1
|
Anjum A, Mader M, Mahameed S, Muraly A, Denorme F, Kliem FP, Rossaro D, Agköl S, Di Fina L, Mulkers M, Laun L, Li L, Kupper N, Yue K, Hoffknecht ML, Akhalkatsi A, Loew Q, Pircher J, Escaig R, Strasser E, Wichmann C, Pekayvaz K, Nieswandt B, Schulz C, Robles MS, Kaiser R, Massberg S, Campbell R, Nicolai L. Aging platelets shift their hemostatic properties to inflammatory functions. Blood 2025; 145:1568-1582. [PMID: 39841014 PMCID: PMC12002221 DOI: 10.1182/blood.2024024901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Platelets are crucial players in hemostasis and thrombosis but also contribute to immune regulation and host defense, using different receptors, signaling pathways, and effector functions, respectively. Whether distinct subsets of platelets specialize in these diverse tasks is insufficiently understood. Here, we used a pulse-labeling method in Mus musculus models for tracking in vivo platelet aging and its functional implications. Using in vitro and in vivo assays, we reveal that young, reticulated platelets show heightened responses in the setting of clot formation, with corresponding, increased responses to agonists, adhesion, and retractile function. Unexpectedly, aged platelets lose their hemostatic proficiency but are more prone to react to inflammatory challenge: compared with reticulated platelets, this cohort was more likely to form platelet-leukocyte aggregates and showed increased adhesion to neutrophils in vitro, as well as enhanced bactericidal function. In vivo, this was reflected in increased pulmonary recruitment of aged platelets in an acute lung injury model. Proteomic analyses confirmed the upregulation of immune pathways in this cohort, including enhanced procoagulant function. In mouse models of prolonged platelet half-life, this resulted in increased pulmonary leukocyte infiltration and inflammation upon acute lung injury. Similarly, human platelet concentrates decreased their hemostatic function and elevated their putative immunomodulatory potential in vitro over time, and in a mouse model of platelet transfusion, aged platelet concentrates resulted in augmented inflammation. In summary, we show that platelets exhibit age-dependent phenotypic shifts, allowing them to fulfill their diverse tasks in the vasculature. Because functional alterations of aging platelets extend to platelet concentrates, this may hold important implications for transfusion medicine.
Collapse
Affiliation(s)
- Afra Anjum
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Magdalena Mader
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Shaan Mahameed
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Abhinaya Muraly
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Frederik Denorme
- Department of Emergency Medicine, Washington University, St. Louis, MO
| | - Fabian P. Kliem
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Dario Rossaro
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Sezer Agköl
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Lea Di Fina
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Maité Mulkers
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Lisa Laun
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Lukas Li
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Nadja Kupper
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Keyang Yue
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Marie-Louise Hoffknecht
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Anastassia Akhalkatsi
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Quentin Loew
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Joachim Pircher
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Erwin Strasser
- Division of Transfusion Medicine, Cell Therapeutics, and Hemostaseology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics, and Hemostaseology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Bernhard Nieswandt
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria S. Robles
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Rainer Kaiser
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Robert Campbell
- Department of Emergency Medicine, Washington University, St. Louis, MO
| | - Leo Nicolai
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
2
|
Coenen DM, Alfar HR, Whiteheart SW. Platelet endocytosis and α-granule cargo packaging are essential for normal skin wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636051. [PMID: 39975047 PMCID: PMC11838500 DOI: 10.1101/2025.02.01.636051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The high prevalence of chronic wounds, i.e., 2.5-3% of the US population, causes a large social and financial burden. Physiological wound healing is a multi-step process that involves different cell types and growth factors. Platelet-rich plasma or platelet-derived factors have been used to accelerate wound repair, but their use has been controversial with mixed results. Thus, a detailed functional understanding of platelet functions in wound healing beyond hemostasis is needed. This study investigated the importance of platelet α-granule cargo packaging and endocytosis in a dorsal full-thickness excisional skin wound model using mice with defects in α-granule cargo packaging (Nbeal2 -/- mice) and endocytosis (platelet-specific Arf6 -/- and VAMP2/3 Δ mice). We found that proper kinetic and morphological healing of dorsal skin wounds in mice requires both de novo as well as endocytosed platelet α-granule cargo. Histological and morphometric analyses of cross-sectional wound sections illustrated that mice with defects in α-granule cargo packaging or platelet endocytosis had delayed (epi)dermal regeneration in both earlier and advanced healing. This was reflected by reductions in wound collagen and muscle/keratin content, delayed scab formation and/or resolution, re-epithelialization, and cell migration and proliferation. Molecular profiling analysis of wound extracts showed that the impact of platelet function extends beyond hemostasis to the inflammation, proliferation, and tissue remodeling phases via altered expression of several bioactive molecules, including IL-1β, VEGF, MMP-9, and TIMP-1. These findings provide a basis for advances in clinical wound care through a better understanding of key mechanistic processes and cellular interactions in (patho)physiological wound healing. Key points De novo and endocytosed platelet α-granule cargo support physiological skin wound healing Platelet function in wound healing extends to the inflammation, proliferation, and tissue remodeling phases.
