wang LM, Wang H, Ding L, Li X, Yu X, Huang H. Haploinsufficiency of NR3C1 drives glucocorticoid resistance in adult acute lymphoblastic leukemia cells by down-regulating the mitochondrial apoptosis axis, and is sensitive to Bcl-2 blockage. Cancer Cell Int 2019; 19:218. [PMID: 31462891 PMCID: PMC6708234 DOI: 10.1186/s12935-019-0940-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/18/2019] [Indexed: 01/05/2023] Open
Abstract
Background Relapse represents the leading cause of death in both child and adult patients with acute lymphoblastic leukemia (ALL). Development of chemo-resistance is ultimately responsible for treatment failure and relapse, therefore understanding the molecular basis underlying resistance is imperative for developing innovative treatment strategies. Glucocorticoids (GCs) such dexamethasone and prednisolone are the backbone of combination chemotherapy regimens for treating all lymphoid tumors. However, the biological mechanisms of primary GC resistance in ALL is not completely understood. We previously performed a longitudinal whole-exome sequencing analysis on diagnosis/relapse pairs from adult patients with ALL. Our data revealed that relapse-specific truncation mutations in the NR3C1 gene, encoding the GC receptor, are frequently detected. Methods In the current study, we used discovery-based strategies including RNA sequencing (RNA-seq) and CRISPR/Cas9, followed by confirmatory testing, in human ALL cell lines, bone marrow blast samples from ALL patients and xenograft models, to elucidate the mechanisms responsible for resistance. Results Our results revealed a positive correlation between endogenous expression of NR3C1 in ALL cells and sensitivity to GCs and clinical outcomes. We further confirmed that ectopic expression of NR3C1 in ALL cells could reverse GC resistance, while deletion of NR3C1 confers resistance to GCs in ALL cell lines and xenograft models. RNA-seq analysis revealed a remarkable abundance of gene signatures involved in pathways in cancer, DNA replication, mismatch repair, P53 signalling, cell cycle, and apoptosis regulated by NR3C1. Significantly increased expression of pro-apoptotic genes including BCL2L11/Bim, BMF, BAD, BAX and BOK, and decreased transcription of anti-apoptotic genes including BCL2, BCL2L1 and BAG2 were observed in GC-resistant ALL cells following ectopic expression of NR3C1. Finally, we explored that GC resistance in ALL cells with haploinsufficiency of NR3C1 can be treated with Bcl-2 blockage. Conclusions Our findings suggest that the status of NR3C1 gene mutations and basal expression levels of NR3C1 in ALL cells are associated with sensitivity to GCs and clinical treatment outcomes. Early intervention strategies by rational combination of Bcl-2 blockage may constitute a promising new treatment option to GC-resistant ALL and significantly improving the chances of treating poor prednisone responders.
Collapse
Affiliation(s)
- Haowen Xiao
- 1Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016 Zhejiang People's Republic of China.,2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China
| | - Yingying Ding
- Department of Hematology, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province People's Republic of China
| | - Yang Gao
- 1Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016 Zhejiang People's Republic of China
| | - Li-Mengmeng Wang
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Huafang Wang
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Lijuan Ding
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Xiaoqing Li
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Xiaohong Yu
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China
| | - He Huang
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| |
Collapse
|
20
|
Sun C, Chang L, Liu C, Chen X, Zhu X. The study of METTL3 and METTL14 expressions in childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Mol Genet Genomic Med 2019; 7:e00933. [PMID: 31429529 PMCID: PMC6785433 DOI: 10.1002/mgg3.933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study was aimed to explore the METTL3 and METTL14 expressions in children with ETV6/RUNX1(E/R)-positive acute lymphoblastic leukemia (ALL) and investigate the relation between the METTL3 and METTL14 expressions with clinical features. METHODS Thirty-seven newly diagnosed E/R-positive ALL children and six controls were included in this study. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the mRNA expression level of METTL3 and METTL14. RESULTS Among the 37 cases, 51.35% (n = 19) were boys and 48.65% (n = 18) were girls and the median age was 4.72 (1.72-11.99) years. Among the six controls, 50% (n = 3) were boys and 50% (n = 3) were girls and the median age was 5.24 (1.53-13.17) years. The expression level of METTL3 and METTL14 in E/R-positive ALL patients were lower than in controls (p < .05). Although failed to achieve statistical significance, the expression level of METTL3 and METTL14 in relapse patients were lower than nonrelapse patients (p = .171, p = .150, respectively). CONCLUSION The reduced levels of METTL3 and METTL14 suggest a possible role in the pathogenesis and course of E/R-positive ALL. METTL3 and METTL14 may become new prognostic factors, and rationalize specific treatment intensification in possible E/R-positive relapse patients.
