1
|
Ye X, Zheng J, Hu D, Liu L, Chen F, Cai X, Xu Y, Li L, Lin J, Liu Q, Sun Y. Identification of increased dedifferentiation along the Prom1+ cancer cells in Müllerian adenosarcoma with sarcomatous overgrowth. Br J Cancer 2025; 132:438-449. [PMID: 39920368 PMCID: PMC11876574 DOI: 10.1038/s41416-025-02943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/08/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Müllerian adenosarcoma (MA) is a rare tumour accounts for 5-7% of uterine sarcomas. Tumours with sarcomatous overgrowth (MASO) or high-grade tend to be aggressive. However, the tumour aetiology is elusive. METHODS Single-cell RNA sequencing and bioinformatics were used to analyse the MASO and paired normal tissues. Expression and clinical significance of key genes were analysed by TCGA data and immunohistochemistry. In vitro experiment was used to verify the effect of E2F1 in cell dedifferentiation. RESULTS We prove malignant stromal cells originate from fibrous tissue, Prom1-derived with complex intra-tumoral heterogeneity. Along the developmental trajectory, we discover three phenotypes of Prom1+ cancer cells (differentiation-like, intermediate-like, dedifferentiation-like). A distinct HMGB2/3+ subtype of Prom1+ cluster is predominant dedifferentiation-like cancer cells, with high proliferation and stemness traits at the tail of trajectory. E2F1 is a master transcription factor for Prom1 lineage dedifferentiation, which could occupy the HMGB2/3 promoter to enhance their transcription, facilitating the stemness and self-renewal of cancer cells. Gene signature of Prom1 lineage is associated with poorer prognosis in uterine malignancies. The expression of Prom1 and HMGB3 was verified by immunohistochemistry. CONCLUSIONS Our study reveal the heterogeneity and dynamics of Prom1 lineage cells, which are key to tailor efficient therapies for MASO.
Collapse
Affiliation(s)
- Xingming Ye
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Dan Hu
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Fukun Chen
- Geneplus-Beijing Institute, Beijing, China
| | - Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yangmei Xu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lifeng Li
- Geneplus-Beijing Institute, Beijing, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Cui X, Hou L, Yan B, Liu J, Zhang C, Sui P, Tong S, Luchsinger L, Mendelson A, Zhou D, Yang FC, Zhong H, Liang Y. Sexual dimorphism in the mouse bone marrow niche regulates hematopoietic engraftment via sex-specific Kdm5c/Cxcl12 signaling. J Clin Invest 2025; 135:e182125. [PMID: 39836478 PMCID: PMC11870739 DOI: 10.1172/jci182125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
The bone marrow (BM) niche is critical in regulating hematopoiesis, and sexual dimorphism and its underlying mechanism in the BM niche and its impact on hematopoiesis are not well understood. We show that male mice exhibited a higher abundance of leptin-receptor-expressing mesenchymal stromal cells (LepR-MSCs) compared with female mice. Sex-mismatched coculture and BM transplantation showed that the male BM niche provided superior support for in vitro colony formation and in vivo hematopoietic engraftment. The cotransplantation of male stromal cells significantly enhanced engraftment in female recipients. Single-cell RNA-seq revealed that the lower expression of the X-linked lysine H3K4 demethylase, Kdm5c, in male MSCs led to the increased expression of Cxcl12. In MSC-specific Kdm5c-KO mouse model, the reduction of KDM5C in female MSCs enhanced MSC quantity and function, ultimately improving engraftment to the male level. Kdm5c thus plays a role in driving sexual dimorphism in the BM niche and hematopoietic regeneration. Our study unveils a sex-dependent mechanism governing the BM niche regulation and its impact on hematopoietic engraftment. The finding offers potential implications for enhancing BM transplantation efficacy in clinical settings by harnessing the resource of male MSCs or targeting Kdm5c.
