1
|
González-Torbay A, Reche-Yebra K, Clemente-Bernal Á, Serrano YS, Bravo-Gallego LY, Fernández López A, Rodríguez-Pena R, García-Morato MB, López-Granados E, del Pino-Molina L. Functional insights of an uncommon hypomorphic variant in IL2RG as a monogenic cause of CVID-like disease with antibody deficiency and T CD4 lymphopenia. Front Immunol 2025; 16:1544863. [PMID: 40170851 PMCID: PMC11958980 DOI: 10.3389/fimmu.2025.1544863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
Background Over the last decade, the identification of hypomorphic variants in patients previously diagnosed with Common Variable Immunodeficiency (CVID) has led to the association of milder phenotypes with variants of the IL2RG gene that are usually related to severe combined immunodeficiency. Indeed, several revertant mosaicisms have been described in cases with hypomorphic variants in that gene. Our main objective herein was the functional characterization of p. (Pro58Thr) variant in the IL2RG gene in an adult patient with antibody deficiency and moderate CD4+ T cell lymphopenia. Methods Evaluation of the patient included a clinical examination and a complete analysis of the peripheral blood phenotype. To further explore IL2RG functionality we selected downstream signaling readouts, namely STAT3 and STAT5 phosphorylation, NK degranulation and B- and T-cell proliferation capacity in vitro, which can be measured by flow cytometry, that reflect the strength of homeostatic signaling pathways in resting cells and after activation. Results The patient presented reduced CD132 expression and conserved T- and B-cell proliferation capacity in vitro. However, we found that intracellular signaling downstream of IL2γc is affected, with reduced STAT3 phosphorylation after IL-21 stimulation in B cells and CD4 T cells. In addition, CD4+ T cells showed a reduced STAT5 phosphorylation in response to IL-2, which was not so evident in CD8+ T cells. NK degranulation was impaired upon PHA and IL-2 as well as plasmablast differentiation in vitro. Conclusion We conclude that p. (Pro58Thr) in the IL2RG gene is functionally a hypomorphic variant, as reported previously. Although the functionality of CD8+ is less impaired than the rest of the lymphocyte subsets, we did not detect a reversion of the variant in isolated CD8+, CD4+, CD19+ or NK cells.
Collapse
Affiliation(s)
- Andrea González-Torbay
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research(IdiPAZ), Madrid, Spain
| | - Keren Reche-Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research(IdiPAZ), Madrid, Spain
| | - Álvaro Clemente-Bernal
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research(IdiPAZ), Madrid, Spain
| | - Yolanda Soto Serrano
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research(IdiPAZ), Madrid, Spain
| | - Luz Yadira Bravo-Gallego
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Almudena Fernández López
- Center for Biomedical Network Research on Rare Diseases (CIBERER U756), Madrid, Spain
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Rebeca Rodríguez-Pena
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research(IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - María Bravo García-Morato
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research(IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Granados
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research(IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Lucía del Pino-Molina
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
2
|
Rikhi R, Basu S, Arora K, Chan KW, Jindal AK, Rawat A, Lau YL, Suri D. Somatic reversion in Wiskott-Aldrich syndrome: Case reports and mechanistic insights. Scand J Immunol 2024; 100:e13408. [PMID: 39304328 DOI: 10.1111/sji.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
This report describes two brothers from India and a Chinese patient with somatic reversion of an inherited deleterious mutation in the WAS gene. Both the Indian siblings had inherited a single nucleotide deletion causing a frameshift mutation (c.1190del, p.Pro397Argfs*48) (variant 1: marked in blue) from the mother. Another variant (variant 2: marked in red), a 12-nucleotide deletion at position 1188-1199 (c.1188_1199del, p.P401_P404del) was also found, which resulted in restoration of the frame and subsequent rescue of the protein sequence. DNA sequencing from buccal mucosal cells revealed only the inherited variant (variant 1), while no reversion mutation was identified in the mucosal cells. Similarly, the Chinese patient was found to have a novel germline 14-base duplication (ACGAAAATGCTTGG) c.120_132 + 1dup (variant 1). This resulted in abolishment of the original splice junction coupled with the creation of a new junction 14 bases 3' and a frameshift mutation with predicted protein truncation p. Thr45Aspfs*. DNA from the patient's PBMC showed co-existence of wild-type and mutated sequences, but only the mutant was present in the buccal cells. Genomic and mRNA analysis of the isolated CD3+ T lymphocytes, CD3- mononuclear cells, and EBV-transformed B lymphocytes indicated that the reverant variant (germline variant was restored to wild-type sequence) were selectively found in CD3+ T lymphocytes.
Collapse
Affiliation(s)
- Rashmi Rikhi
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suprit Basu
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Ankur Kumar Jindal
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Attardi E, Corey SJ, Wlodarski MW. Clonal hematopoiesis in children with predisposing conditions. Semin Hematol 2024; 61:35-42. [PMID: 38311515 DOI: 10.1053/j.seminhematol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Clonal hematopoiesis in children and young adults differs from that occuring in the older adult population. A variety of stressors drive this phenomenon, sometimes independent of age-related processes. For the purposes of this review, we adopt the term clonal hematopoiesis in predisposed individuals (CHIPI) to differentiate it from classical, age-related clonal hematopoiesis of indeterminate potential (CHIP). Stress-induced CHIPI selection can be extrinsic, such as following immunologic, infectious, pharmacologic, or genotoxic exposures, or intrinsic, involving germline predisposition from inherited bone marrow failure syndromes. In these conditions, clonal advantage relates to adaptations allowing improved cell fitness despite intrinsic defects affecting proliferation and differentiation. In certain contexts, CHIPI can improve competitive fitness by compensating for germline defects; however, the downstream effects of clonal expansion are often unpredictable - they may either counteract the underlying pathology or worsen disease outcomes. A more complete understanding of how CHIPI arises in young people can lead to the definition of preleukemic states and strategies to assess risk, surveillance, and prevention to leukemic transformation. Our review summarizes current research on stress-induced clonal dynamics in individuals with germline predisposition syndromes.
