1
|
Mattioda C, Voena C, Ciardelli G, Mattu C. In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead? Cells 2025; 14:38. [PMID: 39791739 PMCID: PMC11720277 DOI: 10.3390/cells14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment. The development of biomimetic, in vitro models may promote the investigation of the interactions between cancer cells and the tumor microenvironment and may help to better understand the mechanisms leading to drug resistance. Although advanced in vitro models have been largely explored in the field of solid tumors, due to the complex nature of the blood cancer tumor microenvironment, the mimicking of haematological malignancies mostly relies on simpler systems, often limited to two-dimensional cell culture, which intrinsically excludes the microenvironmental niche, or to ethically debated animal models. This review aims at reporting an updated overview of state-of-the-art hematological malignancies 3D in vitro models, emphasizing the key features and limitations of existing systems to inspire further research in this underexplored field.
Collapse
Affiliation(s)
- Carlotta Mattioda
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gianluca Ciardelli
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Clara Mattu
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| |
Collapse
|
2
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024; 103:5035-5057. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Dong R, Wei J, Tian S, Wang J, Ma Y, Li Y, Liu RX, Liu YQ. Single-cell RNA transcriptomics reveals Du-Zhong-Wan promotes osteoporotic fracture healing via YAP/β-catenin/VEGF axis in BMSCs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155572. [PMID: 39366157 DOI: 10.1016/j.phymed.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Our previous study demonstrated that Du-Zhong-Wan (DZW) promoted osteoporotic fracture (OPF) healing by enhancing osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of endothelial cells (ECs). However, the heterogeneity of BMSCs and ECs, as well as the specific molecular mechanism underlying these effects, still require further evaluation. PURPOSE The primary objective of this study was to elucidate the heterogeneity of BMSCs and ECs, as well as the cellular-level mechanism of DZW against OPF through single-cell RNA sequencing. METHODS In this study, we presented a single-cell atlas of mouse femoral callus, comparing samples with and without DZW treatment, utilizing single-cell RNA sequencing. Variable genes were identified using the FindVariableGenes (FVG) and principal component analysis (PCA) analysis. Additionally, uniform manifold approximation and projection (U-MAP) was employed to reduce and visualize the distinct subclusters. The CellPhoneDB2 method was employed to analyze intercellular communication and quantify the interaction between ligands and receptors within distinct cell clusters. The osteogenic differentiation capacity of BMSCs was assessed by micro-CT, alkaline phosphatase (ALP), and alizarin red S (ARS) assay. The scratch wound assay and tube formation assay were utilized to assess the angiogenic capabilities of ECs in vitro. Additionally, western blot and immunofluorescence experiments were utilized to elucidate the related protein expression. RESULTS Consistent with our previous studies, DZW obviously promoted osteoporotic fracture healing. Moreover, this study discovered 14 cell clusters at the femoral fracture callus, where the BMSCs most actively interacted with ECs, through single-cell sequencing. Notably, DZW significantly elevated the proportion of Lepr+ BMSCs and Podxl+ ECs subgroup, which were respectively considered essential cells for osteoblastogenesis and angiogenesis of arteriolar vessels. The increased proportion of Podxl+ ECs was partially attributed to vascular endothelial growth factor (VEGF), secreted by BMSCs, which were able to be reversed by YAP pharmacological inhibitor verteporfin. Furthermore, the western blot assay revealed elevated expression levels of YAP/β-catenin, VEGF, RUNX2, and OCN in BMSCs treated with DZW, which were counteracted by verteporfin. CONCLUSION The data above indicates that DZW elevates the proportion of LEPR+ BMSCs and Podxl+ ECs, therefore contributing for the osteogenic ability of BMSCs and BMSCs-mediated angiogenesis via activation of the YAP/β-catenin/VEGF axis, which provides novel potential targets and mechanism for DZW in treating OPF in sub-clusters and molecular level.
Collapse
Affiliation(s)
- Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui-Xia Liu
- The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Kwon M, Kim BS, Yoon S, Oh SO, Lee D. Hematopoietic Stem Cells and Their Niche in Bone Marrow. Int J Mol Sci 2024; 25:6837. [PMID: 38999948 PMCID: PMC11241602 DOI: 10.3390/ijms25136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Collapse
Affiliation(s)
- Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Zhang L, Wang Z, Zhang Y, Ji R, Li Z, Zou J, Gao B. Regulatory cellular and molecular networks in the bone microenvironment during aging. LIFE MEDICINE 2024; 3:lnae019. [PMID: 39871887 PMCID: PMC11749081 DOI: 10.1093/lifemedi/lnae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 01/29/2025]
Abstract
Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging. Age-related bone degradation primarily manifests as reduced bone formation and the increased accumulation of bone marrow fat. Cellular senescence diminishes bone cell vitality, thereby disrupting the balance of bone remodeling. Intensive osteoclast differentiation leads to the generation of more osteoclasts and increased bone resorption. This review provides insight into the impact of aging on bone, encompassing bone cell states during the aging process and bone signaling pathway transformations. It primarily delves into aging-related signaling pathways, such as the bone morphogenetic protein/Smad, Wnt/β-catenin, osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB, connexin43/miR21, and nuclear factor erythroid 2-related factor 2/antioxidant response element pathways, seeking to enhance our comprehension of crucial bone cells and their secretory phenotypes during aging. Furthermore, the precise molecular regulatory mechanisms underlying the interactions between bone signaling pathways and aging are investigated.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yuan Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Rui Ji
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| | - Zhiben Li
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| |
Collapse
|
6
|
Lai X, Jiao X, Zhang H, Lei J. Computational modeling reveals key factors driving treatment-free remission in chronic myeloid leukemia patients. NPJ Syst Biol Appl 2024; 10:45. [PMID: 38678088 PMCID: PMC11055880 DOI: 10.1038/s41540-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Patients with chronic myeloid leukemia (CML) who receive tyrosine kinase inhibitors (TKIs) have been known to achieve treatment-free remission (TFR) upon discontinuing treatment. However, the underlying mechanisms of this phenomenon remain incompletely understood. This study aims to elucidate the mechanism of TFR in CML patients, focusing on the feedback interaction between leukemia stem cells and the bone marrow microenvironment. We have developed a mathematical model to explore the interplay between leukemia stem cells and the bone marrow microenvironment, allowing for the simulation of CML progression dynamics. Our proposed model reveals a dichotomous response following TKI discontinuation, with two distinct patient groups emerging: one prone to early molecular relapse and the other capable of achieving long-term TFR after treatment cessation. This finding aligns with clinical observations and underscores the essential role of feedback interaction between leukemic cells and the tumor microenvironment in sustaining TFR. Notably, we have shown that the ratio of leukemia cells in peripheral blood (PBLC) and the tumor microenvironment (TME) index can be a valuable predictive tool for identifying patients likely to achieve TFR after discontinuing treatment. This study provides fresh insights into the mechanism of TFR in CML patients and underscores the significance of microenvironmental control in achieving TFR.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Xiaopei Jiao
- Department of Mathematics, Tsinghua University, Beijing, China
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, China.