Collapse
Affiliation(s)
- Xiaojing Cui
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Liming Hou
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Bowen Yan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jinpeng Liu
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Pinpin Sui
- Department of Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Sheng Tong
- Department of Bioengineering, University of Kentucky, Lexington, Kentucky, USA
| | - Larry Luchsinger
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Avital Mendelson
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry & Structural Biology, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Feng-chun Yang
- Department of Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Hui Zhong
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Ying Liang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| |
Collapse
|
3
|
Shi Y, An K, ShaoX zhou, Zhang X, Kan Q, Tian X. Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF + stem-like tumor cells using artificial neural network in gastric cancer. Heliyon 2024; 10:e38662. [PMID: 39524750 PMCID: PMC11547969 DOI: 10.1016/j.heliyon.2024.e38662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gastric cancer stem cells (GCSCs) are important tumour cells involved in tumourigenesis and gastric cancer development. However, their clinical value remains unclear due to the limitations of the available technologies. This study aims to explore the clinical significance of GCSCs, their connection to the tumour microenvironment, and their underlying molecular mechanisms. Methods Stem-like tumour cells were identified by mining single-cell transcriptomic data from multiple samples. Integrated analysis of single-cell and bulk transcriptome data was performed to analyse the role of stem-like tumour cells in predicting clinical outcomes by introducing the intermediate variable mRNA stemness degree (SD). Consensus clustering analysis was performed to develop an SD-related molecular classification strategy to assess the clinical characteristics in gastric cancer. A prognostic model was constructed using a customized approach that comprehensively considered SD-related gene signatures based on an artificial neural network. Results By analysing single-cell data and validating immunofluorescence results, we identified a PCLAF+ stem-like tumour cell population in GC. By calculating SD, we observed that PCLAF+ stem-like tumour cells were associated with poor prognosis and certain clinical features. The SD was negatively correlated with the abundance of most immune cell types. Furthermore, we proposed an SD-related classification method and prognostic model. In addition, the customised prognostic model can be used to predict whether a patient respond to PD-1/PD-L1 immunotherapy. Conclusion We identified a cluster of stem-like cells and elucidated their clinical significance, highlighting the possibility of their use as immunotherapeutic targets.
Collapse
Affiliation(s)
- Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - ShaoX zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - XuR. Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - QuanC. Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
4
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
5
|
Sadria M, Layton A, Goyal S, Bader GD. Fatecode enables cell fate regulator prediction using classification-supervised autoencoder perturbation. CELL REPORTS METHODS 2024; 4:100819. [PMID: 38986613 PMCID: PMC11294839 DOI: 10.1016/j.crmeth.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 11/20/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada; Department of Biology, University of Waterloo, Waterloo, ON, Canada; School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
6
|
Xu H, Tan S, Zhao Y, Zhang L, Cao W, Li X, Tian J, Wang X, Li X, Wang F, Cao J, Zhao T. Lin - PU.1 dim GATA-1 - defines haematopoietic stem cells with long-term multilineage reconstitution activity. Cell Prolif 2023; 56:e13490. [PMID: 37147872 PMCID: PMC10623959 DOI: 10.1111/cpr.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Despite extensive characterization of the state and function of haematopoietic stem cells (HSCs), the use of transcription factors to define the HSC population is still limited. We show here that the HSC population in mouse bone marrow can be defined by the distinct expression levels of Spi1 and Gata1. By using a double fluorescence knock-in mouse model, PGdKI, in which the expression levels of PU.1 and GATA-1 are indicated by the expression of GFP and mCherry, respectively, we uncover that the HSCs with lymphoid and myeloid repopulating activity are specifically enriched in a Lin- PU.1dim GATA-1- (LPG) cell subset. In vivo competitive repopulation assays demonstrate that bone marrow cells gated by LPG exhibit haematopoietic reconstitution activity which is comparable to that of classical Lin- Sca1+ c-kit+ (LSK). The integrated analysis of single-cell RNA sequence data from LPG and LSK-gated cells reveals that a transcriptional network governed by core TFs contributes to regulation of HSC multipotency. These discoveries provide new clues for HSC characterization and functional study.