Collapse
Affiliation(s)
- Enrico Attardi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes (Basel) 2022; 13:genes13122348. [PMID: 36553615 PMCID: PMC9777626 DOI: 10.3390/genes13122348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is a primary immunodeficiency that is caused by mutations in the interleukin-2 receptor gamma (IL2RG) gene. Some patients present atypical X-SCID with mild clinical symptoms due to somatic revertant mosaicism. CRISPR/Cas9 and prime editing are two advanced genome editing tools that paved the way for treating immune deficiency diseases. Prime editing overcomes the limitations of the CRISPR/Cas9 system, as it does not need to induce double-strand breaks (DSBs) or exogenous donor DNA templates to modify the genome. Here, we applied CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs) and prime editing methods to generate an in vitro model of the disease in K-562 cells and healthy donors' T cells for the c. 458T>C point mutation in the IL2RG gene, which also resulted in a useful way to optimize the gene correction approach for subsequent experiments in patients' cells. Both methods proved to be successful and were able to induce the mutation of up to 31% of treated K-562 cells and 26% of treated T cells. We also applied similar strategies to correct the IL2RG c. 458T>C mutation in patient T cells that carry the mutation with revertant somatic mosaicism. However, both methods failed to increase the frequency of the wild-type sequence in the mosaic T cells of patients due to limited in vitro proliferation of mutant cells and the presence of somatic reversion. To the best of our knowledge, this is the first attempt to treat mosaic cells from atypical X-SCID patients employing CRISPR/Cas9 and prime editing. We showed that prime editing can be applied to the formation of specific-point IL2RG mutations without inducing nonspecific on-target modifications. We hypothesize that the feasibility of the nucleotide substitution of the IL2RG gene using gene therapy, especially prime editing, could provide an alternative strategy to treat X-SCID patients without revertant mutations, and further technological improvements need to be developed to correct somatic mosaicism mutations.
Collapse
|
5
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
6
|
Somatic Reversion of a Novel IL2RG Mutation Resulting in Atypical X-Linked Combined Immunodeficiency. Genes (Basel) 2021; 13:genes13010035. [PMID: 35052377 PMCID: PMC8774591 DOI: 10.3390/genes13010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations of the IL2RG gene, which encodes for the interleukin-2 receptor common gamma chain (γC, CD132), can lead to X-linked severe combined immunodeficiency (X-SCID) associated with a T−B+NK− phenotype as a result of dysfunctional γC-JAK3-STAT5 signaling. Lately, hypomorphic mutations of the IL2RG gene have been described causing atypical SCID with a milder phenotype. Here, we report three brothers with low-normal lymphocyte counts and susceptibility to recurrent respiratory infections and cutaneous warts. The clinical presentation combined with dysgammaglobulinemia suspected an inherited immunity disorder, which has been proven by Next Generation Sequencing as a novel c.458T > C; p.Ile153Thr IL2RG missense-mutation. Subsequent functional characterization revealed impaired T-cell proliferation, low TREC levels and a skewed TCR Vβ repertoire in all three patients. Interestingly, investigation of various subpopulations showed normal expression of CD132 but with partially impaired STAT5 phosphorylation compared to healthy controls. Additionally, we performed precise genetic analysis of subpopulations revealing spontaneous somatic reversion, predominately in lymphoid derived CD3+, CD4+ and CD8+ T cells. Our data demonstrate that the atypical SCID phenotype noticed in these three brothers is due to the combination of hypomorphic IL-2RG function and somatic reversion.
Collapse
|
7
|
Miyazawa H, Wada T. Reversion Mosaicism in Primary Immunodeficiency Diseases. Front Immunol 2021; 12:783022. [PMID: 34868061 PMCID: PMC8635092 DOI: 10.3389/fimmu.2021.783022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Reversion mosaicism has been reported in an increasing number of genetic disorders including primary immunodeficiency diseases. Several mechanisms can mediate somatic reversion of inherited mutations. Back mutations restore wild-type sequences, whereas second-site mutations result in compensatory changes. In addition, intragenic recombination, chromosomal deletions, and copy-neutral loss of heterozygosity have been demonstrated in mosaic individuals. Revertant cells that have regained wild-type function may be associated with milder disease phenotypes in some immunodeficient patients with reversion mosaicism. Revertant cells can also be responsible for immune dysregulation. Studies identifying a large variety of genetic changes in the same individual further support a frequent occurrence of reversion mosaicism in primary immunodeficiency diseases. This phenomenon also provides unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. In this paper, we review the recent findings of reversion mosaicism in primary immunodeficiency diseases and discuss its clinical implications.
Collapse
Affiliation(s)
- Hanae Miyazawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Lisco A, Hsu AP, Dimitrova D, Proctor DM, Mace EM, Ye P, Anderson MV, Hicks SN, Grivas C, Hammoud DA, Manion M, Starrett GJ, Farrel A, Dobbs K, Brownell I, Buck C, Notarangelo LD, Orange JS, Leonard WJ, Orestes MI, Peters AT, Kanakry JA, Segre JA, Kong HH, Sereti I. Treatment of Relapsing HPV Diseases by Restored Function of Natural Killer Cells. N Engl J Med 2021; 385:921-929. [PMID: 34469647 PMCID: PMC8590529 DOI: 10.1056/nejmoa2102715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human papillomavirus (HPV) infections underlie a wide spectrum of both benign and malignant epithelial diseases. In this report, we describe the case of a young man who had encephalitis caused by herpes simplex virus during adolescence and currently presented with multiple recurrent skin and mucosal lesions caused by HPV. The patient was found to have a pathogenic germline mutation in the X-linked interleukin-2 receptor subunit gamma gene (IL2RG), which was somatically reverted in T cells but not in natural killer (NK) cells. Allogeneic hematopoietic-cell transplantation led to restoration of NK cytotoxicity, with normalization of the skin microbiome and persistent remission of all HPV-related diseases. NK cytotoxicity appears to play a role in containing HPV colonization and the ensuing HPV-related hyperplastic or dysplastic lesions. (Funded by the National Institutes of Health and the Herbert Irving Comprehensive Cancer Center Flow Cytometry Shared Resources.).
Collapse
Affiliation(s)
- Andrea Lisco
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Amy P Hsu
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Dimana Dimitrova
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Diana M Proctor
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Emily M Mace
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Peiying Ye
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Megan V Anderson
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Stephanie N Hicks
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Christopher Grivas
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Dima A Hammoud
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Maura Manion
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Gabriel J Starrett
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Alvin Farrel
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Kerry Dobbs
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Isaac Brownell
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Christopher Buck
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Luigi D Notarangelo
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Jordan S Orange
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Warren J Leonard
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Michael I Orestes
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Anju T Peters
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Jennifer A Kanakry
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Julia A Segre
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Heidi H Kong
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| | - Irini Sereti
- From the Laboratories of Immunoregulation (A.L., P.Y., M.V.A., C.G., M.M., I.S.) and Clinical Immunology and Microbiology (A.P.H., K.D., L.D.N.), National Institute of Allergy and Infectious Diseases, the Experimental Transplantation and Immunotherapy Branch (D.D., S.N.H., J.A.K.) and the Laboratory of Cellular Oncology (G.J.S., C.B.), National Cancer Institute, the Translational and Functional Genomics Branch, National Human Genome Research Institute (D.M.P., J.A.S.), the Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (A.F., W.J.L.), the Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (H.H.K., I.B.), and the Center for Infectious Disease Imaging (D.A.H.), National Institutes of Health, and Walter Reed National Military Medical Center (M.I.O.) - all in Bethesda, MD; Vagelos College of Physicians and Surgeons, Columbia University, New York (E.M.M., J.S.O.); and the Department of Medicine and Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago (A.T.P.)