Collapse
Affiliation(s)
- Congcong Sun
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Lixian Chang
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Chao Liu
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Xiaoyan Chen
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Xiaofan Zhu
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| |
Collapse
|
21
|
Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 2019; 36:40-56. [PMID: 31010660 DOI: 10.1016/j.blre.2019.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology and Oncology Department, University Hospital, Caen, France.
| | - Hélène Jakobczyk
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Lydie Debaize
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Elie Cousin
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France.
| | - Marie-Bérengère Troadec
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Virginie Gandemer
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France.
| |
Collapse
|
22
|
Weber J, de la Rosa J, Grove CS, Schick M, Rad L, Baranov O, Strong A, Pfaus A, Friedrich MJ, Engleitner T, Lersch R, Öllinger R, Grau M, Menendez IG, Martella M, Kohlhofer U, Banerjee R, Turchaninova MA, Scherger A, Hoffman GJ, Hess J, Kuhn LB, Ammon T, Kim J, Schneider G, Unger K, Zimber-Strobl U, Heikenwälder M, Schmidt-Supprian M, Yang F, Saur D, Liu P, Steiger K, Chudakov DM, Lenz G, Quintanilla-Martinez L, Keller U, Vassiliou GS, Cadiñanos J, Bradley A, Rad R. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat Commun 2019; 10:1415. [PMID: 30926791 PMCID: PMC6440946 DOI: 10.1038/s41467-019-09180-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carolyn S Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
- Department of Haematology, PathWest and Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Nedlands, 6009, Australia
| | - Markus Schick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anja Pfaus
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Mathias J Friedrich
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Michael Grau
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Irene Gonzalez Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Manuela Martella
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Maria A Turchaninova
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Anna Scherger
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
| | - Julia Hess
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | - Laura B Kuhn
- Helmholtz Zentrum München, Research Unit Gene Vectors, Munich, 81377, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine Main, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | | | - Mathias Heikenwälder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Katja Steiger
- Comparative Experimental Pathology, Technische Universität München, Munich, 81675, Germany
| | - Dmitriy M Chudakov
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Center of Molecular Medicine, CEITEC, Masaryk University, Brno, 601 77, Czech Republic
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Hematology and Oncology-Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Berlin, 12203, Germany
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, CB2 0XY, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0PT, UK
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, 33193, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, 33006, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
23
|
Zhao X, Gao C, Cui L, Li W, Liu S, Zhang R, Liu Y, Wu M, Li Z. Quantitative monitoring of minimal residual disease in childhood acute lymphoblastic leukemia using TEL-AML1 fusion transcript as a marker. Pediatr Investig 2018; 2:223-229. [PMID: 32851270 PMCID: PMC7331441 DOI: 10.1002/ped4.12098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 11/11/2022] Open
Abstract
IMPORTANCE By demonstrating with TEL-AML1, this study indicated that mRNAs transcribed from fusion genes are ideal targets for minimal residual disease (MRD) monitoring in childhood acute lymphoblastic leukemia, and that different thresholds are needed to apply them into the risk stratification. OBJECTIVE TEL-AML1 expression was measured at three time points to 1) determine cut-off values for predicting acute lymphoblastic leukemia (ALL) relapse; 2) investigate the prognostic value of this method and how well the results at these time points correlated; 3) determine the correlation between MRD levels assessed using this marker and that determined by immunoglobulin/T-cell receptor (Ig/TCR) rearrangement detection. METHODS TEL- AML1 expression in 62 children with ALL was quantitated by real-time quantitative PCR at day 15, day 33, and month 3. The relationship between patient outcome and TEL-AML1 level was analyzed at each time point. The correlation between the MRD levels determined by TEL-AML1 or Ig/TCR rearrangements was also analyzed. RESULTS For day 33, 6.68 TEL-AML1 copies/104 ABL copies was determined to be the best cut-off value. Higher levels were correlated with relapse (P = 0.001). For day 15 and month 3, the best cut-off values were 336.5 and 0.85 copies/104 ABL copies respectively; patients with higher expression levels had lower RFSs (day 15: P = 0.027; month 3: P = 0.023). For days 15 and 33, MRD levels assessed using TEL-AML1 or Ig/TCR rearrangements were strongly correlated [Spearman rank correlation coefficient (ρ) = 0.729 (day 15), 0.719 (day 33); P < 0.001 (both)], and both methods were equally effective at predicting relapse. At month 3, there was moderate correlation between the results derived from the two markers (ρ = 0.418, P = 0.003); however, receiver operating characteristic curve analysis showed that TEL-AML1 was a better prognostic marker. INTERPRETATION TEL-AML1 is an effective marker for MRD assessment and relapse prediction in children with ALL.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Lei Cui