Collapse
Affiliation(s)
- Haoyu Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaojing Tan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiyun Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS)BeijingChina
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Neubert EN, DeRogatis JM, Lewis SA, Viramontes KM, Ortega P, Henriquez ML, Buisson R, Messaoudi I, Tinoco R. HMGB2 regulates the differentiation and stemness of exhausted CD8 + T cells during chronic viral infection and cancer. Nat Commun 2023; 14:5631. [PMID: 37704621 PMCID: PMC10499904 DOI: 10.1038/s41467-023-41352-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Chronic infections and cancers evade the host immune system through mechanisms that induce T cell exhaustion. The heterogeneity within the exhausted CD8+ T cell pool has revealed the importance of stem-like progenitor (Tpex) and terminal (Tex) exhausted T cells, although the mechanisms underlying their development are not fully known. Here we report High Mobility Group Box 2 (HMGB2) protein expression is upregulated and sustained in exhausted CD8+ T cells, and HMGB2 expression is critical for their differentiation. Through epigenetic and transcriptional programming, we identify HMGB2 as a cell-intrinsic regulator of the differentiation and maintenance of Tpex cells during chronic viral infection and in tumors. Despite Hmgb2-/- CD8+ T cells expressing TCF-1 and TOX, these master regulators were unable to sustain Tpex differentiation and long-term survival during persistent antigen. Furthermore, HMGB2 also had a cell-intrinsic function in the differentiation and function of memory CD8+ T cells after acute viral infection. Our findings show that HMGB2 is a key regulator of CD8+ T cells and may be an important molecular target for future T cell-based immunotherapies.
Collapse
Affiliation(s)
- Emily N Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Rémi Buisson
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Zhang S, Pyne S, Pietrzak S, Halberg S, McCalla SG, Siahpirani AF, Sridharan R, Roy S. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat Commun 2023; 14:3064. [PMID: 37244909 PMCID: PMC10224950 DOI: 10.1038/s41467-023-38637-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Cell type-specific gene expression patterns are outputs of transcriptional gene regulatory networks (GRNs) that connect transcription factors and signaling proteins to target genes. Single-cell technologies such as single cell RNA-sequencing (scRNA-seq) and single cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq), can examine cell-type specific gene regulation at unprecedented detail. However, current approaches to infer cell type-specific GRNs are limited in their ability to integrate scRNA-seq and scATAC-seq measurements and to model network dynamics on a cell lineage. To address this challenge, we have developed single-cell Multi-Task Network Inference (scMTNI), a multi-task learning framework to infer the GRN for each cell type on a lineage from scRNA-seq and scATAC-seq data. Using simulated and real datasets, we show that scMTNI is a broadly applicable framework for linear and branching lineages that accurately infers GRN dynamics and identifies key regulators of fate transitions for diverse processes such as cellular reprogramming and differentiation.
Collapse
Affiliation(s)
- Shilu Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Saptarshi Pyne
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Stefan Pietrzak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer Halberg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sunnie Grace McCalla
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alireza Fotuhi Siahpirani
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Cui X, Zhang C, Wang F, Zhao X, Wang S, Liu J, He D, Wang C, Yang FC, Tong S, Liang Y. Latexin regulates sex dimorphism in hematopoiesis via gender-specific differential expression of microRNA 98-3p and thrombospondin 1. Cell Rep 2023; 42:112274. [PMID: 36933218 PMCID: PMC10160986 DOI: 10.1016/j.celrep.2023.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the ability to self-renew and differentiate to all blood cell types. HSCs and their differentiated progeny show sex/gender differences. The fundamental mechanisms remain largely unexplored. We previously reported that latexin (Lxn) deletion increased HSC survival and repopulation capacity in female mice. Here, we find no differences in HSC function and hematopoiesis in Lxn knockout (Lxn-/-) male mice under physiologic and myelosuppressive conditions. We further find that Thbs1, a downstream target gene of Lxn in female HSCs, is repressed in male HSCs. Male-specific high expression of microRNA 98-3p (miR98-3p) contributes to Thbs1 suppression in male HSCs, thus abrogating the functional effect of Lxn in male HSCs and hematopoiesis. These findings uncover a regulatory mechanism involving a sex-chromosome-related microRNA and its differential control of Lxn-Thbs1 signaling in hematopoiesis and shed light on the process underlying sex dimorphism in both normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Xiaojing Cui
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Fang Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Xinghui Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 USA
| | - Jinpeng Liu
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Daheng He
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Chi Wang
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Feng-Chun Yang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sheng Tong
- Department of Bioengineering, University of Kentucky, Lexington, KY 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA.