| |
Collapse
|
9
|
Verhoeven D, Schonenberg-Meinema D, Ebstein F, Papendorf JJ, Baars PA, van Leeuwen EMM, Jansen MH, Lankester AC, van der Burg M, Florquin S, Maas SM, van Koningsbruggen S, Krüger E, van den Berg JM, Kuijpers TW. Hematopoietic stem cell transplantation in a patient with proteasome-associated autoinflammatory syndrome (PRAAS). J Allergy Clin Immunol 2021; 149:1120-1127.e8. [PMID: 34416217 DOI: 10.1016/j.jaci.2021.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Proteasome-associated autoinflammatory syndromes (PRAASs) form a family of recently described rare autosomal recessive disorders of disturbed proteasome assembly and proteolytic activity caused by mutations in genes coding for proteasome subunits. The treatment options for these proteasome disorders consist of lifelong immunosuppressive drugs or Janus kinase inhibitors, which may have partial efficacy and noticeable side effects. Because proteasomes are ubiquitously expressed, it is unknown whether hematopoietic stem cell transplantation (HSCT) may be a sufficient treatment option. OBJECTIVE Our aim was to report the case of a young boy with a treatment-resistant cutaneous vasculitis that was initially suspected to be associated with a gene variant in SH2D1A. METHODS Whole-exome sequencing was performed to identify the genetic defect. Molecular and functional analyses were performed to assess the impact of variants on proteasomal function. The immune characterization led to the decision to perform HSCT on our patient and conduct follow-up over the 7-year period after the transplant. Because loss of myeloid chimerism after the first HSCT was associated with relapse of autoinflammation, a second HSCT was performed. RESULTS After the successful second HSCT, the patient developed mild symptoms of lipodystrophy, which raised the suspicion of a PRAAS. Genetic analysis revealed 2 novel heterozygous variants in PSMB4 (encoding proteasomal subunit β7). Retrospective analysis of patient cells stored before the first HSCT and patient cells obtained after the second HSCT demonstrated that HSCT successfully rescued proteasome function, restored protein homeostasis, and resolved the interferon-stimulated gene signature. Furthermore, successful HSCT alleviated the autoinflammatory manifestations in our patient. CONCLUSION Patients with treatment-resistant PRAAS can be cured by HSCT.
Collapse
Affiliation(s)
- Dorit Verhoeven
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dieneke Schonenberg-Meinema
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jonas J Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Paul A Baars
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ester M M van Leeuwen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Machiel H Jansen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia M Maas
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Silvana van Koningsbruggen
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - J Merlijn van den Berg
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Belaid B, Lamara Mahammed L, Mohand Oussaid A, Migaud M, Khadri Y, Casanova JL, Puel A, Ben Halla N, Djidjik R. Case Report: Interleukin-2 Receptor Common Gamma Chain Defect Presented as a Hyper-IgE Syndrome. Front Immunol 2021; 12:696350. [PMID: 34248995 PMCID: PMC8264782 DOI: 10.3389/fimmu.2021.696350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is caused by mutations of IL2RG, the gene encoding the interleukin common gamma chain (IL-2Rγ or γc) of cytokine receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Hypomorphic mutations of IL2RG may cause combined immunodeficiencies with atypical clinical and immunological presentations. Here, we report a clinical, immunological, and functional characterization of a missense mutation in exon 1 (c.115G>A; p. Asp39Asn) of IL2RG in a 7-year-old boy. The patient suffered from recurrent sinopulmonary infections and refractory eczema. His total lymphocyte counts have remained normal despite skewed T cell subsets, with a pronounced serum IgE elevation. Surface expression of IL-2Rγ was reduced on his lymphocytes. Signal transducer and activator of transcription (STAT) phosphorylation in response to IL-2, IL-4, and IL-7 showed a partially preserved receptor function. T-cell proliferation in response to mitogens and anti-CD3/anti-CD28 monoclonal antibodies was significantly reduced. Further analysis revealed a decreased percentage of CD4+ T cells capable of secreting IFN-γ, but not IL-4 or IL-17. Studies on the functional consequences of IL-2Rγ variants are important to get more insight into the pathogenesis of atypical phenotypes which may lay the ground for novel therapeutic strategies.
Collapse
Affiliation(s)
- Brahim Belaid
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria.,Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Lydia Lamara Mahammed
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria.,Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Aida Mohand Oussaid
- Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria.,Department of Pediatrics A, Beni-Messous University Hospital Center, Algiers, Algeria
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France.,Imagine Institute, University of Paris, Paris, France
| | - Yasmine Khadri
- Department of Pediatrics A, Beni-Messous University Hospital Center, Algiers, Algeria
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France.,Imagine Institute, University of Paris, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States.,Howard Hughes Medical Institute, New York, NY, United States
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France.,Imagine Institute, University of Paris, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| | - Nafissa Ben Halla
- Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria.,Department of Pediatrics A, Beni-Messous University Hospital Center, Algiers, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria.,Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| |
Collapse
|
11
|
Della Mina E, Guérin A, Tangye SG. Molecular requirements for human lymphopoiesis as defined by inborn errors of immunity. Stem Cells 2021; 39:389-402. [PMID: 33400834 DOI: 10.1002/stem.3327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are the progenitor cells that give rise to the diverse repertoire of all immune cells. As they differentiate, HSCs yield a series of cell states that undergo gradual commitment to become mature blood cells. Studies of hematopoiesis in murine models have provided critical insights about the lineage relationships among stem cells, progenitors, and mature cells, and these have guided investigations of the molecular basis for these distinct developmental stages. Primary immune deficiencies are caused by inborn errors of immunity that result in immune dysfunction and subsequent susceptibility to severe and recurrent infection(s). Over the last decade there has been a dramatic increase in the number and depth of the molecular, cellular, and clinical characterization of such genetically defined causes of immune dysfunction. Patients harboring inborn errors of immunity thus represent a unique resource to improve our understanding of the multilayered and complex mechanisms underlying lymphocyte development in humans. These breakthrough discoveries not only enable significant advances in the diagnosis of such rare and complex conditions but also provide substantial improvement in the development of personalized treatments. Here, we will discuss the clinical, cellular, and molecular phenotypes, and treatments of selected inborn errors of immunity that impede, either intrinsically or extrinsically, the development of B- or T-cells at different stages.