- Hematology & Oncology LaboratoryBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing Key Laboratory of Pediatric Hematology OncologyKey Laboratory of Major Diseases in ChildrenMinistry of EducationNational Key Discipline of PediatricsMinistry of EducationBeijingChina
| | - Weijing Li
- Hematology & Oncology LaboratoryBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing Key Laboratory of Pediatric Hematology OncologyKey Laboratory of Major Diseases in ChildrenMinistry of EducationNational Key Discipline of PediatricsMinistry of EducationBeijingChina
| | - Shuguang Liu
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Ruidong Zhang
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Yi Liu
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Minyuan Wu
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Zhigang Li
- Hematology & Oncology LaboratoryBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing Key Laboratory of Pediatric Hematology OncologyKey Laboratory of Major Diseases in ChildrenMinistry of EducationNational Key Discipline of PediatricsMinistry of EducationBeijingChina
| |
Collapse
|
24
|
Fry EA, Mallakin A, Inoue K. Translocations involving ETS family proteins in human cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2018; 5:10.15761/ICST.1000281. [PMID: 30542624 PMCID: PMC6287620 DOI: 10.15761/icst.1000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating certain gene transcriptions. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. Three chimeric genes involving ETS genes have been identified in human cancers, which are EWS-FLI1 in Ewing's sarcoma, TMPRSS2-ERG in prostate cancer, and ETV6-RUNX1 in acute lymphocytic leukemia. Although these fusion transcripts definitely contribute to the pathogenesis of the disease, the impact of these fusion transcripts on patients' prognosis is highly controversial. In the present review, the roles of ETS protein translocations in human carcinogenesis are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | | | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
25
|
Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget 2018; 8:35445-35459. [PMID: 28418909 PMCID: PMC5471068 DOI: 10.18632/oncotarget.16367] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
ETV6/RUNX1 (E/R) is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL). Multiple lines of evidence imply a “two-hit” model for the molecular pathogenesis of E/R-positive ALL, whereby E/R rearrangement is followed by a series of secondary mutations that trigger overt leukemia. The cellular framework in which E/R arises and the maintenance of a pre-leukemic condition by E/R are fundamental to the mechanism that underlies leukemogenesis. Accordingly, a variety of studies have focused on the relationship between the clones giving rise to the primary and recurrent E/R-positive ALL. We review here the most recent insights into the pathogenic mechanisms underlying E/R-positive ALL, as well as the molecular abnormalities prevailing at relapse.
Collapse
|
26
|
Rasighaemi P, Ward AC. ETV6 and ETV7: Siblings in hematopoiesis and its disruption in disease. Crit Rev Oncol Hematol 2017; 116:106-115. [PMID: 28693791 DOI: 10.1016/j.critrevonc.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 01/07/2023] Open
Abstract
ETV6 (TEL1) and ETV7 (TEL2) are closely-related members of the ETS family of transcriptional regulators. Both ETV6 and ETV7 have been demonstrated to play key roles in hematopoiesis, particularly with regard to maintenance of hematopoietic stem cells and control of lineage-specific differentiation, with evidence of functional interactions between both proteins. ETV6 has been strongly implicated in the molecular etiology of a number of hematopoietic diseases, including as a tumor suppressor, an oncogenic fusion partner, and an important regulator of thrombopoiesis, but recent evidence has also identified ETV7 as a potential oncogene in certain malignancies. This review provides an overview of ETV6 and ETV7 and their contribution to both normal and disrupted hematopoiesis. It also highlights the key clinical implications of the growing knowledge base regarding ETV6 abnormalities with respect to prognosis and treatment.
Collapse
Affiliation(s)
- Parisa Rasighaemi
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, 3216, Australia.
| | - Alister C Ward
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|
27
|
Sundaresh A, Williams O. Mechanism of ETV6-RUNX1 Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:201-216. [PMID: 28299659 DOI: 10.1007/978-981-10-3233-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.