| |
Collapse
|
10
|
Serebrenik AA, Verduyn CW, Kaytor MD. Safety, Pharmacokinetics, and Biomarkers of an Amorphous Solid Dispersion of Genistein, a Radioprotectant, in Healthy Volunteers. Clin Pharmacol Drug Dev 2023; 12:190-201. [PMID: 36301689 DOI: 10.1002/cpdd.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
A pharmaceutical formulation of genistein, produced as an amorphous solid dispersion by hot melt extrusion (genistein HME), has been developed that can be administered prophylactically to improve outcomes and survival following radiation exposure. Here, genistein HME was evaluated in a phase 1, open-label, single ascending dose (SAD) and multiple single dose (MSD) study enrolling 34 healthy volunteers. In the SAD study, participants were administered a single dose (500, 1000, 2000, or 3000 mg) and in the MSD study, participants were administered a single daily dose for six consecutive days (3000 mg/day). The overall adverse event profile and pharmacokinetics of genistein HME were determined. Additionally, biomarkers of genistein HME were evaluated by profiling whole blood for changes in gene expression by RNA sequencing. Genistein HME was found to be safe at doses up to 3000 mg. Most toxicities were mild to moderate gastrointestinal events, and no dose-limiting toxicities were reported. The maximum tolerated dose was not determined and the no observable adverse effect level was 500 mg. Genistein HME bioavailability greatly increased between the 2000 mg and 3000 mg doses. RNA sequencing analysis revealed that the majority of drug-related changes in gene expression occurred 8-12 hours after the sixth dose in the MSD study. Based on these results, the putative effective dose in humans is 3000 mg.
Collapse
Affiliation(s)
| | - Carin W Verduyn
- Medical Monitoring Consultancy, LLC, St. Paul, Minnesota, USA
| | | |
Collapse
|
11
|
Stepwise fate conversion of supporting cells to sensory hair cells in the chick auditory epithelium. iScience 2023; 26:106046. [PMID: 36818302 PMCID: PMC9932131 DOI: 10.1016/j.isci.2023.106046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor β receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Collapse
|
12
|
McMullen JRW, Soto U. Newly identified breast luminal progenitor and gestational stem cell populations likely give rise to HER2-overexpressing and basal-like breast cancers. Discov Oncol 2022; 13:38. [PMID: 35633393 PMCID: PMC9148339 DOI: 10.1007/s12672-022-00500-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
Breast Cancer (BrC) is a common malignancy with genetically diverse subtypes. There is evidence that specific BrC subtypes originate from particular normal mammary cell populations. However, the cell populations that give rise to most BrC subtypes are unidentified. Several human breast scRNAseq datasets are available. In this research, we utilized a robust human scRNAseq dataset to identify population-specific marker genes and then identified the expression of these marker genes in specific BrC subtypes. In humans, several BrC subtypes, HER2-enriched, basal-like, and triple-negative (TN), are more common in women who have had children. This observation suggests that cell populations that originate during pregnancy give rise to these BrCs. The current human datasets have few normal parous samples, so we supplemented this research with mouse datasets, which contain mammary cells from various developmental stages. This research identified two novel normal breast cell populations that may be the origin of the basal-like and HER2-overexpressing subtypes, respectively. A stem cell-like population, SC, that expresses gestation-specific genes has similar gene expression patterns to basal-like BrCs. A novel luminal progenitor cell population and HER2-overexpressing BrCs are marked by S100A7, S100A8, and S100A9 expression. We bolstered our findings by examining SC gene expression in TN BrC scRNAseq datasets and S100A7-A9 gene expression in BrC cell lines. We discovered that several potential cancer stem cell populations highly express most of the SC genes in TN BrCs and confirmed S100A8 and A9 overexpression in a HER2-overexpressing BrC cell line. In summary, normal SC and the novel luminal progenitor cell population likely give rise to basal-like and HER2-overexpressing BrCs, respectively. Characterizing these normal cell populations may facilitate a better understanding of specific BrCs subtypes.