Collapse
Affiliation(s)
- Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Antoine Guérin
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| |
Collapse
|
12
|
Yahya AM, Al-Hammadi S, AlHashaykeh NO, Alkaabi SS, Elomami AS, AlMulla AA, Alremeithi MM, Kabbary RM, Vijayan R, Souid AK. Case Report: Reactive Lymphohistiocytic Proliferation in Infant With a Novel Nonsense Variant of IL2RG Who Received BCG Vaccine. Front Pediatr 2021; 9:713924. [PMID: 34796149 PMCID: PMC8592917 DOI: 10.3389/fped.2021.713924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
We present here a male young infant with X-linked severe combined immunodeficiency (MIM#300400) due to the novel nonsense variant of IL2RG (interleukin 2 receptor, gamma; MIM#308380), NM_000206.2(IL2RG):c.820_823dup p.Ser275Asnfs*29. He developed aggressive reactive lymphohistiocytic proliferation after receiving the live-attenuated Bacillus Calmette-Guérin (BCG) vaccine at birth. This report advocates for modifying the current practice of early use of BCG. The natural history of his disease also suggests considering IL2RG variants as a potential cause of "X-linked recessive Mendelian susceptibility to mycobacterial disease" (MSMD). His reactive lymphohistiocytic proliferation and massive hepatosplenomegaly simulated hemophagocytic lymphohistiocytosis (HLH, likely triggered by the BCG disease). This entity was masked by the absence of fever and markedly elevated inflammatory biomarkers. Thus, his findings stimulate discussion on the need to modify the diagnostic criteria of HLH, in order to accommodate conditions, such IL2RG variants that block systemic inflammation.
Collapse
Affiliation(s)
- Amal M Yahya
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Suleiman Al-Hammadi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Salwa S Alkaabi
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | | | - Asia A AlMulla
- Department of Hematology Oncology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Majed M Alremeithi
- Department of Hematology Oncology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Rewan M Kabbary
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdul-Kader Souid
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Laurent C, Deblois G, Clénet ML, Carmena Moratalla A, Farzam-Kia N, Girard M, Duquette P, Prat A, Larochelle C, Arbour N. Interleukin-15 enhances proinflammatory T-cell responses in patients with MS and EAE. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e931. [PMID: 33323466 PMCID: PMC7745728 DOI: 10.1212/nxi.0000000000000931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023]
Abstract
Objective We posit that interleukin-15 (IL-15) is a relevant contributor to MS pathobiology as this cytokine is elevated in the CNS and periphery of patients with MS. We aim to investigate (1) the impact of IL-15 on T lymphocytes from patients with MS and (2) the in vivo role of IL-15 using the experimental autoimmune encephalomyelitis (EAE) mouse model. Methods We compared the impact of IL-15 on T lymphocytes obtained from untreated patients with MS (relapsing-remitting, secondary progressive, and primary progressive) to cells from age/sex-matched healthy controls (HCs) using multiparametric flow cytometry and in vitro assays. We tested the effects of peripheral IL-15 administration after EAE disease onset in C57BL/6 mice. Results IL-15 triggered STAT5 signaling in an elevated proportion of T cells from patients with MS compared with HCs. This cytokine also enhanced the production of key proinflammatory cytokines (interferon γ, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17, and tumor necrosis factor) by T cells from both MS and controls, but these effects were more robust for the production of IL-17 and GM-CSF in T-cell subsets from patients with MS. At the peak of EAE disease, the proportion of CD4+ and CD8+ T cells expressing CD122+, the key signaling IL-15 receptor chain, was enriched in the CNS compared with the spleen. Finally, peripheral administration of IL-15 into EAE mice after disease onset significantly aggravated clinical scores and increased the number of inflammatory CNS-infiltrating T cells long term after stopping IL-15 administration. Conclusions Our results underscore that IL-15 contributes to the amplification of T-cell inflammatory properties after disease onset in both MS and EAE.
Collapse
Affiliation(s)
- Cyril Laurent
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Gabrielle Deblois
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marie-Laure Clénet
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Ana Carmena Moratalla
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marc Girard
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada.
| |
Collapse
|
14
|
Blanco E, Izotova N, Booth C, Thrasher AJ. Immune Reconstitution After Gene Therapy Approaches in Patients With X-Linked Severe Combined Immunodeficiency Disease. Front Immunol 2020; 11:608653. [PMID: 33329605 PMCID: PMC7729079 DOI: 10.3389/fimmu.2020.608653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-threating disease. The genetic origin is a defect in the interleukin 2 receptor γ chain (IL2RG) gene and patients are classically characterized by absence of T and NK cells, as well as presence of partially-functional B cells. Without any treatment the disease is usually lethal during the first year of life. The treatment of choice for these patients is hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an HLA-matched sibling donor is available. However, when alternative donors are used, the success and survival rates are often lower. Gene therapy has been developed as an alternative treatment initially using γ-retroviral vectors to correct the defective γ chain in the absence of pre-conditioning treatment. The results were highly promising in SCID-X1 infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell recovery was less robust. However, some infants developed T-cell acute lymphoblastic leukemia after the gene therapy, due to vector-mediated insertional mutagenesis. Consequently, considerable efforts have been made to develop safer vectors. The most recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in both children and adults. This review provides an overview about the different gene therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly focusing on lymphoid immune reconstitution, as well as the developments that have improved the process and outcomes.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalia Izotova
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adrian James Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
15
|
Wada F, Kondo T, Nakamura M, Uno S, Fujimoto M, Miyamoto T, Honda Y, Shibata H, Izawa K, Yasumi T, Nishikori M, Takaori‐Kondo A. EBV-associated lymphoproliferative disorder in a patient with X-linked severe combined immunodeficiency with multiple reversions of an IL2RG mutation in T cells. EJHAEM 2020; 1:581-584. [PMID: 35845012 PMCID: PMC9175913 DOI: 10.1002/jha2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Fumiya Wada
- Department of Hematology and OncologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Tadakazu Kondo
- Department of Hematology and OncologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Momoko Nakamura
- Department of Hematology and OncologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shunsuke Uno
- Department of Diagnostic PathologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masakazu Fujimoto
- Department of Diagnostic PathologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takayuki Miyamoto
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshitaka Honda
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hirofumi Shibata
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazushi Izawa
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Yasumi
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Momoko Nishikori
- Department of Hematology and OncologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Akifumi Takaori‐Kondo
- Department of Hematology and OncologyGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
16
|