Collapse
|
3
|
Schönichen C, Sun S, Middelveld H, Huskens D, de Groot PG, Heemskerk JWM, Roest M, de Laat B. Functionally distinct anticoagulant mechanisms of endothelial cells. Thromb Res 2024; 244:109208. [PMID: 39522336 DOI: 10.1016/j.thromres.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Antithrombin and tissue factor pathway inhibitor (TFPI) provide different anticoagulant mechanisms. Having established a potent anticoagulant role of cultured human umbilical vein endothelial cells in vessel-on-a-chip microfluidic models, we now investigated how these cells modulated thrombin generation under stasis through antithrombin and TFPI pathways. We observed that endothelial monolayers in 96 well-plates strongly delayed and suppressed the thrombin generation process induced by tissue factor, regardless of the presence of whole blood, platelet-rich plasma or platelet-free plasma. Intervention studies indicated that the blocking of heparin-like proteoglycans with polybrene or protamine sulphate, similarly as the absence of antithrombin in plasma, reverted the endothelial anticoagulant activity. Heparinase treatment of the cells also reduced the anticoagulant potential. Furthermore, the presence of andexanet-alpha (inactivated factor Xa) and an anti-TFPI antibody were able to revert the endothelial effects. Jointly, these data point to additive anticoagulant mechanisms of endothelial cells through surface-expressed heparin-like proteoglycans and TFPI, both contributing to thrombin inhibition.
Collapse
Affiliation(s)
- Claudia Schönichen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Siyu Sun
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands
| | - Harmen Middelveld
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands
| | - Dana Huskens
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands
| | - Philip G de Groot
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands.
| | - Mark Roest
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands.
| | - Bas de Laat
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands
| |
Collapse
|
4
|
Wichaiyo S, Tachiki K, Igaue T. Pyroxylin-based liquid bandage forms a mechanically active protective film to facilitate skin wound healing in mice. Biomed Pharmacother 2024; 179:117307. [PMID: 39153435 DOI: 10.1016/j.biopha.2024.117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Wound healing requires interplay between cells and molecules. Recent evidence has demonstrated that liquid bandages promote wound healing by forming a protective barrier against contamination, attenuating inflammation, and enhancing re-epithelialization and angiogenesis. In this study, we evaluated the wound healing activity of pyroxylin-based liquid bandage (LiQuiPlast®) in eight-week-old C57BL/6 male mice by generating a single 4 mm diameter full-thickness excisional skin wound on the dorsum. In the LiQuiPlast® group, the liquid bandage was applied on day 0 and was replaced every four days. Wound size was monitored every day for two weeks. The results showed that LiQuiPlast® was mechanically active (induced wound contraction), which promoted a significant wound size reduction (27 %-39 %, compared to the control group) on days 1-4 postinjury. In addition, a significant reduction in wound size was observed again in the LiQuiPlast® group (25 %-29 %, compared to the controls) on days 8-9 postinjury. LiQuiPlast®-treated wounds showed no scab. Immunohistochemistry analyses displayed a reduction in neutrophils and tumor necrosis factor-α levels in LiQuiPlast®-treated wounds, compared to the control group on day 4 postinjury (the inflammatory phase). In addition, LiQuiPlast®-treated mice had enhanced keratinocyte proliferation than control mice during this time. On day 13 postinjury, LiQuiPlast® significantly reduced hypertrophic scarring and enhanced expression and reorganization of collagen fiber compared to control mice. In conclusion, we show that LiQuiPlast® acts as a mechanically active protective film, which promotes moist wound healing by promoting wound contraction, no scab formation, attenuated inflammation, enhanced keratinocyte proliferation, and decreased scarring.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | | | - Tsuyoshi Igaue
- KOBAYASHI Pharmaceutical Co., Ltd., Osaka 531-0045, Japan
| |
Collapse
|
5
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Sun L, Wang Z, Liu Z, Mu G, Cui Y, Xiang Q. C-type lectin-like receptor 2: roles and drug target. Thromb J 2024; 22:27. [PMID: 38504248 PMCID: PMC10949654 DOI: 10.1186/s12959-024-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
C-type lectin-like receptor-2 (CLEC-2) is a member of the C-type lectin superfamily of cell surface receptors. The first confirmed endogenous and exogenous ligands of CLEC-2 are podoplanin and rhodocytin, respectively. CLEC-2 is expressed on the surface of platelets, which participates in platelet activation and aggregation by binding with its ligands. CLEC-2 and its ligands are involved in pathophysiological processes, such as atherosclerosis, cancer, inflammatory thrombus status, maintenance of vascular wall integrity, and cancer-related thrombosis. In the last 5 years, different anti- podoplanin antibody types have been developed for the treatment of cancers, such as glioblastoma and lung cancer. New tests and new diagnostics targeting CLEC-2 are also discussed. CLEC-2 mediates thrombosis in various pathological states, but CLEC-2-specific deletion does not affect normal hemostasis, which would provide a new therapeutic tool for many thromboembolic diseases. The CLEC-2-podoplanin interaction is a target for cancer treatment. CLEC-2 may be applied in clinical practice and play a therapeutic role.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China.