Collapse
Affiliation(s)
- Aishwarya Sundaresh
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Owen Williams
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
28
|
Cytogenetic and immunohistochemical characterization of mammary analogue secretory carcinoma of salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:731-742. [DOI: 10.1016/j.oooo.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022]
|
29
|
Kutlay NY, Pekpak E, Altıner S, Ileri T, Vicdan AN, Dinçaslan H, Ince EU, Tukun FA. Prognostic impact of RUNX1 and ETV6 gene copy number on pediatric B-cell precursor acute lymphoblastic leukemia with or without hyperdiploidy. Int J Hematol 2016; 104:368-77. [PMID: 27393278 DOI: 10.1007/s12185-016-2034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
The ETV6/RUNX1 fusion gene is a valuable prognostic marker that is frequently observed in B-cell precursor acute lymphoblastic leukemia (B-cell ALL). However, the clinical significance of copy number aberrations in these genes remains unclear. In this study, the effects of various aberrations inETV6 and RUNX1 gene copy number on disease prognosis were evaluated in 21 pediatric patients diagnosed with B-cell ALL with/without t(12;21). The prognostic significance of changes in gene copy number of ETV6 or RUNX1 in the presence or absence of hyperdiploidy, trisomy 21, and t(12;21) translocation were also evaluated. RUNX1 gene copy number amplifications were detected in 83 % of the patients who lacked t(12;21) and in all of the patients with hyperdiploidy. Trisomy 21 was detected in 78 % of the patients with hyperdiploidy. Changes in ETV6 gene copy number were detected in patients who lacked both the t(12;21) translocation and RUNX1 gene copy number amplifications. However, RUNX1 gene copy number amplification and ETV6 deletion were observed in all of the patients with t(12;21). RUNX1 gene copy number amplification was associated with hyperdiploidy, but not with t(12;21). Thus, the evaluation of distinct FISH and cytogenetic patterns in patients with B-cell ALL may strengthen the prognostic significance of changes in gene copy number.
Collapse
Affiliation(s)
| | - Esra Pekpak
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Sule Altıner
- Ankara University School of Medicine, Medical Genetics, Ankara, Turkey
| | - Talia Ileri
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | | | - Handan Dinçaslan
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Elif Unal Ince
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Fatma Ajlan Tukun
- Ankara University School of Medicine, Medical Genetics, Ankara, Turkey
| |
Collapse
|
30
|
Irving JAE, Enshaei A, Parker CA, Sutton R, Kuiper RP, Erhorn A, Minto L, Venn NC, Law T, Yu J, Schwab C, Davies R, Matheson E, Davies A, Sonneveld E, den Boer ML, Love SB, Harrison CJ, Hoogerbrugge PM, Revesz T, Saha V, Moorman AV. Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia. Blood 2016; 128:911-22. [PMID: 27229005 PMCID: PMC5026463 DOI: 10.1182/blood-2016-03-704973] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022] Open
Abstract
Somatic genetic abnormalities are initiators and drivers of disease and have proven clinical utility at initial diagnosis. However, the genetic landscape and its clinical utility at relapse are less well understood and have not been studied comprehensively. We analyzed cytogenetic data from 427 children with relapsed B-cell precursor ALL treated on the international trial, ALLR3. Also we screened 238 patients with a marrow relapse for selected copy number alterations (CNAs) and mutations. Cytogenetic risk groups were predictive of outcome postrelapse and survival rates at 5 years for patients with good, intermediate-, and high-risk cytogenetics were 68%, 47%, and 26%, respectively (P < .001). TP53 alterations and NR3C1/BTG1 deletions were associated with a higher risk of progression: hazard ratio 2.36 (95% confidence interval, 1.51-3.70, P < .001) and 2.15 (1.32-3.48, P = .002). NRAS mutations were associated with an increased risk of progression among standard-risk patients with high hyperdiploidy: 3.17 (1.15-8.71, P = .026). Patients classified clinically as standard and high risk had distinct genetic profiles. The outcome of clinical standard-risk patients with high-risk cytogenetics was equivalent to clinical high-risk patients. Screening patients at relapse for key genetic abnormalities will enable the integration of genetic and clinical risk factors to improve patient stratification and outcome. This study is registered at www.clinicaltrials.org as #ISCRTN45724312.