Cifaldi C, Cotugno N, Di Cesare S, Giliani S, Di Matteo G, Amodio D, Piano Mortari E, Chiriaco M, Buonsenso D, Zangari P, Pagliara D, Gaspari S, Carsetti R, Palma P, Finocchi A, Locatelli F, Rossi P, Doria M, Cancrini C. Partial T cell defects and expanded CD56 bright NK cells in an SCID patient carrying hypomorphic mutation in the IL2RG gene. J Leukoc Biol 2020; 108:739-748. [PMID: 32392633 DOI: 10.1002/jlb.5ma0220-239r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) caused by full mutation of the IL2RG gene leads to T- B+ NK- phenotype and is usually associated with severe opportunistic infections, diarrhea, and failure to thrive. When IL2RG hypomorphic mutation occurs, diagnosis could be delayed and challenging since only moderate reduction of T and NK cells may be present. Here, we explored phenotypic insights and the impact of the p.R222C hypomorphic mutation (IL2RGR222C ) in distinct cell subsets in an 8-month-old patient with atypical X-SCID. We found reduced CD4+ T cell counts, a decreased frequency of naïve CD4+ and CD8+ T cells, and an expansion of B cells. Ex vivo STAT5 phosphorylation was impaired in CD4+ CD45RO+ T cells, yet compensated by supraphysiological doses of IL-2. Sanger sequencing on purified cell subsets showed a partial reversion of the mutation in total CD3+ cells, specifically in recent thymic emigrants (RTE), effector memory (EM), and CD45RA+ terminally differentiated EM (EMRA) CD4+ T cells. Of note, patient's NK cells had a normal frequency compared to age-matched healthy subjects, but displayed an expansion of CD56bright cells with higher perforin content and cytotoxic potential, associated with accumulation of NK-cell stimulatory cytokines (IL-2, IL-7, IL-15). Overall, this report highlights an alteration in the NK-cell compartment that, together with the high disease-phenotype variability, should be considered in the suspicion of X-SCID with hypomorphic IL2RG mutation.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Nicola Cotugno
- Research Unit of Congenital and Perinatal Infection, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Gigliola Di Matteo
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donato Amodio
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eva Piano Mortari
- Immunology Research Division, Bambino Gesù Childrens' Hospital IRCCS, Rome, Italy
| | - Maria Chiriaco
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Paola Zangari
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Daria Pagliara
- Department of Pediatric Hematology and Oncology, Bambino Gesù Childrens' Hospital IRCCS, Rome, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology and Oncology, Bambino Gesù Childrens' Hospital IRCCS, Rome, Italy
| | - Rita Carsetti
- Immunology Research Division, Bambino Gesù Childrens' Hospital IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infection, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Childrens' Hospital IRCCS, Rome, Italy.,Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Paolo Rossi
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Research Unit of Congenital and Perinatal Infection, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Doria
- Research Unit of Congenital and Perinatal Infection, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Caterina Cancrini
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Boettcher AN, Cino-Ozuna AG, Solanki Y, Wiarda JE, Putz E, Owens JL, Crane SA, Ahrens AP, Loving CL, Cunnick JE, Rowland RRR, Charley SE, Dekkers JCM, Tuggle CK. CD3ε + Cells in Pigs With Severe Combined Immunodeficiency Due to Defects in ARTEMIS. Front Immunol 2020; 11:510. [PMID: 32296428 PMCID: PMC7136459 DOI: 10.3389/fimmu.2020.00510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
Severe combined immunodeficiency (SCID) is described as the lack of functional T and B cells. In some cases, mutant genes encoding proteins involved in the process of VDJ recombination retain partial activity and are classified as hypomorphs. Hypomorphic activity in the products from these genes can function in the development of T and B cells and is referred to as a leaky phenotype in patients and animals diagnosed with SCID. We previously described two natural, single nucleotide variants in ARTEMIS (DCLR1EC) in a line of Yorkshire pigs that resulted in SCID. One allele contains a splice site mutation within intron 8 of the ARTEMIS gene (ART16), while the other mutation is within exon 10 that results in a premature stop codon (ART12). While initially characterized as SCID and lacking normal levels of circulating lymphoid cells, low levels of CD3ε+ cells can be detected in most SCID animals. Upon further assessment, we found that ART16/16, and ART12/12 SCID pigs had abnormally small populations of CD3ε+ cells, but not CD79α+ cells, in circulation and lymph nodes. Newborn pigs (0 days of age) had CD3ε+ cells within lymph nodes prior to any environmental exposure. CD3ε+ cells in SCID pigs appeared to have a skewed CD4α+CD8α+CD8β− T helper memory phenotype. Additionally, in some pigs, rearranged VDJ joints were detected in lymph node cells as probed by PCR amplification of TCRδ V5 and J1 genomic loci, as well as TCRβ V20 and J1.1, providing molecular evidence of residual Artemis activity. We additionally confirmed that TCRα and TCRδ constant region transcripts were expressed in the thymic and lymph node tissues of SCID pigs; although the expression pattern was abnormal compared to carrier animals. The leaky phenotype is important to characterize, as SCID pigs are an important tool for biomedical research and this additional phenotype may need to be considered. The pig model also provides a relevant model for hypomorphic human SCID patients.
Collapse
Affiliation(s)
- Adeline N Boettcher
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - A Giselle Cino-Ozuna
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Yash Solanki
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jayne E Wiarda
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States.,Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Agricultural Research Service Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Ellie Putz
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jeana L Owens
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Sara A Crane
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Amanda P Ahrens
- Laboratory Animal Research, Iowa State University, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Joan E Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Raymond R R Rowland
- Diagnostic Medicine and Pathobiology Department, Kansas State University, Manhattan, KS, United States
| | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
18
|
Beckeringh NI, Rutjes NW, van Schuppen J, Kuijpers TW. Noncystic Fibrosis Bronchiectasis: Evaluation of an Extensive Diagnostic Protocol in Determining Pediatric Lung Disease Etiology. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2019; 32:155-162. [PMID: 32140286 DOI: 10.1089/ped.2019.1030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Pediatric noncystic fibrosis (CF) bronchiectasis has a variety of causes. An early and accurate diagnosis may prevent disease progression and complications. Current diagnostics and yield regarding etiology are evaluated in a pediatric cohort at a tertiary referral center. Methods: Available data, including high-resolution computed tomography (HRCT) characteristics, microbiological testing, and immunological screening of all children diagnosed with non-CF bronchiectasis between 2003 and 2017, were evaluated. Results: In 91% of patients [n = 69; median age 9 (3-18 years)] etiology was established in the diagnostic process. Postinfection (29%) and immunodeficiency (29%) were most common, followed by congenital anomalies (10%), aspiration (7%), asthma (6%), and primary ciliary dyskinesia (1%). HRCT predominantly showed bilateral involvement in immunodeficient patients (85%) and those with idiopathic bronchiectasis (83%). Congenital malformations (71%) were associated with unilateral disease. Completion of the diagnostic process often led to a change of treatment as started after initial diagnosis. Conclusion: Using a comprehensive diagnostic protocol, the etiology of pediatric non-CF bronchiectasis was established in more than 90% of patients. HRCT provides additional diagnostic information as it points to either a more systemic or a more localized etiology. Adequate diagnostics and data analysis allow treatment to be specifically adapted to prevent disease progression.