- Institute of Clinical Pharmacology, Peking University, Beijing, China.
| |
Collapse
|
7
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
8
|
Kaiser R, Escaig R, Nicolai L. Hemostasis without clot formation: how platelets guard the vasculature in inflammation, infection, and malignancy. Blood 2023; 142:1413-1425. [PMID: 37683182 DOI: 10.1182/blood.2023020535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Platelets are key vascular effectors in hemostasis, with activation signals leading to fast recruitment, aggregation, and clot formation. The canonical process of hemostasis is well-characterized and shares many similarities with pathological thrombus formation. However, platelets are also crucially involved in the maintenance of vascular integrity under both steady-state and inflammatory conditions by ensuring blood vessel homeostasis and preventing microbleeds. In these settings, platelets use distinct receptors, signaling pathways, and ensuing effector functions to carry out their deeds. Instead of simply forming clots, they mainly act as individual sentinels that swiftly adapt their behavior to the local microenvironment. In this review, we summarize previously recognized and more recent studies that have elucidated how anucleate, small platelets manage to maintain vascular integrity when faced with challenges of infection, sterile inflammation, and even malignancy. We dissect how platelets are recruited to the vascular wall, how they identify sites of injury, and how they prevent hemorrhage as single cells. Furthermore, we discuss mechanisms and consequences of platelets' interaction with leukocytes and endothelial cells, the relevance of adhesion as well as signaling receptors, in particular immunoreceptor tyrosine-based activation motif receptors, and cross talk with the coagulation system. Finally, we outline how recent insights into inflammatory hemostasis and vascular integrity may aid in the development of novel therapeutic strategies to prevent hemorrhagic events and vascular dysfunction in patients who are critically ill.
Collapse
Affiliation(s)
- Rainer Kaiser
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
9
|
Wichaiyo S, Svasti S, Maiuthed A, Rukthong P, Goli AS, Morales NP. Dasatinib Ointment Promotes Healing of Murine Excisional Skin Wound. ACS Pharmacol Transl Sci 2023; 6:1015-1027. [PMID: 37470022 PMCID: PMC10353058 DOI: 10.1021/acsptsci.2c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Indexed: 07/21/2023]
Abstract
Dasatinib, a tyrosine kinase inhibitor, has been shown to produce anti-inflammatory activity and impair vascular integrity in vivo, including during skin wound healing, potentially promoting the repair process. Given that dasatinib is a lipophilic small molecule capable of penetrating skin, topical dasatinib might provide benefits in wound healing. In the present study, we investigated the impact of dasatinib ointments in skin wound healing in mice. A full thickness excisional skin wound (4 mm diameter) was generated on the shaved dorsum of eight-week-old C57BL/6 mice. Dasatinib ointment (0.1 or 0.2% w/w) or ointment base was applied twice daily (every 12 h) for 10 days. Elizabethan collars were used to prevent animal licking. The wound size was monitored daily for 14 days. The results showed that dasatinib ointments, particularly 0.1% dasatinib, promoted a 16-23% reduction in wound size (p < 0.05) during day 2 to day 6 postinjury compared to controls. Immunohistochemistry analyses demonstrated a reduction in wound neutrophils (38% reduction, p = 0.04), macrophages (47% reduction, p = 0.005), and tumor necrosis factor-α levels (73% reduction, p < 0.01), together with an induction of vascular leakage-mediated fibrin(ogen) accumulation (2.5-fold increase, p < 0.01) in the wound during day 3 postinjury (an early phase of repair) in 0.1% dasatinib-treated mice relative to control mice. The anti-inflammatory and vascular hyperpermeability activities of dasatinib were associated with an enhanced healing process, including increased keratinocyte proliferation (1.8-fold increase in Ki67+ cells, p < 0.05) and augmented angiogenesis (1.7-fold increase in CD31+ area, p < 0.05), compared to the ointment base-treated group. Following treatment with 0.2% dasatinib ointment, minor wound bleeding and scab reformation were observed during the late phase, which contributed to delayed healing. In conclusion, our data suggest that dasatinib ointment, mainly at 0.1%, promotes the repair process by reducing inflammation and producing a local and temporal vascular leakage, leading to an increase in fibrin(ogen) deposition, re-epithelialization, and angiogenesis. Therefore, topical dasatinib might be a potential novel candidate to facilitate skin wound healing.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Saovaros Svasti
- Thalassemia
Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon
Pathom 73170, Thailand
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Arnatchai Maiuthed
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pattarawit Rukthong
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok 26120, Thailand
| | - Arman Syah Goli
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
| | | |
Collapse
|
10
|