Collapse
Affiliation(s)
- Julie A E Irving
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amir Enshaei
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catriona A Parker
- Children's Cancer Group, Institute of Cancer, Faculty of Medical & Human Sciences, The University of Manchester, Manchester, United Kingdom; Royal Manchester Children's Hospital, Central Manchester University Hospitals Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rosemary Sutton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Roland P Kuiper
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amy Erhorn
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lynne Minto
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola C Venn
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Tamara Law
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Jiangyan Yu
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire Schwab
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rosanna Davies
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Matheson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alysia Davies
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Monique L den Boer
- Dutch Childhood Oncology Group, The Hague, The Netherlands; Department of Paediatric Oncology and Haematology, Erasmus MC-Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands
| | - Sharon B Love
- Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Christine J Harrison
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter M Hoogerbrugge
- Dutch Childhood Oncology Group, The Hague, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tamas Revesz
- Department of Haematology-Oncology, SA Pathology at Women's and Children's Hospital and University of Adelaide, Adelaide, Australia; and
| | - Vaskar Saha
- Children's Cancer Group, Institute of Cancer, Faculty of Medical & Human Sciences, The University of Manchester, Manchester, United Kingdom; Royal Manchester Children's Hospital, Central Manchester University Hospitals Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Tata Translational Cancer Research Centre, Tata Medical Center, New Town, Kolkata, India
| | - Anthony V Moorman
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
31
|
Chromosomal aberrations in childhood acute lymphoblastic leukemia: 15-year single center experience. Cancer Genet 2016; 209:340-7. [PMID: 27341996 DOI: 10.1016/j.cancergen.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023]
Abstract
Genetic analysis of leukemic cells significantly impacts prognosis and treatment stratification in childhood acute lymphoblastic leukemia (ALL). Our retrospective single center study of 86 children with ALL enrolled into three consecutive treatment protocols (ALL-BFM 90, ALL-BFM 95 and ALL IC-BFM 2002) between 1991 and 2007 demonstrates the importance of conventional cytogenetics and fluorescence in situ hybridization (FISH). Cytogenetic and FISH examinations were performed successfully in 82/86 (95.3%) patients and chromosomal changes were detected in 78 of the 82 (95.1%) patients: in 69/73 patients with B-cell precursor (BCP)-ALL and in 9/9 patients with T-lineage ALL (T-ALL). The most frequent chromosomal changes in subgroups divided according to WHO classification independent of treatment protocol and leukemia subtype were hyperdiploidy in 36 patients (with ≥50 chromosomes in 23 patients, with 47-49 chromosomes 13 patients) followed by translocation t(12;21) with ETV6/RUNX1 fusion detected by FISH in 18 (22%) patients. Additional changes were detected in 16/18 (88.8%) ETV6/RUNX1-positive ALL patients with predominant deletion or rearrangement of untranslocated ETV6 allele. Unique aberrations were detected in 4 patients and dicentric chromosomes in 8 patients, one with T-ALL. These results demonstrate that cytogenetics and FISH successfully provided important prognostic information and revealed not only recurrent but also new and rare rearrangements requiring further investigation in terms of prognostic significance.
Collapse
|
32
|
Oligo-based aCGH analysis reveals cryptic unbalanced der(6)t(X;6) in pediatric t(12;21)-positive acute lymphoblastic leukemia. Exp Mol Pathol 2016; 101:38-43. [PMID: 27215399 DOI: 10.1016/j.yexmp.2016.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 11/23/2022]
Abstract
Secondary chromosomal aberrations are necessary for development of overt leukemia in t(12;21)/ETV6-RUNX1-positive acute lymphoblastic leukemia (ALL). Conventional cytogenetic analysis supplemented with locus-specific FISH analyses is gold standard to detect important clonal aberrations in this disease group. However, adequate chromosome banding analysis may often be hampered by poor chromosome morphology and banding patterns in pediatric ALL cases, which may hinder identification of possible clinical important additional chromosomal aberrations. We used oligo-based high-resolution aCGH (oaCGH) analysis as an adjunct tool to enhance conventional cytogenetic analysis in pediatric acute B-cell lymphoblastic leukemia in a prospective single center study during a 4-year period (2012-2015). In a consecutive series of 45 pediatric B-ALLs, we identified eight patients with t(12;21)/ETV6-RUNX1 fusion by FISH analysis. In three of the patients, oaCGH analysis revealed concurrent Xq duplication and 6q deletion, which was cryptic by G-banded analysis. FISH analyses with whole chromosome painting probes confirmed the imbalances and showed an unbalanced translocation der(6)t(X;6) in all three patients. A search in the literature revealed two additional pediatric patients with cryptic der(6)t(X;6) in t(12;21)-positive ALLs. No common break points on Xq or 6q could be determined between the five patients. This study highlights the importance of oaCGH analysis as an adjunct cytogenetic tool to detect cryptic chromosomal aberrations. Further, the study adds to understanding the full spectrum of secondary chromosomal aberrations in the very common t(12;21)-positive pediatric ALL disease group. We suggest that the unbalanced der(6)t(X;6), which is cryptic to conventional cytogenetics, is a non-random secondary event in this disease group. It might be that the specific combination of concurrent Xq duplication and 6q-deletion results in gain of possible oncogenes on Xq and loss of possible tumor suppressor genes on 6q that are important for the leukemic propagation of t(12;21)-positive hematopoietic cells in a subset of ALLs.