Collapse
Affiliation(s)
- James R W McMullen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ubaldo Soto
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
13
|
Xuan J, Liu Y, Liu J, Zeng X, Wang H. New Insights into Hematopoietic Stem Cell Expansion to Stimulate Repopulation of the Adult Blood System for Transplantation. Life (Basel) 2022; 12:life12050716. [PMID: 35629383 PMCID: PMC9146250 DOI: 10.3390/life12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Successful engraftment of hematopoietic stem cells (HSCs) and progenitor cells (HSPCs) may be considered as a basis for the repopulation of the blood cells after transplantation in adults. Therefore, in vivo and ex vivo expansion of HSCs holds great promise for clinical applications. In this review, the mechanisms of HSC expansion will be discussed, considering the previous studies and works of literature. This is aimed to identify the signaling pathways that regulate HSC expansion and improve the application of engraftment in disease management. The following aspects will be included: (i) Stimulation of HSCs growth in vivo through gene regulation and cytokines activation; (ii) direct or indirect induction of HSC expansion by regulating signaling pathways; (iii) addition to assisting cells to help in the proliferation of HSCs; (iv) changing of living environment in the HSCs cultures via adjusting components and forms of cultures; (v) enhancement of HSC expansion by incorporating substances, such as extracellular vesicles (EVs), UM171, among others. In this review, recent new findings that provide us with new insights into HSC expansion methods have been summarized. Furthermore, these findings will also provide more possibilities for the development of some novel strategies for expanding and engrafting HSCs applied for treatments of some hematopoietic disorders.
Collapse
Affiliation(s)
- Jiangying Xuan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Yingxia Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Jinhui Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Xiaoping Zeng
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
| | - Hongmei Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (J.L.); (X.Z.)
- Correspondence: ; Tel.: +86-137-6700-4966
| |
Collapse
|
14
|
Papantonis A. HMGs as rheostats of chromosomal structure and cell proliferation. Trends Genet 2021; 37:986-994. [PMID: 34311989 DOI: 10.1016/j.tig.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
High mobility group proteins (HMGs) are the most abundant nuclear proteins next to histones and are robustly expressed across tissues and organs. HMGs can uniquely bend or bind distorted DNA, and are central to such processes as transcription, recombination, and DNA repair. However, their dynamic association with chromatin renders capturing HMGs on chromosomes challenging. Recent work has changed this and now implicates these factors in spatial genome organization. Here, I revisit older and review recent literature to describe how HMGs rewire spatial chromatin interactions to sustain homeostasis or promote cellular aging. I propose a 'rheostat' model to explain how HMG-box proteins (HMGBs), and to some extent HMG A proteins (HMGAs), may control cellular aging and, likely, cancer progression.
Collapse
Affiliation(s)
- Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
15
|
Saeki K, Chang G, Kanaya N, Wu X, Wang J, Bernal L, Ha D, Neuhausen SL, Chen S. Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. Commun Biol 2021; 4:660. [PMID: 34079055 PMCID: PMC8172904 DOI: 10.1038/s42003-021-02201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
The female mammary epithelium undergoes reorganization during development, pregnancy, and menopause, linking higher risk with breast cancer development. To characterize these periods of complex remodeling, here we report integrated 50 K mouse and 24 K human mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most lifetime stages. Our results indicate a putative trajectory that originates from embryonic mammary stem cells which differentiates into three epithelial lineages (basal, luminal hormone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well as the association of gland reorganization to different breast cancer subtypes. This comprehensive mammary cell gene expression atlas ( https://mouse-mammary-epithelium-integrated.cells.ucsc.edu ) presents insights into the impact of the internal and external stimuli on the mammary epithelium at an advanced resolution.