Zhang JT, Wu MF, Ma MH, Zhao L, Zhu JY, Nian H, Li FL. Research on the wound healing effect of Shengji Huayu Formula ethanol extract-derived fractions in streptozotocin-induced diabetic ulcer rats. BMC Complement Med Ther 2023; 23:67. [PMID: 36859252 PMCID: PMC9976525 DOI: 10.1186/s12906-023-03894-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Diabetic ulcer is a common complication of diabetes. It is characterized by a long-term disease course and high recurrence rate. Shengji Huayu Formula (SHF) is an effective formula for treating diabetic ulcers. However, the specific effective parts of SHF remain unclear. Clarifying the active polar site of SHF would be helpful to refine research on the components in SHF that promote wound healing. This research aims to focus on evaluating the activity of polar fractions. METHODS A diabetic rat model was established by intraperitoneally injecting streptozotocin (STZ) and was adopted to confirm the therapeutic effect of SHF. Four different polarity parts were extracted from SHF and prepared into a cream to evaluate the activity. High-performance liquid chromatography (HPLC) was used to detect chemical constituents in chloroform extracts. RESULTS It was discovered that dracorhodin, aloe-emodin, rhein, imperatorin, emodin, isoimperatorin, chrysophanol, physcion, and tanshinone IIA were the main components of the chloroform extract from SHF. The results revealed that chloroform extract could effectively accelerate diabetic wound healing by promoting collagen regeneration and epidermal repair. Chloroform extract of SHF could stimulate the generation of vascular endothelial growth factor (VEGF). The results are also indicated that the effective active fraction was the chloroform part, and the method of detecting the main chemical constituents in the active part was successfully established. CONCLUSION SHF could improve diabetic ulcers by promoting granulation tissue synthesis. In this study, four polar parts (petroleum ether, chloroform, ethylacetate, n-butanol) were extracted from a 95% ethanol extract. In contrast, chloroform polar parts showed a higher wound closure rate, stimulated more collagen regeneration and promoted more production of vascular endothelial cells. In conclusion, the chloroform extract of SHF was the effective polar part in ameliorating diabetic wound healing.
Collapse
Affiliation(s)
- Jing-Ting Zhang
- grid.412540.60000 0001 2372 7462Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China ,grid.412540.60000 0001 2372 7462Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Yueyang, 200437 China ,grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, 200080 China
| | - Min-Feng Wu
- grid.8547.e0000 0001 0125 2443Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, 200040 China
| | - Ming-Hua Ma
- grid.460149.e0000 0004 1798 6718Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090 China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908 China
| | - Jian-Yong Zhu
- grid.412540.60000 0001 2372 7462Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Yueyang, 200437, China.
| | - Fu-Lun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
11
|
Bourne JH, Smith CW, Jooss NJ, Di Y, Brown HC, Montague SJ, Thomas MR, Poulter NS, Rayes J, Watson SP. CLEC-2 Supports Platelet Aggregation in Mouse but not Human Blood at Arterial Shear. Thromb Haemost 2022; 122:1988-2000. [PMID: 35817083 PMCID: PMC9718592 DOI: 10.1055/a-1896-6992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is highly expressed on platelets and a subpopulation of myeloid cells, and is critical in lymphatic development. CLEC-2 has been shown to support thrombus formation at sites of inflammation, but to have a minor/negligible role in hemostasis. This identifies CLEC-2 as a promising therapeutic target in thromboinflammatory disorders, without hemostatic detriment. We utilized a GPIbα-Cre recombinase mouse for more restricted deletion of platelet-CLEC-2 than the previously used PF4-Cre mouse. clec1bfl/flGPIbα-Cre+ mice are born at a Mendelian ratio, with a mild reduction in platelet count, and present with reduced thrombus size post-FeCl3-induced thrombosis, compared to littermates. Antibody-mediated depletion of platelet count in C57BL/6 mice, to match clec1bfl/flGPIbα-Cre+ mice, revealed that the reduced thrombus size post-FeCl3-injury was due to the loss of CLEC-2, and not mild thrombocytopenia. Similarly, clec1bfl/flGPIbα-Cre+ mouse blood replenished with CLEC-2-deficient platelets ex vivo to match littermates had reduced aggregate formation when perfused over collagen at arterial flow rates. In contrast, platelet-rich thrombi formed following perfusion of human blood under flow conditions over collagen types I or III, atherosclerotic plaque, or inflammatory endothelial cells were unaltered in the presence of CLEC-2-blocking antibody, AYP1, or recombinant CLEC-2-Fc. The reduction in platelet aggregation observed in clec1bfl/flGPIbα-Cre+ mice during arterial thrombosis is mediated by the loss of CLEC-2 on mouse platelets. In contrast, CLEC-2 does not support thrombus generation on collagen, atherosclerotic plaque, or inflamed endothelial cells in human at arterial shear.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie J. Jooss
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- UHB and SWBH NHS Trusts, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
12
|