Collapse
|
33
|
Forero-Castro M, Robledo C, Benito R, Abáigar M, África Martín A, Arefi M, Fuster JL, de las Heras N, Rodríguez JN, Quintero J, Riesco S, Hermosín L, de la Fuente I, Recio I, Ribera J, Labrador J, Alonso JM, Olivier C, Sierra M, Megido M, Corchete-Sánchez LA, Ciudad Pizarro J, García JL, Ribera JM, Hernández-Rivas JM. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome. PLoS One 2016; 11:e0148972. [PMID: 26872047 PMCID: PMC4752220 DOI: 10.1371/journal.pone.0148972] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL) is still a challenge. Aims: To characterize the presence of additional DNA copy number alterations (CNAs) in children and adults with ALL by whole-genome oligonucleotide array (aCGH) analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults). The NimbleGen CGH 12x135K array (Roche) was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q). CNAs were associated with age, phenotype, genetic subtype and overall survival (OS). In the whole cohort of children, the losses on 14q32.33 (p = 0.019) and 15q13.2 (p = 0.04) were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001) and Xp21.1 (p = 0.029), and the loss of 17p (p = 0.014) were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.
Collapse
Affiliation(s)
- Maribel Forero-Castro
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- School of Biological Sciences (GEBIMOL), Pedagogical and Technological University of Colombia (UPTC), Tunja, Colombia
| | - Cristina Robledo
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - María Abáigar
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - Ana África Martín
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Maryam Arefi
- Department of Hematology, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - José Luis Fuster
- Department of Pediatric Oncohematology, Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Juan N. Rodríguez
- Department of Hematology, Juan Ramón Jiménez Hospital, Huelva, Spain
| | | | - Susana Riesco
- Department of Pediatric Oncohematology, University Hospital of Salamanca, Salamanca, Spain
| | - Lourdes Hermosín
- Department of Hematology, Jerez Hospital, Jerez de la Frontera, Cádiz, Spain
| | | | - Isabel Recio
- Department of Hematology, Nuestra Señora de Sonsoles Hospital, Avila, Spain
| | - Jordi Ribera
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Jorge Labrador
- Department of Hematology, University Hospital of Burgos, Burgos, Spain
| | - José M. Alonso
- Department of Hematology, Rio Carrión Hospital, Palencia, Spain
| | - Carmen Olivier
- Department of Hematology, General Hospital of Segovia, Segovia, Spain
| | - Magdalena Sierra
- Department of Hematology, Virgen de la Concha Hospital, Zamora, Spain
| | - Marta Megido
- Department of Hematology, Bierzo Hospital, León/Ponferrada, Spain
| | | | - Juana Ciudad Pizarro
- Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Juan Luis García
- Institute of Health Science Studies of Castile and León (IESCYL), Salamanca, Spain
| | - José M. Ribera
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Jesús M. Hernández-Rivas
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
34
|
Jackson RK, Irving JAE, Veal GJ. Personalization of dexamethasone therapy in childhood acute lymphoblastic leukaemia. Br J Haematol 2016; 173:13-24. [DOI: 10.1111/bjh.13924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rosanna K. Jackson
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| | - Julie A. E. Irving
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| | - Gareth J. Veal
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
35
|
Zhang L, Liu XM, Guo Y, Yang WY, Zhang JY, Liu F, Liu TF, Wang SC, Chen XJ, Ruan M, Qi BQ, Chang LX, Zou Y, Chen YM, Zhu XF. [Detection of copy number variations in pediatric ETV6/RUNX1-positive acute lymphoblastic leukemia with multiplex ligation-dependent probe amplification]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:34-38. [PMID: 26781410 PMCID: PMC7390102 DOI: 10.7499/j.issn.1008-8830.2016.