| |
Collapse
|
7
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
8
|
Martinez LM, Guzman ML. Understanding the interaction between leukaemia stem cells and their microenvironment to improve therapeutic approaches. Br J Pharmacol 2024; 181:273-282. [PMID: 37309573 DOI: 10.1111/bph.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Although chemotherapeutic regimens can eliminate blasts in leukaemia patients, such therapies are associated with toxicity and often fail to eliminate all malignant cells resulting in disease relapse. Disease relapse has been attributed to the persistence of leukaemia cells in the bone marrow (BM) with the capacity to recapitulate disease; these cells are often referred to as leukaemia stem cells (LSCs). Although LSCs have distinct characteristics in terms of pathobiology and immunophenotype, they are still regulated by their interactions with the surrounding microenvironment. Thus, understanding the interaction between LSCs and their microenvironment is critical to identify effective therapies. To this end, there are numerous efforts to develop models to study such interactions. In this review, we will focus on the reciprocal interactions between LSCs and their milieu in the BM. Furthermore, we will highlight relevant therapies targeting these interactions and discuss some of the promising in vitro models designed to mimic such relationship. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Leandro M Martinez
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
9
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
10
|
Zhang Y, Lin D, Zheng Y, Chen Y, Yu M, Cui D, Huang M, Su X, Sun Y, Chen Y, Qian Z, Carlson KS, Wen R, Wang D. MiR-9-1 controls osteoblastic regulation of lymphopoiesis. Leukemia 2023; 37:2261-2275. [PMID: 37670087 PMCID: PMC10844005 DOI: 10.1038/s41375-023-02014-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
The highly conserved MicroRNA-9 (miR-9) family consists of three members. We discovered that miR-9-1 deletion reduced mature miR-9 expression, causing 43% of the mice to display smaller size and postweaning lethality. MiR-9-1-deficient mice with growth defects experienced severe lymphopenia, but other blood cells were unaffected. The lymphopenia wasn't due to defects in hematopoietic progenitors, as mutant bone marrow (BM) cells underwent normal lymphopoiesis after transplantation into wild-type recipients. Additionally, miR-9-1-deficient mice exhibited impaired osteoblastic bone formation, as mutant mesenchymal stem cells (MSCs) failed to differentiate into osteoblastic cells (OBs). RNA sequencing revealed reduced expression of master transcription factors for osteoblastic differentiation, Runt-related transcription factor 2 (Runx2) and Osterix (Osx), and genes related to collagen formation, extracellular matrix organization, and cell adhesion, in miR-9-1-deficient MSCs. Follistatin (Fst), an antagonist of bone morphogenetic proteins (BMPs), was found to be a direct target of miR-9-1. Its deficiency led to the up-regulation of Fst, inhibiting BMP signaling in MSCs, and reducing IL-7 and IGF-1. Thus, miR-9-1 controls osteoblastic regulation of lymphopoiesis by targeting the Fst/BMP/Smad signaling axis.
Collapse
Affiliation(s)
- Yongguang Zhang
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Danfeng Lin
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Yongwei Zheng
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
| | - Dongya Cui
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Miaohui Huang
- Biomedical Research Center of South China, Fujian Normal University, Fujian, 350117, China
| | - Xinlin Su
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 205006, China
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Zhijian Qian
- Division of Hematology and Oncology, Department of Medicine, Department of Biochemistry and Molecular Biology, the University of Florida, Gainesville, FL, 32610, USA
| | - Karen-Sue Carlson
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53213, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Sabbah R, Saadi S, Shahar-Gabay T, Gerassy S, Yehudai-Resheff S, Zuckerman T. Abnormal adipogenic signaling in the bone marrow mesenchymal stem cells contributes to supportive microenvironment for leukemia development. Cell Commun Signal 2023; 21:277. [PMID: 37817179 PMCID: PMC10563260 DOI: 10.1186/s12964-023-01231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/16/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological malignancy, associated with unfavorable patient outcome, primarily due to disease relapse. Mesenchymal stem cells (MSCs) residing in the bone marrow (BM) niche are the source of mesenchyma-derived subpopulations, including adipocytes, and osteocytes, that are critical for normal hematopoiesis. This study aimed to characterize BM-derived adipocyte/osteocyte fractions and their crosstalk with AML cells as a potential mechanism underlying leukemogenesis. METHODS BM cell subpopulations derived from primary AML patients were evaluated using humanized ex-vivo and in-vivo models, established for this study. The models comprised AML blasts, normal hematopoietic stem and progenitor cells and mesenchymal stromal subpopulations. ELISA, FACS analysis, colony forming unit assay, whole exome sequencing and real-time qPCR were employed to assess the differentiation capacity, genetic status, gene expression and function of these cell fractions. To explore communication pathways between AML cells and BM subpopulations, levels of signaling mediators, including cytokines and chemokines, were measured using the ProcartaPlex multiplex immunoassay. RESULTS The study revealed deficiencies in adipogenic/osteogenic differentiation of BM-MSCs derived from AML patients, with adipocytes directly promoting survival and clonogenicity of AML cells in-vitro. In whole exome sequencing of BM-MSC/stromal cells, the AHNAK2 gene, associated with the stimulation of adipocyte differentiation, was found to be mutated and significantly under-expressed, implying its abnormal function in AML. The evaluation of communication pathways between AML cells and BM subpopulations demonstrated pronounced alterations in the crosstalk between these cell fractions. This was reflected by significantly elevated levels of signaling mediators cytokines/chemokines, in AML-induced adipocytes/osteocytes compared to non-induced MSCs, indicating abnormal hematopoiesis. Furthermore, in-vivo experiments using a fully humanized 3D scaffold model, showed that AML-induced adipocytes were the dominant component of the tumor microenvironment, providing preferential support to leukemia cell survival and proliferation. CONCLUSIONS This study has disclosed direct contribution of impaired functional, genetic and molecular properties of AML patient-derived adipocytes to effective protection of AML blasts from apoptosis and to stimulation of their growth in vitro and in vivo, which overall leads to disease propagation and relapse. The detected AHNAK2 gene mutations in AML-MSCs point to their involvement in the mechanism underlying abnormal adipogenesis. Video Abstract.