Su W, Chen X, Zhang W, Li D, Chen X, Yu D. Therapeutic targets and signaling mechanisms of dasatinib activity against radiation skin ulcer. Front Public Health 2022; 10:1031038. [PMID: 36530656 PMCID: PMC9749824 DOI: 10.3389/fpubh.2022.1031038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To reveal the potential targets and signaling pathways of dasatinib in the treatment of radiation ulcers through network pharmacology and molecular docking technology. Methods Pathological targets of radiation ulcers were screened using GeneCards database. At the same time, the pharmacological targets of dasatinib were obtained through SwissTargetPrediction (STP), Binding DB and Drugbank databases. Subsequently, the potential targets of dasatinib for anti-radiation ulcers were obtained after intersection by Venn diagram. Next, a protein-protein interaction (PPI) network was constructed through the STRING database and core targets were screened. Finally, the identified core targets were subjected to GO and KEGG enrichment analysis, co-expression network analysis, and molecular docking technology to verify the reliability of the core targets. Results A total of 76 potential targets for anti-radiation ulcer with dasatinib were obtained, and 6 core targets were screened, including EGFR, ERBB2, FYN, JAK2, KIT, and SRC. These genes were mainly enriched in Adherens junction, EGFR tyrosine kinase inhibitor resistance, Focal adhesion, Bladder cancer and PI3K-Akt signaling pathway. Molecular docking results showed that dasatinib binds well to the core target. Conclusion Dasatinib may play a role in the treatment of radiation ulcers by regulating EGFR, ERBB2, FYN, JAK2, KIT, and SRC. These core targets may provide new insights for follow-up studies of radiation ulcers.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- Department of Cosmetic Plastic and Burn Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xuelian Chen
- Department of Cosmetic Plastic and Burn Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wen Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoming Chen
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Le Chapelain O, Ho-Tin-Noé B. Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers (Basel) 2022; 14:cancers14092192. [PMID: 35565321 PMCID: PMC9105443 DOI: 10.3390/cancers14092192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is the complex and heterogenous ecosystem of solid tumors known to influence their growth and their progression. Besides tumor cells, the TME comprises a variety of host-derived cell types, ranging from endothelial cells to fibroblasts and immune cells. Clinical and experimental data are converging to indicate that platelets, originally known for their fundamental hemostatic function, also participate in tumor development and shaping of the TME. Considering the abundance of antiplatelet drugs, understanding if and how platelets contribute to the TME may lead to new therapeutic tools for improved cancer prevention and treatments. Abstract The tumor microenvironment (TME) has gained considerable interest because of its decisive impact on cancer progression, response to treatment, and disease recurrence. The TME can favor the proliferation, dissemination, and immune evasion of cancer cells. Likewise, there is accumulating evidence that intratumoral platelets could favor the development and aggressiveness of solid tumors, notably by influencing tumor cell phenotype and shaping the vascular and immune TME components. Yet, in contrast to other tumor-associated cell types like macrophages and fibroblasts, platelets are still often overlooked as components of the TME. This might be due, in part, to a deficit in investigating and reporting the presence of platelets in the TME and its relationships with cancer characteristics. This review summarizes available evidence from clinical and animal studies supporting the notion that tumor-associated platelets are not incidental bystanders but instead integral and active components of the TME. A particular emphasis is given to the description of intratumoral platelets, as well as to the functional consequences and possible mechanisms of intratumoral platelet accumulation.
Collapse
|
14
|
Wichaiyo S, Svasti S, Supharattanasitthi W, Morales NP. Dasatinib induces loss of vascular integrity and promotes cutaneous wound repair in mice. J Thromb Haemost 2021; 19:3154-3167. [PMID: 34402195 DOI: 10.1111/jth.15499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammatory bleeding due to depletion of platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) has been proposed as a potential novel mechanism to promote skin wound healing. Dasatinib inhibits a broad range of tyrosine kinases, including Src and Syk, the signaling molecules downstream of GPVI and CLEC-2. OBJECTIVES To investigate whether dasatinib affects skin wound healing. METHODS A single (4-mm diameter) full-thickness excisional skin wound was generated in mice. Dasatinib (5 or 10 mg/kg) or dimethyl sulfoxide (DMSO) vehicle was intraperitoneally injected daily during the first 4 days. The wound was monitored over 9 days post injury. RESULTS Dasatinib induced loss of vascular integrity during the inflammatory phase of wound repair (day 1 to day 3 post injury), which was associated with the inhibition of platelet function stimulated by collagen and rhodocytin, the ligands for GPVI and CLEC-2, respectively. Dasatinib-treated mice, particularly at 5 mg/kg, exhibited accelerated wound closure compared to DMSO-treated controls. Transient bleeding into the wound during the inflammatory phase in dasatinib-treated mice allowed for extravasation of fibrinogen. The increased deposition of fibrinogen and fibrin in the wound on day 3 post injury was associated with the augmented progression of re-epithelialization and angiogenesis, attenuated infiltration of neutrophils and macrophages, and decreased levels of tumor necrosis factor-α (TNF-α). CONCLUSIONS Our data show that dasatinib promotes skin wound healing, and the mechanisms include blocking GPVI- and CLEC-2-mediated platelet activation, leading to self-limited inflammatory bleeding and fibrinogen/fibrin deposition, in association with reduced inflammation, increased re-epithelialization, and enhanced angiogenesis.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wasu Supharattanasitthi