Collapse
Affiliation(s)
- Nike I Beckeringh
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels W Rutjes
- Department of Pediatric Pulmonology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost van Schuppen
- Department of Pediatric Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Rawat A, Arora K, Shandilya J, Vignesh P, Suri D, Kaur G, Rikhi R, Joshi V, Das J, Mathew B, Singh S. Flow Cytometry for Diagnosis of Primary Immune Deficiencies-A Tertiary Center Experience From North India. Front Immunol 2019; 10:2111. [PMID: 31572360 PMCID: PMC6749021 DOI: 10.3389/fimmu.2019.02111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Flow cytometry has emerged as a useful technology that has facilitated our understanding of the human immune system. Primary immune deficiency disorders (PIDDs) are a heterogeneous group of inherited disorders affecting the immune system. More than 350 genes causing various PIDDs have been identified. While the initial suspicion and recognition of PIDDs is clinical, laboratory tools such as flow cytometry and genetic sequencing are essential for confirmation and categorization. Genetic sequencing, however, are prohibitively expensive and not readily available in resource constrained settings. Flow cytometry remains a simple, yet powerful, tool for multi-parametric analysis of cells. While it is confirmatory of diagnosis in certain conditions, in others it helps in narrowing the list of putative genes to be analyzed. The utility of flow cytometry in diagnosis of PIDDs can be divided into four major categories: (a) Enumeration of lymphocyte subsets in peripheral blood. (b) Detection of intracellular signaling molecules, transcription factors, and cytokines. (c) Functional assessment of adaptive and innate immune cells (e.g., T cell function in severe combined immune deficiency and natural killer cell function in familial hemophagocytic lymphohistiocytosis). (d) Evaluation of normal biological processes (e.g., class switching in B cells by B cell immunophenotyping). This review focuses on use of flow cytometry in disease-specific diagnosis of PIDDs in the context of a developing country.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
20
|
Veitia RA. Darwinian selection within an individual or somatic selection: facts and models. J Mol Cell Biol 2019; 11:719-722. [PMID: 30806666 PMCID: PMC6788724 DOI: 10.1093/jmcb/mjz014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Université Paris Diderot, 75013 Paris, France.,Université Paris-Diderot, 75013 Paris, France
| |
Collapse
|
21
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
22
|
Novel IL2RG Mutation Causes Leaky TLOWB+NK+ SCID With Nodular Regenerative Hyperplasia and Normal IL-15 STAT5 Phosphorylation. J Pediatr Hematol Oncol 2019; 41:328-333. [PMID: 29939941 DOI: 10.1097/mph.0000000000001232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
X-linked severe combined immunodeficiency disease (SCID) is caused by mutations in the interleukin (IL)-2 receptor γ (IL2RG) gene and patients usually present with a TBNK SCID phenotype. Nevertheless, a minority of these patients present with a TBNK phenotype, similar to the IL-7R-deficient patients. We report a patient with a novel missense p.Glu297Gly mutation in the IL2RG gene presenting with a leaky TBNK SCID with delayed onset, moderate susceptibility to infections, and nodular regenerative hyperplasia. He presents with preserved STAT5 tyrosine phosphorylation in response to IL-15 stimulation but not in response to IL-2 and IL-7, resulting in the NK phenotype.
Collapse
|
23
|
Yamashita M, Wakatsuki R, Kato T, Okano T, Yamanishi S, Mayumi N, Tanaka M, Ogura Y, Kanegane H, Nonoyama S, Imai K, Morio T. A synonymous splice site mutation in IL2RG gene causes late-onset combined immunodeficiency. Int J Hematol 2019; 109:603-611. [PMID: 30850927 DOI: 10.1007/s12185-019-02619-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/24/2023]
Abstract
X-Linked severe combined immunodeficiency (X-SCID) is a severe form of primary immunodeficiency characterized by absence of T cells and NK cells. X-SCID is caused by a loss-of-function mutation in the IL2RG gene that encodes common gamma chain (γc), which plays an essential role in lymphocyte development. We report the first case of hypomorphic X-SCID caused by a synonymous mutation in the IL2RG gene leading to a splice anomaly, in a family including two patients with diffuse cutaneous warts, recurrent molluscum contagiosum, and mild respiratory infections. The mutation caused aberrant splicing of IL2RG mRNA, subsequently resulted in reduced γc expression. The leaky production of normally spliced IL2RG mRNA produced undamaged protein; thus, T cells and NK cells were generated in the patients. Functional assays of the patients' T cells and NK cells revealed diminished cytokine response in the T cells and absent cytokine response in the NK cells. In addition, the TCR repertoire in these patients was limited. These data suggest that a fine balance between aberrant splicing and leaky production of normally spliced IL2RG mRNA resulted in late-onset combined immunodeficiency in these patients.
Collapse
Affiliation(s)
- Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Ryosuke Wakatsuki
- School of Medicine, Faculty of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan.,Department of Pediatrics, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | | | - Nobuko Mayumi
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Mayuri Tanaka
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Yumi Ogura
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
24
|
Oud MM, Tuijnenburg P, Hempel M, van Vlies N, Ren Z, Ferdinandusse S, Jansen MH, Santer R, Johannsen J, Bacchelli C, Alders M, Li R, Davies R, Dupuis L, Cale CM, Wanders RJA, Pals ST, Ocaka L, James C, Müller I, Lehmberg K, Strom T, Engels H, Williams HJ, Beales P, Roepman R, Dias P, Brunner HG, Cobben JM, Hall C, Hartley T, Le Quesne Stabej P, Mendoza-Londono R, Davies EG, de Sousa SB, Lessel D, Arts HH, Kuijpers TW. Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome. Am J Hum Genet 2017; 100:281-296. [PMID: 28132690 DOI: 10.1016/j.ajhg.2017.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.