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the application of multiplex ligation-dependent probe amplification (MLPA) in the detection of copy number variations (CNVs) in pediatric ETV6/RUNX1-positive acute lymphoblastic leukemia (ALL), to compare this method with conventional karyotype analysis and fluorescence in situ hybridization (FISH), and to evaluate the value of MLPA. METHODS The clinical data of 95 children with ETV6/RUNX1-positive ALL who were treated from January 2006 to November 2012 were analyzed retrospectively, including clinical features, results of karyotype analysis, and results of FISH. CNVs were detected with MLPA. RESULTS CNVs were detected in 73 (77%), and the median number of CNVs was 1 (range 0-6). The CNVs of EBF1, CDKN2A/2B, PAX5, ETV6, RB1, and BTG1 were detected in more than 10% of all the patients. The changes in the chromosome segments carrying the genes with CNVs detected by MLPA were not detected by conventional karyotype analysis. The coincidence rate between the CNVs in ETV6 gene detected by FISH and those detected by MLPA was 66%. CONCLUSIONS MLPA is an efficient and convenient method to detect CNVs in children with ETV6/RUNX1-positive ALL.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang L, Liu XM, Guo Y, Yang WY, Zhang JY, Liu F, Liu TF, Wang SC, Chen XJ, Ruan M, Qi BQ, Chang LX, Zou Y, Chen YM, Zhu XF. [Detection of copy number variations in pediatric ETV6/RUNX1-positive acute lymphoblastic leukemia with multiplex ligation-dependent probe amplification]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:34-8. [PMID: 26781410 PMCID: PMC7390102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/18/2015] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To investigate the application of multiplex ligation-dependent probe amplification (MLPA) in the detection of copy number variations (CNVs) in pediatric ETV6/RUNX1-positive acute lymphoblastic leukemia (ALL), to compare this method with conventional karyotype analysis and fluorescence in situ hybridization (FISH), and to evaluate the value of MLPA. METHODS The clinical data of 95 children with ETV6/RUNX1-positive ALL who were treated from January 2006 to November 2012 were analyzed retrospectively, including clinical features, results of karyotype analysis, and results of FISH. CNVs were detected with MLPA. RESULTS CNVs were detected in 73 (77%), and the median number of CNVs was 1 (range 0-6). The CNVs of EBF1, CDKN2A/2B, PAX5, ETV6, RB1, and BTG1 were detected in more than 10% of all the patients. The changes in the chromosome segments carrying the genes with CNVs detected by MLPA were not detected by conventional karyotype analysis. The coincidence rate between the CNVs in ETV6 gene detected by FISH and those detected by MLPA was 66%. CONCLUSIONS MLPA is an efficient and convenient method to detect CNVs in children with ETV6/RUNX1-positive ALL.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saloustros E, Salpea P, Qi CF, Gugliotti LA, Tsang K, Liu S, Starost MF, Morse HC, Stratakis CA. Hematopoietic neoplasms in Prkar2a-deficient mice. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:143. [PMID: 26608815 PMCID: PMC4660639 DOI: 10.1186/s13046-015-0257-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022]
Abstract
Background Protein kinase A (PKA) is a holoenzyme that consists of a dimer of regulatory subunits and two inactive catalytic subunits that bind to the regulatory subunit dimer. Four regulatory subunits (RIα, RIβ, RIIα, RIIβ) and four catalytic subunits (Cα, Cβ, Cγ, Prkx) have been described in the human and mouse genomes. Previous studies showed that complete inactivation of the Prkar1a subunit (coding for RIα) in the germline leads to embryonic lethality, while Prkar1a–deficient mice are viable and develop schwannomas, thyroid, and bone neoplasms, and rarely lymphomas and sarcomas. Mice with inactivation of the Prkar2a and Prkar2b genes (coding for RIIα and RIIβ, respectively) are also viable but have not been studied for their susceptibility to any tumors. Methods Cohorts of Prkar1a+/−, Prkar2a+/−, Prkar2a−/−, Prkar2b+/− and wild type (WT) mice have been observed between 5 and 25 months of age for the development of hematologic malignancies. Tissues were studied by immunohistochemistry; tumor-specific markers were also used as indicated. Cell sorting and protein studies were also performed. Results Both Prkar2a−/− and Prkar2a+/− mice frequently developed hematopoietic neoplasms dominated by histiocytic sarcomas (HS) with rare diffuse large B cell lymphomas (DLBCL). Southern blot analysis confirmed that the tumors diagnosed histologically as DLBCL were clonal B cell neoplasms. Mice with other genotypes did not develop a significant number of similar neoplasms. Conclusions Prkar2a deficiency predisposes to hematopoietic malignancies in vivo. RIIα’s likely association with HS and DLBCL was hitherto unrecognized and may lead to better understanding of these rare neoplasms.