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
15
|
Lee GH, Lekwuttikarn R, Tafoya E, Martin M, Sarin KY, Teng JM. Transcriptomic Repositioning Analysis Identifies mTOR Inhibitor as Potential Therapy for Epidermolysis Bullosa Simplex. J Invest Dermatol 2021; 142:382-389. [PMID: 34536484 DOI: 10.1016/j.jid.2021.07.170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
Expression-based systematic drug repositioning has been explored to predict novel treatments for a number of skin disorders. In this study, we utilize this approach to identify, to our knowledge, previously unreported therapies for epidermolysis bullosa simplex (EBS). RNA sequencing analysis was performed on skin biopsies of acute blisters (<1 week old) (n = 9) and nonblistered epidermis (n = 11) obtained from 11 patients with EBS. Transcriptomic analysis of blistered epidermis in patients with EBS revealed a set of 1,276 genes dysregulated in EBS blisters. The IL-6, IL-8, and IL-10 pathways were upregulated in the epidermis from EBS. Consistent with this, predicted upstream regulators included TNF-α, IL-1β, IL-2, IL-6, phosphatidylinositol 3-kinase, and mTOR. The 1,276 gene EBS blister signature was integrated with molecular signatures from cell lines treated with 2,423 drugs using the Connectivity Map CLUE platform. The mTOR inhibitors and phosphatidylinositol 3-kinase inhibitors most opposed the EBS signature. To determine whether mTOR inhibitors could be used clinically in EBS, we conducted an independent pilot study of two patients with EBS treated with topical sirolimus for painful plantar keratoderma due to chronic blistering. Both individuals experienced marked clinical improvement and a notable reduction of keratoderma. In summary, a computational drug repositioning analysis successfully identified, to our knowledge, previously unreported targets in the treatment of EBS.
Collapse
Affiliation(s)
- Gun Ho Lee
- Harvard Combined Dermatology Residency Training Program, Harvard Medical School, Harvard University, Boston, Massachusetts, USA; Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Ramrada Lekwuttikarn
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA; Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Elidia Tafoya
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Monica Martin
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA
| | - Joyce M Teng
- Department of Dermatology, Stanford Medicine, Stanford University, Redwood City, California, USA.
| |
Collapse
|
16
|
Perrella G, Nagy M, Watson SP, Heemskerk JWM. Platelet GPVI (Glycoprotein VI) and Thrombotic Complications in the Venous System. Arterioscler Thromb Vasc Biol 2021; 41:2681-2692. [PMID: 34496636 PMCID: PMC9653110 DOI: 10.1161/atvbaha.121.316108] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The immunoglobulin receptor GPVI (glycoprotein VI) is selectively expressed on megakaryocytes and platelets and is currently recognized as a receptor for not only collagen but also a variety of plasma and vascular proteins, including fibrin, fibrinogen, laminin, fibronectin, and galectin-3. Deficiency of GPVI is protective in mouse models of experimental thrombosis, pulmonary thromboembolism as well as in thromboinflammation, suggesting a role of GPVI in arterial and venous thrombus formation. In humans, platelet GPVI deficiency is associated with a mild bleeding phenotype, whereas a common variant rs1613662 in the GP6 gene is considered a risk factor for venous thromboembolism. However, preclinical studies on the inhibition of GPVI-ligand interactions are focused on arterial thrombotic complications. In this review we discuss the emerging evidence for GPVI in venous thrombus formation and leukocyte-dependent thromboinflammation, extending to venous thromboembolism, pulmonary thromboembolism, and cancer metastasis. We also recapitulate indications for circulating soluble GPVI as a biomarker of thrombosis-related complications. Collectively, we conclude that the current evidence suggests that platelet GPVI is also a suitable cotarget in the prevention of venous thrombosis due to its role in thrombus consolidation and platelet-leukocyte complex formation.
Collapse
Affiliation(s)
- Gina Perrella
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.).,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., S.P.W.)
| | - Magdolna Nagy
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (G.P., S.P.W.).,COMPARE, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (S.P.W.)
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, The Netherlands (G.P., M.N., J.W.M.H.).,Now with Synapse Research Institute, Maastricht, the Netherlands (J.W.M.H.)