Collapse
Affiliation(s)
- Machteld M Oud
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| | - Paul Tuijnenburg
- Department of Experimental Immunology, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands; Department of Pediatric Hematology, Immunology, and Infectious disease, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Naomi van Vlies
- Laboratory Genetic Metabolic Diseases, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Zemin Ren
- Department of Pathology, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Machiel H Jansen
- Department of Experimental Immunology, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands; Department of Pediatric Hematology, Immunology, and Infectious disease, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chiara Bacchelli
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Rosalind Davies
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Catherine M Cale
- Department of Immunology, Great Ormond Street Hospital, WC1N 3JH London, UK
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Steven T Pals
- Department of Pathology, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD Amsterdam, the Netherlands
| | - Louise Ocaka
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Chela James
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Strom
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 München, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Hywel J Williams
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Phil Beales
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Patricia Dias
- Serviςo de Genética, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, 1640-035 Lisboa, Portugal
| | - Han G Brunner
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan-Maarten Cobben
- Department of Pediatrics, Academic Medical Center University Hospital, PO Box 22660, 1100 DD Amsterdam, the Netherlands; Department of Clinical Genetics, St. George's University Hospital, SW19 0ER London, UK
| | - Christine Hall
- Emerita, Department of Radiology, Great Ormond Street Hospital, WC1N 3JH London, UK
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8 L1, Canada
| | - Polona Le Quesne Stabej
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| | - E Graham Davies
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK; Department of Immunology, Great Ormond Street Hospital, WC1N 3JH London, UK
| | - Sérgio B de Sousa
- COSgene, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK; Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal; Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heleen H Arts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Pathology and Molecular Medicine, McMaster University Medical Centre, Hamilton, ON L8S 4J9, Canada
| | - Taco W Kuijpers
- Department of Experimental Immunology, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Mou W, He J, Chen X, Zhang H, Ren X, Wu X, Ni X, Xu B, Gui J. A novel deletion mutation in IL2RG gene results in X-linked severe combined immunodeficiency with an atypical phenotype. Immunogenetics 2016; 69:29-38. [PMID: 27566612 DOI: 10.1007/s00251-016-0949-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/14/2016] [Indexed: 12/31/2022]
Abstract
Severe combined immunodeficiency (SCID) is the most serious disorder among primary immunodeficiency diseases threatening children's life. Atypical SCID variant, presenting with mild reduced T cells subsets, is often associated with infection susceptibility but poor clinical diagnosis. The atypical X-SCID patient in the present study showed a mild clinical presentation with a TlowNK+B+ immunophenotype. The patient has reduced T- cell subpopulations with a subdued thymic output measured by sjTRECs. Further analysis showed that T cells maintained a normal proliferation and a broad Vβ repertoire. NK cells, however, exhibited a skewed development toward immature CD3-CD16+CD56- cells. Genetic analysis revealed a novel deletion at nucleotide 52 in exon 1 of IL2RG gene. Sequence alignment predicted a truncated IL2RG protein missing signal peptide derived from a possible alternative reading frame. The novel mutation in IL2RG gene identified in our study may help the early diagnosis of atypical X-SCID.
Collapse
Affiliation(s)
- Wenjun Mou
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Jianxin He
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xi Chen
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Hui Zhang
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xiaoya Ren
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xunyao Wu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xin Ni
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Baoping Xu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Jingang Gui
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China. .,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
26
|
Phenotypic and Functional Comparison of Class Switch Recombination Deficiencies with a Subgroup of Common Variable Immunodeficiencies. J Clin Immunol 2016; 36:656-66. [PMID: 27484504 PMCID: PMC5018261 DOI: 10.1007/s10875-016-0321-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/18/2016] [Indexed: 11/01/2022]
Abstract
Primary antibody deficiencies (PADs) are the most common immunodeficiency in humans, characterized by low levels of immunoglobulins and inadequate antibody responses upon immunization. These PADs may result from an early block in B cell development with a complete absence of peripheral B cells and lack of immunoglobulins. In the presence of circulating B cells, some PADs are genetically caused by a class switch recombination (CSR) defect, but in the most common PAD, common variable immunodeficiency (CVID), very few gene defects have as yet been characterized despite various phenotypic classifications. Using a functional read-out, we previously identified a functional subgroup of CVID patients with plasmablasts (PBs) producing IgM only. We have now further characterized such CVID patients by a direct functional comparison with patients having genetically well-characterized CSR defects in CD40L, activation-induced cytidine deaminase (AID) and uracil N-glycosylase activity (UNG). The CSR-like CVID patients showed a failure in B cell activation patterns similar to the classical AID/UNG defects in three out of five CVID patients and distinct more individual defects in the two other CVID cases when tested for cellular activation and PB differentiation. Thus, functional categorization of B cell activation and differentiation pathways extends the expected variation in CVID to CSR-like defects of as yet unknown genetic etiology.
Collapse
|
27
|
Silent IL2RG Gene Editing in Human Pluripotent Stem Cells. Mol Ther 2015; 24:582-91. [PMID: 26444081 DOI: 10.1038/mt.2015.190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/30/2015] [Indexed: 12/19/2022] Open
Abstract
Many applications of pluripotent stem cells (PSCs) require efficient editing of silent chromosomal genes. Here, we show that a major limitation in isolating edited clones is silencing of the selectable marker cassette after homologous recombination and that this can be overcome by using a ubiquitous chromatin opening element (UCOE) promoter-driven transgene. We use this strategy to edit the silent IL2RG locus in human PSCs with a recombinant adeno-associated virus (rAAV)-targeting vector in the absence of potentially genotoxic, site-specific nucleases and show that IL2RG is required for natural killer and T-cell differentiation of human PSCs. Insertion of an active UCOE promoter into a silent locus altered the histone modification and cytosine methylation pattern of surrounding chromatin, but these changes resolved when the UCOE promoter was removed. This same approach could be used to correct IL2RG mutations in X-linked severe combined immunodeficiency patient-derived induced PSCs (iPSCs), to prevent graft versus host disease in regenerative medicine applications, or to edit other silent genes.
Collapse
|
28
|
Late-Onset Combined Immunodeficiency with a Novel IL2RG Mutation and Probable Revertant Somatic Mosaicism. J Clin Immunol 2015; 35:610-4. [PMID: 26407811 DOI: 10.1007/s10875-015-0202-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Primary immunodeficiency disease (PID) is caused by mutations of more than two hundred immunity-related genes. In addition to the heterogeneity of the diseases, the atypical presentation of each disease caused by hypomorphic mutations or somatic mosaicism makes genetic diagnosis challenging. Next-generation sequencing tests all genes simultaneously and has proven its innovative efficacy in genomics. We describe a male PID patient without any family history of immunodeficiency. This patient suffered from recurrent infections from 1 year of age. Laboratory analysis showed hypogammaglobulinemia. T, B, and NK cells were present, but the T cell proliferative response decreased. Whole-exome sequencing analysis identified an IL2RG p.P58T missense mutation. CD8(+) and CD56(+) cells showed revertant somatic mosaicism to the wild-type allele. A late-onset and atypical presentation of the X-linked severe combined immunodeficiency (X-SCID) phenotype might be associated with revertant somatic mosaicism in T and NK cells. This patient is the seventh reported case of X-SCID with revertant somatic mosaicism. His classical clinical management did not result in a molecular diagnosis because of the atypical presentation. The coverage that is provided by whole-exome sequencing of most PID genes effectively excluded differential diagnoses other than X-SCID. As next-generation sequencing becomes available in clinical practice, it will enhance our knowledge of PID and rescue currently undiagnosed patients.