Collapse
Affiliation(s)
- Emmanouil Saloustros
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Paraskevi Salpea
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD, 20852, USA.
| | - Lina A Gugliotti
- Program in Genomics and Differentiation, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Kitman Tsang
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Sisi Liu
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Matthew F Starost
- Division of Veterinary Resources, Office of the Director (OD), National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD, 20852, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Irving JAE. Towards an understanding of the biology and targeted treatment of paediatric relapsed acute lymphoblastic leukaemia. Br J Haematol 2015; 172:655-66. [PMID: 26568036 DOI: 10.1111/bjh.13852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acute lymphoblastic leukaemia is the most common childhood cancer and for those children who relapse, prognosis is poor and new therapeutic strategies are needed. Recurrent pathways implicated in relapse include RAS, JAK STAT, cell cycle, epigenetic regulation, B cell development, glucocorticoid response, nucleotide metabolism and DNA repair. Targeting these pathways is a rational therapeutic strategy and may deliver novel, targeted therapies into the clinic. Relapse often stems from a minor clone present at diagnosis and thus analysis of persisting leukaemia during upfront therapy may allow targeted drug intervention to prevent relapse.
Collapse
Affiliation(s)
- Julie A E Irving
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
39
|
Grausenburger R, Bastelberger S, Eckert C, Kauer M, Stanulla M, Frech C, Bauer E, Stoiber D, von Stackelberg A, Attarbaschi A, Haas OA, Panzer-Grümayer R. Genetic alterations in glucocorticoid signaling pathway components are associated with adverse prognosis in children with relapsed ETV6/RUNX1-positive acute lymphoblastic leukemia. Leuk Lymphoma 2015; 57:1163-73. [PMID: 26327566 DOI: 10.3109/10428194.2015.1088650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ETV6/RUNX1 gene fusion defines the largest genetic subgroup of childhood ALL with overall rapid treatment response. However, up to 15% of cases relapse. Because an impaired glucocorticoid pathway is implicated in disease recurrence we studied the impact of genetic alterations by SNP array analysis in 31 relapsed cases. In 58% of samples, we found deletions in various glucocorticoid signaling pathway-associated genes, but only NR3C1 and ETV6 deletions prevailed in minimal residual disease poor responding and subsequently relapsing cases (p<0.05). To prove the necessity of a functional glucocorticoid receptor, we reconstituted wild-type NR3C1 expression in mutant, glucocorticoid-resistant REH cells and studied the glucocorticoid response in vitro and in a xenograft mouse model. While these results prove that glucocorticoid receptor defects are crucial for glucocorticoid resistance in an experimental setting, they do not address the essential clinical situation where glucocorticoid resistance at relapse is rather part of a global drug resistance.
Collapse
Affiliation(s)
- Reinhard Grausenburger
- a Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Stephan Bastelberger
- a Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Cornelia Eckert
- b Department of Pediatrics, Division of Oncology and Hematology , Charité, Berlin, Campus Virchow Klinikum , Berlin , Germany
| | - Maximilian Kauer
- a Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Martin Stanulla
- c Department of Pediatrics , University Hospital Hannover , Hannover , Germany
| | - Christian Frech
- a Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Eva Bauer
- d Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Dagmar Stoiber
- d Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria .,e Institute of Pharmacology, Medical University of Vienna , Vienna , Austria , and
| | - Arend von Stackelberg
- b Department of Pediatrics, Division of Oncology and Hematology , Charité, Berlin, Campus Virchow Klinikum , Berlin , Germany
| | | | - Oskar A Haas
- a Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria .,f St. Anna Kinderspital, Medical University Vienna , Vienna , Austria
| | - Renate Panzer-Grümayer
- a Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| |
Collapse
|
40
|
Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 2014; 4:54. [PMID: 24724051 PMCID: PMC3971203 DOI: 10.3389/fonc.2014.00054] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022] Open
Abstract
The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR-ABL1 fusion gene encoding for a chimeric BCR-ABL1 protein. It is present in 3-4% of pediatric acute lymphoblastic leukemia (Ph(+) ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph(+) ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph(+) ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph(+) ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph(+) ALL expanded exponentially through careful mapping of pathways downstream of BCR-ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph(+) ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph(+) ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph(+) ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias.
Collapse
Affiliation(s)
- Kathrin M Bernt
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Stephen P Hunger
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|