| |
Collapse
|
17
|
Bourne JH, Beristain-Covarrubias N, Zuidscherwoude M, Campos J, Di Y, Garlick E, Colicchia M, Terry LV, Thomas SG, Brill A, Bayry J, Watson SP, Rayes J. CLEC-2 Prevents Accumulation and Retention of Inflammatory Macrophages During Murine Peritonitis. Front Immunol 2021; 12:693974. [PMID: 34163489 PMCID: PMC8215360 DOI: 10.3389/fimmu.2021.693974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
Platelets play a key role in the development, progression and resolution of the inflammatory response during sterile inflammation and infection, although the mechanism is not well understood. Here we show that platelet CLEC-2 reduces tissue inflammation by regulating inflammatory macrophage activation and trafficking from the inflamed tissues. The immune regulatory function of CLEC-2 depends on the expression of its ligand, podoplanin, upregulated on inflammatory macrophages and is independent of platelet activation and secretion. Mechanistically, platelet CLEC-2 and also recombinant CLEC-2-Fc accelerates actin rearrangement and macrophage migration by increasing the expression of podoplanin and CD44, and their interaction with the ERM proteins. During ongoing inflammation, induced by lipopolysaccharide, treatment with rCLEC-2-Fc induces the rapid emigration of peritoneal inflammatory macrophages to mesenteric lymph nodes, thus reducing the accumulation of inflammatory macrophages in the inflamed peritoneum. This is associated with a significant decrease in pro-inflammatory cytokine, TNF-α and an increase in levels of immunosuppressive, IL-10 in the peritoneum. Increased podoplanin expression and actin remodelling favour macrophage migration towards CCL21, a soluble ligand for podoplanin and chemoattractant secreted by lymph node lymphatic endothelial cells. Macrophage efflux to draining lymph nodes induces T cell priming. In conclusion, we show that platelet CLEC-2 reduces the inflammatory phenotype of macrophages and their accumulation, leading to diminished tissue inflammation. These immunomodulatory functions of CLEC-2 are a novel strategy to reduce tissue inflammation and could be therapeutically exploited through rCLEC-2-Fc, to limit the progression to chronic inflammation.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nonantzin Beristain-Covarrubias
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Joana Campos
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Evelyn Garlick
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lauren V. Terry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Steven G. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
- Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
18
|
Pereira DFDC, Matias Ribeiro MS, de Sousa Simamoto BB, Dias EHV, Costa JDO, Santos-Filho NA, Bordon KDCF, Arantes EC, Dantas NO, Silva ACA, de Oliveira F, Mamede CCN. Baltetin: a new C-type lectin-like isolated from Bothrops alternatus snake venom which act as a platelet aggregation inhibiting. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122695. [PMID: 33915386 DOI: 10.1016/j.jchromb.2021.122695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022]
Abstract
C-type lectin-like proteins found in snake venom, known as snaclecs, have important effects on hemostasis through targeting membrane receptors, coagulation factors and other hemostatic proteins. Here, we present the isolation and functional characterization of a snaclec isolated from Bothrops alternatus venom, designated as Baltetin. We purified the protein in three chromatographic steps (anion-exchange, affinity and reversed-phase chromatography). Baltetin is a dimeric snaclec that is approximately 15 and 25 kDa under reducing and non-reducing conditions, respectively, as estimated by SDS-PAGE. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and Edman degradation sequencing revealed that Baltetin is a heterodimer. The first 40 amino acid residues of the N-terminal region of Baltetin subunits share a high degree of sequence identity with other snaclecs. Baltetin had a specific, dose-dependent inhibitory effect on epinephrine-induced platelet aggregation in human platelet-rich plasma, inhibiting up to 69% of platelet aggregation. Analysis of the infrared spectra suggested that the interaction between Baltetin and platelets can be attributed to the formation of hydrogen bonds between the PO32- groups in the protein and PO2- groups in the platelet membrane. This interaction may lead to membrane lipid peroxidation, which prevents epinephrine from binding to its receptor. The present work suggests that Baltetin, a new C-type lectin-like protein isolated from B. alternatus venom, is the first snaclec to inhibit epinephrine-induced platelet aggregation. This could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Campus Ituiutaba, Ituiutaba, MG, Brazil
| | | | | | - Eliane Candiani Arantes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Anielle Christine Almeida Silva
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Campus Uberlândia, Uberlândia, MG, Brazil; Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Campus Uberlândia, Uberlândia, MG, Brazil
| | - Carla Cristine Neves Mamede
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Campus Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
19
|
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review highlights recent insights into the role of platelets in acute inflammation and infection. RECENT FINDINGS Platelets exhibit intravascular crawling behavior and can collect and bundle bacteria. In addition, platelets are key in promoting intravascular thrombus formation in infection, a process termed 'immunothrombosis', which contributes to pathogen containment, but also potentially damages the host. Platelets are at the nexus of leukocyte recruitment and activation, yet they are at the same time crucial in preventing inflammation-associated hemorrhage and tissue damage. This multitasking requires specific receptors and pathways, depending on stimulus, organ and effector function. SUMMARY New findings highlight the complex interplay of innate immunity, coagulation and platelets in inflammation and infection, and unravel novel molecular pathways and effector functions. These offer new potential therapeutic approaches, but require further extensive research to distinguish treatable proinflammatory from host-protective pathways.
Collapse
|
21
|
Prognostic significance of preoperative circulating FAR and FCI scores in patients with ovarian cancer. Clin Chim Acta 2020; 509:252-257. [PMID: 32589881 DOI: 10.1016/j.cca.2020.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 06/20/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ovarian malignancy is among the most common lethal cancers in gynaecology. It has been considered that nutrition status and inflammation are two essential factors associated with the poor survival rates of patients suffering from multiple tumours. METHODS This research included 174 subjects who suffered from FIGO stage I-IV OC and underwent surgeries between May 2008 and March 2013. RESULTS The results showed that FAR, T3-T4 depth, high CA125, stage III-IV and metastasis were highly associated with low overall survival rates. Moreover, higher FCI was markedly correlated with decreased survival in patients with OC. CONCLUSIONS The combination of FAR and CA125 could be a new non-invasive marker in blood and probably assist physicians in evaluating the prognosis of patients.