Collapse
Affiliation(s)
- Rawan Sabbah
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel
| | - Sahar Saadi
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel
| | - Tal Shahar-Gabay
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel
| | - Shiran Gerassy
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
| | - Shlomit Yehudai-Resheff
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Tsila Zuckerman
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel.
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel.
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel.
| |
Collapse
|
12
|
Liesveld J, Galipeau J. In Vitro Insights Into the Influence of Marrow Mesodermal/Mesenchymal Progenitor Cells on Acute Myelogenous Leukemia and Myelodysplastic Syndromes. Stem Cells 2023; 41:823-836. [PMID: 37348128 DOI: 10.1093/stmcls/sxad050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The study of marrow-resident mesodermal progenitors can provide important insight into their role in influencing normal and aberrant hematopoiesis as occurs in acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). In addition, the chemokine competency of these cells provides links to the inflammatory milieu of the marrow microenvironment with additional implications for normal and malignant hematopoiesis. While in vivo studies have elucidated the structure and function of the marrow niche in murine genetic models, corollary human studies have not been feasible, and thus the use of culture-adapted mesodermal cells has provided insights into the role these rare endogenous niche cells play in physiologic, malignant, and inflammatory states. This review focuses on culture-adapted human mesenchymal stem/stromal cells (MSCs) as they have been utilized in understanding their influence in AML and MDS as well as on their chemokine-mediated responses to myeloid malignancies, injury, and inflammation. Such studies have intrinsic limitations but have provided mechanistic insights and clues regarding novel druggable targets.
Collapse
Affiliation(s)
- Jane Liesveld
- Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Jaques Galipeau
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, Madison, WI, USA
| |
Collapse
|
13
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhao Y, Guo R, Cao X, Zhang Y, Sun R, Lu W, Zhao M. Role of chemokines in T-cell acute lymphoblastic Leukemia: From pathogenesis to therapeutic options. Int Immunopharmacol 2023; 121:110396. [PMID: 37295031 DOI: 10.1016/j.intimp.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous and aggressive subtype of hematologic malignancy, with limited therapeutic options due to the complexity of its pathogenesis. Although high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation have improved outcomes for T-ALL patients, there remains an urgent need for novel treatments in cases of refractory or relapsed disease. Recent research has demonstrated the potential of targeted therapies aimed at specific molecular pathways to improve patient outcomes. Chemokine-related signals, both upstream and downstream, modulate the composition of distinct tumor microenvironments, thereby regulating a multitude of intricate cellular processes such as proliferation, migration, invasion and homing. Furthermore, the progress in research has made significant contributions to precision medicine by targeting chemokine-related pathways. This review article summarizes the crucial roles of chemokines and their receptors in T-ALL pathogenesis. Moreover, it explores the advantages and disadvantages of current and potential therapeutic options that target chemokine axes, including small molecule antagonists, monoclonal antibodies, and chimeric antigen receptor T-cells.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin 300192, China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
15
|
Parker J, Hockney S, Blaschuk OW, Pal D. Targeting N-cadherin (CDH2) and the malignant bone marrow microenvironment in acute leukaemia. Expert Rev Mol Med 2023; 25:e16. [PMID: 37132370 PMCID: PMC10407222 DOI: 10.1017/erm.2023.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
This review discusses current research on acute paediatric leukaemia, the leukaemic bone marrow (BM) microenvironment and recently discovered therapeutic opportunities to target leukaemia-niche interactions. The tumour microenvironment plays an integral role in conferring treatment resistance to leukaemia cells, this poses as a key clinical challenge that hinders management of this disease. Here we focus on the role of the cell adhesion molecule N-cadherin (CDH2) within the malignant BM microenvironment and associated signalling pathways that may bear promise as therapeutic targets. Additionally, we discuss microenvironment-driven treatment resistance and relapse, and elaborate the role of CDH2-mediated cancer cell protection from chemotherapy. Finally, we review emerging therapeutic approaches that directly target CDH2-mediated adhesive interactions between the BM cells and leukaemia cells.
Collapse
Affiliation(s)
- Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
16
|
Di Buduo CA, Miguel CP, Balduini A. Inside-to-outside and back to the future of megakaryopoiesis. Res Pract Thromb Haemost 2023; 7:100197. [PMID: 37416054 PMCID: PMC10320384 DOI: 10.1016/j.rpth.2023.100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
A State of the Art lecture titled "Megakaryocytes and different thrombopoietic environments" was presented at the ISTH Congress in 2022. Circulating platelets are specialized cells produced by megakaryocytes. Leading studies point to the bone marrow niche as the core of hematopoietic stem cell differentiation, revealing interesting and complex environmental factors for consideration. Megakaryocytes take cues from the physiochemical bone marrow microenvironment, which includes cell-cell interactions, contact with extracellular matrix components, and flow generated by blood circulation in the sinusoidal lumen. Germinal and acquired mutations in hematopoietic stem cells may manifest in altered megakaryocyte maturation, proliferation, and platelet production. Diseased megakaryopoiesis may also cause modifications of the entire hematopoietic niche, highlighting the central role of megakaryocytes in the control of physiologic bone marrow homeostasis. Tissue-engineering approaches have been developed to translate knowledge from in vivo (inside) to functional mimics of native tissue ex vivo (outside). Reproducing the thrombopoietic environment is instrumental to gain new insight into its activity and answering the growing demand for human platelets for fundamental studies and clinical applications. In this review, we discuss the major achievements on this topic, and finally, we summarize relevant new data presented during the 2022 ISTH Congress that pave the road to the future of megakaryopoiesis.