Collapse
Affiliation(s)
- Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
16
|
Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, Sun J, Mao X, Wei L. Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer 2020; 147:2879-2890. [PMID: 32638385 DOI: 10.1002/ijc.33192] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a highly malignant tumor originated from respiratory system. Although there have been many improvements in therapy until now, reducing the high mortality remains difficult. Understanding the cellular heterogeneity of LSCC could contribute to improve this problem. Single-cell RNA sequencing was applied to dissect the cell composition and molecular characteristics of LSCC tissues. Immunohistochemistry staining of the LSCC tissues was performed to identify the spatial location of tumor cells. Survival analysis of marker genes was executed in The Cancer Genome Atlas to verify the correlation between each cell clusters and patients' prognosis. The LSCC tissue cells were finely grouped into various clusters, including tumor cells, immune cells, epithelial cells, fibroblasts and endothelial cells. Notably, in tumor cells, keratinocyte-like cells were in the core of tumor while malignant proliferating cells were located at the tumor edge. The malignant proliferating cells were correlated with poor prognosis. In summary, this is the first study to delineate a landscape of the LSCC intratumor heterogeneity. Our work might help researchers have a better understanding for tumor progression.
Collapse
Affiliation(s)
- Lianhao Song
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Siwei Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Siyang Yu
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Fen Ma
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Bozhi Wang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Congcong Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Ji Sun
- Department of Otolaryngology, Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- Department of Otolaryngology, Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lanlan Wei
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Morishima T, Takizawa H. Genetic fingerprint defines hematopoietic stem cell pool size and function. Haematologica 2020; 105:526-528. [PMID: 32115410 DOI: 10.3324/haematol.2019.241299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University .,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Liang X, Xu C, Cao X, Wang W. Isovitexin Suppresses Cancer Stemness Property And Induces Apoptosis Of Osteosarcoma Cells By Disruption Of The DNMT1/miR-34a/Bcl-2 Axis. Cancer Manag Res 2019; 11:8923-8936. [PMID: 31686915 PMCID: PMC6800563 DOI: 10.2147/cmar.s222708] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Isovitexin (apigenin-6-C-glucoside, ISOV) is a natural flavonoid that exhibits tumor suppressive activity on various types of cancer. However, it is unknown whether the mechanism of its action in osteosarcoma (OS) is associated with epigenetic regulation and whether it involves DNA methyltransferase 1 (DNMT1), microRNAs and their targets. MATERIALS AND METHODS The present study investigated the effects of ISOV on DNMT1 activation and miR-34a and Bcl-2 expression levels in order to explain the mechanism underlying ISOV-mediated repression of proliferation and stemness. In addition, the induction of apoptosis in the spheres derived from OS cells was investigated. RESULTS The results indicated that ISOV significantly repressed survival, induced apoptosis and decreased the level of CD133, CD44, ABCG2 and ALDH1 mRNA in the spheres derived from U2OS (U2OS-SC) and MG63 cells (MG63-SC). ISOV further reduced the sphere formation rate of U2OS-SC and MG63-SC. It is important to noted that, ISOV inhibited tumor growth and reduced tumor size of U2OS-SC xenografts in nude mice, which was accompanied by decreased CD133 protein levels, elevated apoptotic index, downregulation of proliferating cell nuclear antigen (PCNA) expression, reduced DNMT1 activity and expression, increased miR-34a and decreased Bcl-2 levels. We identified that Bcl-2 as a direct functional target of miR-34a. Furthermore, ISOV exhibited a synergistic effect with 5-aza-2'-deoxycytidine, the miR-34a mimic or ABT-263 in order to repress cell survival, induce apoptosis, downregulate CD133, CD44, ABCG2 and ALDH1 mRNA expression levels and reduce sphere formation rates of U2OS-SC and MG63-SC cells. CONCLUSION The findings suggested that ISOV-mediated epigenetic regulation involved the DNMT1/miR-34a/Bcl-2 axis and caused the suppression of stemness and induction of apoptosis in the spheres derived from OS cells. The data indicated that ISOV exhibited a novel efficient potential for the treatment of OS.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Chang Xu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - Xiaocheng Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - Wanchun Wang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| |
Collapse
|