Collapse
|
22
|
Haining EJ, Lowe KL, Wichaiyo S, Kataru RP, Nagy Z, Kavanagh DP, Lax S, Di Y, Nieswandt B, Ho-Tin-Noé B, Mehrara BJ, Senis YA, Rayes J, Watson SP. Lymphatic blood filling in CLEC-2-deficient mouse models. Platelets 2020; 32:352-367. [PMID: 32129691 PMCID: PMC8443399 DOI: 10.1080/09537104.2020.1734784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.
Collapse
Affiliation(s)
- Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kate L Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Surasak Wichaiyo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean Pj Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sian Lax
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Experimental Biomedicine, University of Würzburg and University Hospital of Würzburg, Würzburg, Germany
| | - Benoît Ho-Tin-Noé
- Institut National de la Santé et de la Recherche Médicale, UMR_S1148, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, Paris, France
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
23
|
Rayes J, Bourne JH, Brill A, Watson SP. The dual role of platelet-innate immune cell interactions in thrombo-inflammation. Res Pract Thromb Haemost 2020; 4:23-35. [PMID: 31989082 PMCID: PMC6971330 DOI: 10.1002/rth2.12266] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Beyond their role in hemostasis and thrombosis, platelets are increasingly recognized as key regulators of the inflammatory response under sterile and infectious conditions. Both platelet receptors and secretion are critical for these functions and contribute to their interaction with the endothelium and innate immune system. Platelet-leukocyte interactions are increased in thrombo-inflammatory diseases and are sensitive biomarkers for platelet activation and targets for the development of new therapies. The crosstalk between platelets and innate immune cells promotes thrombosis, inflammation, and tissue damage. However, recent studies have shown that these interactions also regulate the resolution of inflammation, tissue repair, and wound healing. Many of the platelet and leukocyte receptors involved in these bidirectional interactions are not selective for a subset of immune cells. However, specific heterotypic interactions occur in different vascular beds and inflammatory conditions, raising the possibility of disease- and organ-specific pathways of intervention. In this review, we highlight and discuss prominent and emerging interrelationships between platelets and innate immune cells and their dual role in the regulation of the inflammatory response in sterile and infectious thrombo-inflammatory diseases. A better understanding of the functional relevance of these interactions in different vascular beds may provide opportunities for successful therapeutic interventions to regulate the development, progression, and chronicity of various pathological processes.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
| | - Joshua H. Bourne
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alexander Brill
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
- Department of PathophysiologySechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Steve P. Watson
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
| |
Collapse
|
24
|
Pretorius E. Platelets as Potent Signaling Entities in Type 2 Diabetes Mellitus. Trends Endocrinol Metab 2019; 30:532-545. [PMID: 31196615 DOI: 10.1016/j.tem.2019.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease with a dysregulated circulating inflammatory molecule tendency. T2DM is closely associated with systemic inflammation, endothelial dysfunction, cardiovascular risk, and increased clotting susceptibility. Platelets have fundamental roles in the development and propagation of inflammation and cardiovascular risk. They signal through membrane receptors, resulting in (hyper)activation and release of inflammatory molecules from platelet compartments. This review highlights how circulating inflammatory molecules, acting as platelet receptor ligands, interact with platelets, causing platelets to be potent drivers of systemic inflammation. We conclude by suggesting that focused platelet research in T2DM is an important avenue to pursue to identify novel therapeutic targets, and that platelets could be used as cellular activity sensors themselves.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, 7602, South Africa.
| |
Collapse
|
25
|
Nurden AT. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev 2019; 38:100592. [PMID: 31351674 DOI: 10.1016/j.blre.2019.100592] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Much interest surrounds the receptors α2β1 and glycoprotein VI (GPVI) whose synchronized action mediates the attachment and activation of platelets on collagen, essential for preventing blood loss but also the most thrombogenic component of the vessel wall. Subject to density variations on platelets through natural polymorphisms, the absence of α2β1 or GPVI uniquely leads to a substantial block of hemostasis without causing major bleeding. Specific to the megakaryocyte lineage, GPVI and its signaling pathways are most promising targets for anti-thrombotic therapy. This review looks at the clinical consequences of the loss of collagen receptor function with emphasis on both the inherited and acquired loss of GPVI with brief mention of mouse models when necessary. A detailed survey of rare case reports of patients with inherited disease-causing variants of the GP6 gene is followed by an assessment of the causes and clinical consequences of acquired GPVI deficiency, a more frequent finding most often due to antibody-induced platelet GPVI shedding. Release of soluble GPVI is brought about by platelet metalloproteinases; a process induced by ligand or antibody binding to GPVI or even high shear forces. Also included is an assessment of the clinical importance of GPVI-mediated platelet interactions with fibrin and of the promise shown by the pharmacological inhibition of GPVI in a cardiovascular context. The role for GPVI in platelet function in inflammation and in the evolution and treatment of major illnesses such as rheumatoid arthritis, cancer and sepsis is also discussed.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, PTIB, Hôpital Xavier Arnozan, 33600 Pessac, France.
| |
Collapse
|