Collapse
Affiliation(s)
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
17
|
Remodeled CD146 +CD271 + Bone Marrow Mesenchymal Stem Cells from Patients with Polycythemia Vera Exhibit Altered Hematopoietic Supportive Activity. Stem Cell Rev Rep 2023; 19:406-416. [PMID: 36018465 DOI: 10.1007/s12015-022-10427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
An essential component of the hematopoietic microenvironment, bone marrow mesenchymal stem cells (BM-MSCs) play an important role in the homeostasis and pathogenesis of the hematopoietic system by regulating the fate of hematopoietic stem cells (HSCs). Previous studies revealed that BM-MSCs were functionally remodeled by malignant cells in leukemia. However, the alterations in BM-MSCs in polycythemia vera (PV) and their effects on HSCs still need to be elucidated. Our results demonstrated that although BM-MSCs from PV patients shared similar surface markers with those from healthy donors, they exhibited enhanced proliferation, decreased senescence, and abnormal osteogenic differentiation capacities. The CD146+CD271+ BM-MSC subpopulation, which is considered to give rise to typical cultured BM-MSCs and form bone and the hematopoietic stroma, was then sorted. Compared with those from healthy donors, CD146+CD271+ BM-MSCs from PV patients showed an impaired mesensphere formation capacity and abnormal differentiation toward osteogenic lineages. In addition, CD146+CD271+ PV BM-MSCs showed altered hematopoietic supportive activity when cocultured with cord blood CD34+ cells. Our study suggested that remodeled CD146+CD271+ BM-MSCs might contribute to the pathogenesis of PV, a finding that will shed light on potential therapeutic strategies for PV.
Collapse
|
18
|
Bouligny IM, Maher KR, Grant S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev 2023; 57:100996. [PMID: 35989139 PMCID: PMC10693933 DOI: 10.1016/j.blre.2022.100996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic neoplasm which results in clonal proliferation of abnormally differentiated hematopoietic cells. In this review, mechanisms contributing to myeloid leukemogenesis are summarized, highlighting aberrations of epigenetics, transcription factors, signal transduction, cell cycling, and the bone marrow microenvironment. The mechanisms contributing to AML are detailed to spotlight recent findings that convey clinical impact. The applications of current and prospective therapeutic targets are accentuated in addition to reviews of treatment paradigms stratified for each characteristic molecular lesion - with a focus on exploring novel treatment approaches and combinations to improve outcomes in AML.
Collapse
Affiliation(s)
- Ian M Bouligny
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Keri R Maher
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
20
|
Chansaenroj A, Kornsuthisopon C, Roytrakul S, Phothichailert S, Rochanavibhata S, Fournier BPJ, Srithanyarat SS, Nowwarote N, Osathanon T. Indirect Immobilised Jagged-1 Enhances Matrisome Proteins Associated with Osteogenic Differentiation of Human Dental Pulp Stem Cells: A Proteomic Study. Int J Mol Sci 2022; 23:ijms232213897. [PMID: 36430375 PMCID: PMC9694941 DOI: 10.3390/ijms232213897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Suphalak Phothichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
| | | | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (N.N.); (T.O.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (N.N.); (T.O.)
| |
Collapse
|
21
|
Leukemic Stem Cells as a Target for Eliminating Acute Myeloid Leukemia: Gaps in Translational Research. Crit Rev Oncol Hematol 2022; 175:103710. [DOI: 10.1016/j.critrevonc.2022.103710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
|
22
|
Hughes AM, Kuek V, Kotecha RS, Cheung LC. The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers (Basel) 2022; 14:2089. [PMID: 35565219 PMCID: PMC9102980 DOI: 10.3390/cancers14092089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoietic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral response of the adaptive immune system. This process is tightly regulated by spatially distinct bone marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells, osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in disease development, treatment resistance and relapse. Further understanding of the crosstalk between leukemic cells and bone marrow niche cells will enable development of additional therapeutic strategies that target the niches in order to hinder leukemia progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
23
|
Foster BM, Shi L, Harris KS, Patel C, Surratt VE, Langsten KL, Kerr BA. Bone Marrow-Derived Stem Cell Factor Regulates Prostate Cancer-Induced Shifts in Pre-Metastatic Niche Composition. Front Oncol 2022; 12:855188. [PMID: 35515124 PMCID: PMC9063312 DOI: 10.3389/fonc.2022.855188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal metastasis is the leading cause of morbidity and mortality in prostate cancer, with 80% of advanced prostate cancer patients developing bone metastases. Before metastasis, bone remodeling occurs, stimulating pre-metastatic niche formation and bone turnover, and platelets govern this process. Stem cell factor (SCF, Kit Ligand) is increased in advanced prostate cancer patient platelet releasates. Further, SCF and its receptor, CD117/c-kit, correlate with metastatic prostate cancer severity. We hypothesized that bone-derived SCF plays an important role in prostate cancer tumor communication with the bone inducing pre-metastatic niche formation. We generated two cell-specific SCF knockout mouse models deleting SCF in either mature osteoblasts or megakaryocytes and platelets. Using two syngeneic androgen-insensitive murine prostate cancer cell lines, RM1 (Ras and Myc co-activation) and mPC3 (Pten and Trp53 deletion), we examined the role of bone marrow-derived SCF in primary tumor growth and bone microenvironment alterations. Platelet-derived SCF was required for mPC3, but not RM1, tumor growth, while osteoblast-derived SCF played no role in tumor size in either cell line. While exogenous SCF induced proangiogenic protein secretion by RM1 and mPC3 prostate cancer cells, no significant changes in tumor angiogenesis were measured by immunohistochemistry. Like our previous studies, tumor-induced bone formation occurred in mice bearing RM1 or mPC3 neoplasms, demonstrated by bone histomorphometry. RM1 tumor-bearing osteoblast SCF knockout mice did not display tumor-induced bone formation. Bone stromal cell composition analysis by flow cytometry showed significant shifts in hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and osteoblast cell percentages in mice bearing RM1 or mPC3 tumors. There were no significant changes in the percentage of macrophages, osteoclasts, or osteocytes. Our study demonstrates that megakaryocyte/platelet-derived SCF regulates primary mPC3 tumor growth, while SCF originating from osteoblasts plays a role in bone marrow-derived progenitor cell composition and pre-metastatic niche formation. Further, we show that both the source of SCF and the genetic profile of prostate cancer determine the effects of SCF. Thus, targeting the SCF/CD117 signaling axis with tyrosine kinase inhibitors could affect primary prostate carcinomas or play a role in reducing bone metastasis dependent on the gene deletions or mutations driving the patients' prostate cancer.