Collapse
|
29
|
Tan W, Yu S, Lei J, Wu B, Wu C. A novel common gamma chain mutation in a Chinese family with X-linked severe combined immunodeficiency (X-SCID; T(-)NK(-)B(+)). Immunogenetics 2015; 67:629-39. [PMID: 26409833 DOI: 10.1007/s00251-015-0871-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023]
Abstract
X-linked severe combined immunodeficiency (X-SCID) is one of the most common causes of primary immunodeficiencies in humans. A 4-month-old boy with recurrent pulmonary infection had decreased numbers of CD3(+), CD4(+), CD8(+) T lymphocytes, and NK cells and increased levels of CD19(+) B cells but no memory B cells or plasma cells. The production of cytokines by T cells and the activation of T and B cells were either absent or inefficient. While B cell levels were high, they were all IgM-positive, and the secretion of all Ig isotypes by activated B cells in vitro was defective. Genomic DNA sequencing revealed that the patient had missense mutations in the IL2RG (exon 5, 718 T > C) and IL7R genes (exon 2, 197 T > C; exon 4, 412G > A). Although the patient's father and one of his sisters have the same missense homozygous mutations of the IL7R gene, neither of them exhibited the immunological phenotype of SCID. The results indicate that the IL2RG gene mutation or a combination of the IL7R and IL2RG mutations in the sick boy had resulted in T(-)NK(-)B(+) SCID.
Collapse
Affiliation(s)
- Weiping Tan
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yang jiang Xi Road, 74 Zhongshan 2nd Road, Guangzhou, 510120, People's Republic of China
| | - Sifei Yu
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Jiaying Lei
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yang jiang Xi Road, 74 Zhongshan 2nd Road, Guangzhou, 510120, People's Republic of China
| | - Baojing Wu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yang jiang Xi Road, 74 Zhongshan 2nd Road, Guangzhou, 510120, People's Republic of China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
30
|
Hsu AP, Pittaluga S, Martinez B, Rump AP, Raffeld M, Uzel G, Puck JM, Freeman AF, Holland SM. IL2RG reversion event in a common lymphoid progenitor leads to delayed diagnosis and milder phenotype. J Clin Immunol 2015; 35:449-53. [PMID: 26076747 PMCID: PMC4504777 DOI: 10.1007/s10875-015-0174-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
Severe combined immunodeficiency (SCID) is most frequently caused by mutations in the cytokine receptor common gamma chain, CD132, encoded by the X-linked gene, IL2RG. Most patients present in the first year of life with failure to thrive, severe, opportunistic infections and absence of CD3+ T cells. We present a patient with pediatric illness and a diagnosis of combined variable immune deficiency (CVID) who was diagnosed at age 23 with an inherited IL2RG mutation causing loss of signal transduction through CD132. His peripheral blood included CD3/CD4 and CD3/CD8 positive cells as well as low levels of CD19+ B cells containing a reversion to the wildtype IL2RG allele. The reversion, which was not present at birth, may account for his mild phenotype and late diagnosis.
Collapse
Affiliation(s)
- Amy P. Hsu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Clinical Infectious Diseases, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bianca Martinez
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Clinical Infectious Diseases, Bethesda, MD, USA
| | - Amy P. Rump
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Clinical Infectious Diseases, Bethesda, MD, USA
| | - Jennifer M. Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra F. Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Clinical Infectious Diseases, Bethesda, MD, USA
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Clinical Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
31
|
Zhang T, Zhao LL, Zhang ZR, Fu PD, Su ZD, Qi LC, Li XQ, Dong YM. Interaction network analysis revealed biomarkers in myocardial infarction. Mol Biol Rep 2014; 41:4997-5003. [PMID: 24748432 DOI: 10.1007/s11033-014-3366-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/04/2014] [Indexed: 11/26/2022]
Abstract
Myocardial infarction (MI) is a serious heart disease. The cardiac cells of patients with MI will die due to lack of blood for a long time. In this study, we aimed to find new targets for MI diagnosis and therapy. We downloaded GSE22229 including 12 blood samples from healthy persons and GSE29111 from Gene Expression Omnibus including 36 blood samples from MI patients. Then we identified differentially expressed genes (DEGs) in patients with MI compared to normal controls with p value < 0.05 and |logFC| > 1. Furthermore, interaction network and sub-network of these of these DEGs were constructed by NetBox. Linker genes were screened in the Global Network database. The degree of linker genes were calculated by igraph package in R language. Gene ontology and kyoto encyclopedia of genes and genomes pathway analysis were performed for DEGs and network modules. A total of 246 DEGs were identified in MI, which were enriched in the immune response. In the interaction network, LCK, CD247, CD3D, FYN, HLA-DRA, IL2, CD8A CD3E, CD4, CD3G had high degree, among which CD3E, CD4, CD3G were DEGs while others were linker genes screened from Global Network database. Genes in the sub-network were also enriched in the immune response pathway. The genes with high degree may be biomarkers for MI diagnosis and therapy.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street of Nangang District, Harbin, 150001, Heilongjiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wada T. [Revertant somatic mosaicism in primary immunodeficiency diseases]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2014; 37:447-53. [PMID: 25748128 DOI: 10.2177/jsci.37.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Revertant somatic mosaicism has been described in an increasing number of genetic disorders including primary immunodeficiency diseases. Both back mutations leading to restoration of wild-type sequences and second-site mutations resulting in compensatory changes have been demonstrated in mosaic individuals. Recent studies identifying revertant somatic mosaicism caused by multiple independent genetic changes further support its frequent occurrence in primary immunodeficiency diseases. Revertant mosaicism acquires a particular clinical relevance because it may lead to selective growth advantage of the corrected cells, resulting in improvement of disease symptoms or atypical clinical presentations. This phenomenon also provides us unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. Here we review the recent findings of revertant somatic mosaicism in primary immunodeficiency diseases and discuss its clinical implications.
Collapse
Affiliation(s)
- Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University
| |
Collapse
|