Collapse
Affiliation(s)
- Brittni M. Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Koran S. Harris
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chirayu Patel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Victoria E. Surratt
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kendall L. Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| |
Collapse
|
24
|
Contino KF, Yadav H, Shiozawa Y. The gut microbiota can be a potential regulator and treatment target of bone metastasis. Biochem Pharmacol 2022; 197:114916. [PMID: 35041811 PMCID: PMC8858876 DOI: 10.1016/j.bcp.2022.114916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota, an often forgotten organ, have a tremendous impact on human health. It has long been known that the gut microbiota are implicated in cancer development, and more recently, the gut microbiota have been shown to influence cancer metastasis to distant organs. Although one of the most common sites of distant metastasis is the bone, and the skeletal system has been shown to be a subject of interactions with the gut microbiota to regulate bone homeostasis, little research has been done regarding how the gut microbiota control the development of bone metastasis. This review will discuss the mechanisms through which the gut microbiota and derived microbial compounds (i) regulate gastrointestinal cancer disease progression and metastasis, (ii) influence skeletal remodeling and potentially modulate bone metastasis, and (iii) affect and potentially enhance immunotherapeutic treatments for bone metastasis.
Collapse
Affiliation(s)
- Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair and Institute for Microbiome, University of South Florida, Tampa, FL 33612, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
25
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
26
|
Ayyadurai VAS, Deonikar P, McLure KG, Sakamoto KM. Molecular Systems Architecture of Interactome in the Acute Myeloid Leukemia Microenvironment. Cancers (Basel) 2022; 14:756. [PMID: 35159023 PMCID: PMC8833542 DOI: 10.3390/cancers14030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molecular interactions between the cancer cell and the tumor microenvironment, including endothelial cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells (e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells). This molecular systems architecture provides a layered understanding of intra- and inter-cellular interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular systems architecture may be utilized for target identification and the discovery of single and combination therapeutics and strategies to treat AML.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | - Prabhakar Deonikar
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | | | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
27
|
Zeytin IC, Alkan B, Ozdemir C, Cetinkaya DU, Okur FV. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:310-321. [PMID: 35356978 PMCID: PMC8969067 DOI: 10.1093/stcltm/szab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Osteopetrosis is a rare inherited disease characterized by impaired osteoclast activity causing defective bone resorption and bone marrow aplasia. It is fatal in early childhood unless hematopoietic stem cell transplantation is performed. But, the transplant course is complicated with engraftment failure. Recently, osteoclasts have been described as the potential regulators of hematopoietic stem cell (HSC) niche. Here we investigated the alterations in the HSC and mesenchymal stromal cell (MSC) components of osteopetrotic niche and their interactions to mimic the stem cell dynamics/trafficking in the BM niche after HSC transplantation. Induced pluripotent stem cells were generated from peripheral blood mononuclear cells of patients with osteopetrosis carrying TCIRG1 mutation. iPSC lines were differentiated into hematopoietic and myeloid progenitors, then into osteoclasts using a step-wise protocol. We first demonstrated a shift toward monocyte-macrophages lineage regarding hematopoietic differentiation potential of osteopetrotic iPSC-derived hematopoietic progenitors (HPCs) and phenotypically normal and functionally defective osteoclast formation. The expression of the genes involved in HSC homing and maintenance (Sdf-1, Jagged-1, Kit-L, and Opn) in osteopetrotic MSCs recovered significantly after coculture with healthy HPCs. Similarly, the restoration of phenotype, impaired differentiation, and migratory potential of osteopetrotic iHPCs were observed upon interaction with healthy MSCs. Our results establish significant alterations in both MSC and HPC compartments of the osteopetrotic niche, and support the impact of functionally impaired osteoclasts in defective niche formation.
Collapse
Affiliation(s)
- Inci Cevher Zeytin
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Berna Alkan
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Cansu Ozdemir
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| | - Fatma Visal Okur
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| |
Collapse
|
28
|
Pimenta DB, Varela VA, Datoguia TS, Caraciolo VB, Lopes GH, Pereira WO. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Front Cell Dev Biol 2021; 9:764698. [PMID: 34869355 PMCID: PMC8639599 DOI: 10.3389/fcell.2021.764698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) is a highly complex tissue that provides important regulatory signals to orchestrate hematopoiesis. Resident and transient cells occupy and interact with some well characterized niches to produce molecular and cellular mechanisms that interfere with differentiation, migration, survival, and proliferation in this microenvironment. The acute myeloid leukemia (AML), the most common and severe hematological neoplasm in adults, arises and develop in the BM. The osteoblastic, vascular, and reticular niches provide surface co-receptors, soluble factors, cytokines, and chemokines that mediate important functions on hematopoietic cells and leukemic blasts. There are some evidences of how AML modify the architecture and function of these three BM niches, but it has been still unclear how essential those modifications are to maintain AML development. Basic studies and clinical trials have been suggesting that disturbing specific cells and molecules into the BM niches might be able to impair leukemia competencies. Either through niche-specific molecule inhibition alone or in combination with more traditional drugs, the bone marrow microenvironment is currently considered the potential target for new strategies to treat AML patients. This review describes the cellular and molecular constitution of the BM niches under healthy and AML conditions, presenting this anatomical compartment by a new perspective: as a prospective target for current and next generation therapies.
Collapse
Affiliation(s)
- Débora Bifano Pimenta
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Vanessa Araujo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Tarcila Santos Datoguia
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Victória Bulcão Caraciolo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Gabriel Herculano Lopes
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
29
|
Tavakol DN, Bonini F, Tratwal J, Genta M, Brefie-Guth J, Braschler T, Naveiras O. Cryogel-based Injectable 3D Microcarrier Co-culture for Support of Hematopoietic Progenitor Niches. Curr Protoc 2021; 1:e275. [PMID: 34813179 DOI: 10.1002/cpz1.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although hematopoietic stem cell (HSC) transplantation can restore functional hematopoiesis upon immune or chemotherapy-induced bone marrow failure, complications often arise during recovery, leading to up to 25% transplant-related mortality in treated patients. In hematopoietic homeostasis and regeneration, HSCs in the bone marrow give rise to the entirety of cellular blood components. One of the challenges in studying hematopoiesis is the ability to successfully mimic the relationship between the stroma and hematopoietic stem and progenitor cells (HSPCs). This study and the described protocols propose an advantageous method for culturing and assessing stromal hematopoietic support in three dimensions, representing a simplified in vitro model of the bone marrow niche that can be transplanted in vivo by injection. By co-culturing OP9 bone marrow-derived stromal cells (BMSCs) and cKit+ Sca-1+ Lin- (KLS+ ) HSPCs on collagen-coated carboxymethylcellulose scaffolds for 2 weeks in the absence of cytokines, we established a methodology for in vivo subcutaneous transplantation. With this model we were able to detect early signs of extramedullary hematopoiesis. This work can be useful for studying various stromal cell populations in co-culture, as well as simple transfer by injection of these scaffolds in vivo for heterotopic regeneration of the marrow microenvironment. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of HSPCs from mice Basic Protocol 2: Co-seeding of HSPCs and BMSCs on collagen-coated CCMs Basic Protocol 3: Maintenance, real-time imaging, and analysis of co-seeded scaffolds Basic Protocol 4: End-point analysis of co-seeded scaffolds using flow cytometry and CFU assays Basic Protocol 5: Transplantation of scaffolds by subcutaneous injection Support Protocol: Preparation of custom scaffold drying device.
Collapse
Affiliation(s)
- Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Current address: Department of Biomedical Engineering, Columbia University, New York City, New York
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Genève, Switzerland
| | - Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martina Genta
- Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland.,Current address: Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Joé Brefie-Guth
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Genève, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Genève, Switzerland.,Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland.,Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
30
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
31
|
Li K, Jin R, Wu X. The role of macrophages and osteoclasts in the progression of leukemia. ACTA ACUST UNITED AC 2021; 26:724-733. [PMID: 34555294 DOI: 10.1080/16078454.2021.1976911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACTBone marrow microenvironment provides critical regulatory signals for lineage differentiation and maintenance of HSC quiescence, and these signals also contribute to hematological myeloid malignancies. Macrophages exhibit high phenotypic heterogeneity under both physiological and pathological conditions and are mainly divided into proinflammatory M1 and anti-inflammatory M2 macrophages. Furthermore, osteoclasts are multinucleated giant cells that arise by fusion of monocyte/macrophage-like cells, which are commonly known as bone macrophages. Emerging evidence suggests that macrophages and osteoclasts originating from myeloid progenitors lead to two competing differentiation outcomes, and they appear to play an important role in the onset, progression, and bone metastasis of solid cancers. However, little is known about their role in the development of hematological malignancies. In this review, we focus on macrophages and osteoclasts, their role in leukemia, and the potential for targeting these cells in this disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
32
|
Andreeva ER, Ezdakova MI, Bobyleva PI, Andrianova IV, Ratushnyy AY, Buravkova LB. Osteogenic Commitment of MSC Is Enhanced after Interaction with Umbilical Cord Blood Mononuclear Cells In Vitro. Bull Exp Biol Med 2021; 171:541-546. [PMID: 34542768 DOI: 10.1007/s10517-021-05266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/28/2022]
Abstract
The effectiveness of stroma-dependent expansion of hematopoietic cells ex vivo may depend on the level of commitment of multipotent mesenchymal stromal cells (MSC). Markers of MSC osteodifferentiation and the level of soluble hematopoiesis regulators were determined during their interaction with umbilical cord blood mononuclears. After 72-h co-culturing, an increase in the expression of ALPL and alkaline phosphatase activity was revealed. In conditioned medium of co-cultures, the levels of osteopontin and osteoprotegerin were elevated and the levels of osteocalcin and sclerostin were reduced. Co-culturing of umbilical cord blood mononuclears with osteocommitted MSC was accompanied by more pronounced increase in the concentration of both positive (GM-CSF and G-CSF) and negative (IP-10, MIP-1α, and MCP-3) regulators of hematopoiesis. Thus, umbilical cord blood mononuclears induced the formation of early osteogenic progenitor phenotype in MSC ex vivo, providing the microenvironmental conditions necessary to support hematopoiesis. Preliminary osteocommitted MSC were more sensitive to the effect of umbilical cord blood mononuclears.
Collapse
Affiliation(s)
- E R Andreeva
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - M I Ezdakova
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - P I Bobyleva
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| | - I V Andrianova
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - A Yu Ratushnyy
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - L B Buravkova
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Extracellular vesicles tell all: How vesicle-mediated cellular communication shapes hematopoietic stem cell biology with increasing age. Exp Hematol 2021; 101-102:7-15. [PMID: 34407444 DOI: 10.1016/j.exphem.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles containing biologically important cargo and impart regulatory changes in target cells. Despite the importance of EVs in cellular communication, there remains a gap in our understanding of how EVs influence HSC fate and, in turn, how aging and longevity are affected. This review summarizes the current literature dealing with how age-altered intercellular communication mediated by EVs influences HSC biology.
Collapse
|
34
|
Shin TH, Theodorou E, Holland C, Yamin R, Raggio CL, Giampietro PF, Sweetser DA. TLE4 Is a Critical Mediator of Osteoblast and Runx2-Dependent Bone Development. Front Cell Dev Biol 2021; 9:671029. [PMID: 34422801 PMCID: PMC8377417 DOI: 10.3389/fcell.2021.671029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Healthy bone homeostasis hinges upon a delicate balance and regulation of multiple processes that contribute to bone development and metabolism. While examining hematopoietic regulation by Tle4, we have uncovered a previously unappreciated role of Tle4 on bone calcification using a novel Tle4 null mouse model. Given the significance of osteoblasts in both hematopoiesis and bone development, this study investigated how loss of Tle4 affects osteoblast function. We used dynamic bone formation parameters and microCT to characterize the adverse effects of Tle4 loss on bone development. We further demonstrated loss of Tle4 impacts expression of several key osteoblastogenic genes, including Runx2, Oc, and Ap, pointing toward a potential novel mechanism for Tle4-dependent regulation of mammalian bone development in collaboration with the RUNX family members.
Collapse
Affiliation(s)
- Thomas H. Shin
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Evangelos Theodorou
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Carl Holland
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rae’e Yamin
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cathleen L. Raggio
- Department of Pediatric Orthopedics, Hospital for Special Surgery, New York, NY, United States
| | | | - David A. Sweetser
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Salbach-Hirsch J, Rauner M, Hofbauer C, Hofbauer LC. New insights into the role of glycosaminoglycans in the endosteal bone microenvironment. Biol Chem 2021; 402:1415-1425. [PMID: 34323057 DOI: 10.1515/hsz-2021-0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The bone microenvironment is a complex tissue in which heterogeneous cell populations of hematopoietic and mesenchymal origin interact with environmental cues to maintain tissue integrity. Both cellular and matrix components are subject to physiologic challenges and can dynamically respond by modifying cell/matrix interactions. When either component is impaired, the physiologic balance is lost. Here, we review the current state of knowledge of how glycosaminoglycans - organic components of the bone extracellular matrix - influence the bone micromilieu. We point out how they interact with mediators of distinct signaling pathways such as the RANKL/OPG axis, BMP and WNT signaling, and affect the activity of bone remodeling cells within the endosteal niche summarizing their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christine Hofbauer
- NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), D-01307 Dresden, Germany
| |
Collapse
|
36
|
Acute Myeloid Leukemia Mutations and Future Mechanistic Target to Overcome Resistance. Curr Treat Options Oncol 2021; 22:76. [PMID: 34213682 DOI: 10.1007/s11864-021-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT Cytogenetics and mutation identification in acute myeloid leukemia have allowed for more targeted therapy. Many therapies have been approved by the FDA in the last 3 years including gilteritinib and azacitidine but the overall survival has remained stagnant at 25%. The inability to achieve complete remission was related to the residual leukemic stem cells (LSCs). Thus, the relationship between bone marrow niche and LSCs must be further explored to prevent treatment relapse/resistance. The development of immunotherapy and nanotechnology may play a role in future therapy to achieve the complete remission. Nano-encapsulation of drugs can improve drugs' bioavailability, help drugs evade resistance, and provide combination therapy directly to the cancer cells. Studies indicate targeting surface antigens such as CLL1 and CD123 using chimeric antibody receptor T cells can improve survival outcomes. Finally, new discoveries indicate that inhibiting integrin αvβ3 and acid ceramidase may prove to be efficacious.
Collapse
|
37
|
Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv 2021; 4:5118-5132. [PMID: 33085758 DOI: 10.1182/bloodadvances.2020001742] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38- and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38- and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38- LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38- cells variably expressed "aberrant" membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication-mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38- LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.
Collapse
|
38
|
Crippa S, Santi L, Berti M, De Ponti G, Bernardo ME. Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 2021; 9:663316. [PMID: 34017834 PMCID: PMC8129582 DOI: 10.3389/fcell.2021.663316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
39
|
Oliveira CS, Carreira M, Correia CR, Mano JF. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:379-392. [PMID: 33683146 DOI: 10.1089/ten.teb.2021.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The repair process of bone fractures is a complex biological mechanism requiring the recruitment and in situ functionality of stem/stromal cells from the bone marrow (BM). BM mesenchymal stem/stromal cells have been widely explored in multiple bone tissue engineering applications, whereas the use of hematopoietic stem cells (HSCs) has been poorly investigated in this context. A reasonable explanation is the fact that the role of HSCs and their combined effect with other elements of the hematopoietic niches in the bone-healing process is still elusive. Therefore, in this review we intend to highlight the influence of HSCs in the bone repair process, mainly through the promotion of osteogenesis and angiogenesis at the bone injury site. For that, we briefly describe the main biological characteristics of HSCs, as well as their hematopoietic niches, while reviewing the biomimetic engineered BM niche models. Moreover, we also highlighted the role of HSCs in translational in vivo transplantation or implantation as promoters of bone tissue repair.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana Carreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
40
|
Dander E, Palmi C, D’Amico G, Cazzaniga G. The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia. Int J Mol Sci 2021; 22:ijms22094426. [PMID: 33922612 PMCID: PMC8122951 DOI: 10.3390/ijms22094426] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.
Collapse
Affiliation(s)
- Erica Dander
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | - Chiara Palmi
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | | | | |
Collapse
|
41
|
Pievani A, Donsante S, Tomasoni C, Corsi A, Dazzi F, Biondi A, Riminucci M, Serafini M. Acute myeloid leukemia shapes the bone marrow stromal niche in vivo. Haematologica 2021; 106:865-870. [PMID: 32381570 PMCID: PMC7928008 DOI: 10.3324/haematol.2020.247205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Dazzi
- Department of Hemato-Oncology, Rayne Institute, King’s College London, London, UK
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
- Department of Pediatrics, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
42
|
Mansoorifar A, Gordon R, Bergan R, Bertassoni LE. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006796. [PMID: 35422682 PMCID: PMC9007546 DOI: 10.1002/adfm.202006796] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 05/07/2023]
Abstract
Bone is an active organ that continuously undergoes an orchestrated process of remodeling throughout life. Bone tissue is uniquely capable of adapting to loading, hormonal, and other changes happening in the body, as well as repairing bone that becomes damaged to maintain tissue integrity. On the other hand, diseases such as osteoporosis and metastatic cancers disrupt normal bone homeostasis leading to compromised function. Historically, our ability to investigate processes related to either physiologic or diseased bone tissue has been limited by traditional models that fail to emulate the complexity of native bone. Organ-on-a-chip models are based on technological advances in tissue engineering and microfluidics, enabling the reproduction of key features specific to tissue microenvironments within a microfabricated device. Compared to conventional in-vitro and in-vivo bone models, microfluidic models, and especially organs-on-a-chip platforms, provide more biomimetic tissue culture conditions, with increased predictive power for clinical assays. In this review, we will report microfluidic and organ-on-a-chip technologies designed for understanding the biology of bone as well as bone-related diseases and treatments. Finally, we discuss the limitations of the current models and point toward future directions for microfluidics and organ-on-a-chip technologies in bone research.
Collapse
Affiliation(s)
- Amin Mansoorifar
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E. Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
43
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
44
|
Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells. MATERIALS 2020; 13:ma13194307. [PMID: 32992463 PMCID: PMC7579201 DOI: 10.3390/ma13194307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023]
Abstract
Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2–5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150–300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3–0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5–2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2–14 days) 1.5–6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.
Collapse
|
45
|
Highly multiplexed proteomic assessment of human bone marrow in acute myeloid leukemia. Blood Adv 2020; 4:367-379. [PMID: 31985806 DOI: 10.1182/bloodadvances.2019001124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by abnormal clonal proliferation of myeloid progenitor cells found predominantly within the bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic alterations in the BM microenvironment support leukemogenesis and allow leukemic cells to survive and evade chemotherapy-induced death. However, despite substantial evidence indicating the role of tumor-host interactions in AML pathogenesis, little is known about the complex microenvironment of the BM. To address this, we performed novel proteomic profiling of the noncellular compartment of the BM microenvironment in patients with AML (n = 10) and age- and sex-matched healthy control subjects (n = 10) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal alternate screening strategies to determine the true proteomic composition of the extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that 168 proteins significantly differed in abundance, with 91 upregulated and 77 downregulated in leukemic BM. A highly connected signaling network of cytokines and chemokines, including IL-8, was found to be the most prominent proteomic signature associated with AML in the BM microenvironment. We report the first description of significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and perform functional experiments supportive of a role in the suppression of normal hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides innovative mechanistic insights into AML and healthy aging and should serve as a useful public resource.
Collapse
|
46
|
Stegner D, Heinze KG. Intravital imaging of megakaryocytes. Platelets 2020; 31:599-609. [PMID: 32153253 DOI: 10.1080/09537104.2020.1738366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The dynamics of platelet formation could only be investigated since the development of two-photon microscopy in combination with suitable fluorescent labeling strategies. In this review paper, we give an overview of recent advances in fluorescence imaging of the bone marrow that have contributed to our understanding of platelet biogenesis during the last decade. We make a brief survey through the perspectives and limitations of today's intravital imaging, but also discuss complementary methods that may help to piece together the puzzle of megakaryopoiesis and platelet formation.
Collapse
Affiliation(s)
- David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg , Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg , Würzburg, Germany
| |
Collapse
|
47
|
Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA. The Unfolded Protein Response: A Novel Therapeutic Target in Acute Leukemias. Cancers (Basel) 2020; 12:cancers12020333. [PMID: 32024211 PMCID: PMC7072709 DOI: 10.3390/cancers12020333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive response triggered by the stress of the endoplasmic reticulum (ER) due, among other causes, to altered cell protein homeostasis (proteostasis). UPR is mediated by three main sensors, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6α (ATF6α), and inositol-requiring enzyme-1α (IRE1α). Given that proteostasis is frequently disregulated in cancer, UPR is emerging as a critical signaling network in controlling the survival, selection, and adaptation of a variety of neoplasias, including breast cancer, prostate cancer, colorectal cancer, and glioblastoma. Indeed, cancer cells can escape from the apoptotic pathways elicited by ER stress by switching UPR into a prosurvival mechanism instead of cell death. Although most of the studies on UPR focused on solid tumors, this intricate network plays a critical role in hematological malignancies, and especially in multiple myeloma (MM), where treatment with proteasome inhibitors induce the accumulation of unfolded proteins that severely perturb proteostasis, thereby leading to ER stress, and, eventually, to apoptosis. However, UPR is emerging as a key player also in acute leukemias, where recent evidence points to the likelihood that targeting UPR-driven prosurvival pathways could represent a novel therapeutic strategy. In this review, we focus on the oncogene-specific regulation of individual UPR signaling arms, and we provide an updated outline of the genetic, biochemical, and preclinical therapeutic findings that support UPR as a relevant, novel target in acute leukemias.
Collapse
Affiliation(s)
- Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-1580
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - James A. McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
48
|
Guder C, Gravius S, Burger C, Wirtz DC, Schildberg FA. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front Immunol 2020; 11:58. [PMID: 32082321 PMCID: PMC7004969 DOI: 10.3389/fimmu.2020.00058] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Immunology, already a discipline in its own right, has become a major part of many different medical fields. However, its relationship to orthopedics and trauma surgery has unfortunately, and perhaps unjustly, been developing rather slowly. Discoveries in recent years have emphasized the immense breadth of communication and connection between both systems and, importantly, the highly promising therapeutic opportunities. Recent discoveries of factors originally assigned to the immune system have now also been shown to have a significant impact on bone health and disease, which has greatly changed how we approach treatment of bone pathologies. In case of bone fracture, immune cells, especially macrophages, are present throughout the whole healing process, assure defense against pathogens and discharge a complex variety of effectors to regulate bone modeling. In rheumatoid arthritis and osteoporosis, the immune system contributes to the formation of the pathological and chronic conditions. Fascinatingly, prosthesis failure is not at all solely a mechanical problem of improper strain but works in conjunction with an active contribution of the immune system as a reaction to irritant debris from material wear. Unraveling conjoined mechanisms of the immune and osseous systems heralds therapeutic possibilities for ailments of both. Contemplation of the bone as merely an unchanging support pillar is outdated and obsolete. Instead it is mandatory that this highly diverse network be incorporated in our understanding of the immune system and hematopoiesis.
Collapse
Affiliation(s)
- Christian Guder
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Sascha Gravius
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.,Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, Mannheim, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|