1
|
Agbozo WK, Solomon W, Lekpor CE, Erskine IJ, Oguljahan B, Bashi A, Harbuzariu A, Driss A, Adjei S, Paemka L, Ofori-Acquah SF, Stiles JK. Hydroxyurea Mitigates Heme-Induced Inflammation and Kidney Injury in Humanized Sickle Cell Mice. Int J Mol Sci 2025; 26:3214. [PMID: 40244015 PMCID: PMC11989777 DOI: 10.3390/ijms26073214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Kidney disorders significantly contribute to morbidity and mortality in sickle cell disease (SCD). Acute kidney injury (AKI), a major risk factor for chronic kidney disease (CKD), often arises from intravascular hemolysis, where plasma cell-free heme drives AKI through inflammatory and oxidative stress mechanisms. Hydroxyurea (HU), a well-established SCD-modifying therapy, improves clinical outcomes, but its effects on systemic heme and inflammatory mediators of kidney injury remain underexplored. This study evaluated HU's impact on plasma heme, pro-inflammatory mediators, kidney injury, and renal histopathology in a sickle cell mouse model. Townes humanized sickle cell mice (HbSS) and non-sickle (HbAA) controls were treated with HU or vehicle for two weeks. HU significantly reduced total plasma heme, lactate dehydrogenase, and pro-inflammatory cytokines (CXCL10, VEGF-A, IFN-γ) in HbSS mice. HU reduced renal injury biomarkers (cystatin C, NGAL) and improved renal histopathology, evidenced by reduced vascular congestion, glomerulosclerosis, and tubular damage. Interestingly, HU did not alter the levels of kidney repair biomarkers (clusterin and EGF). These findings suggest that HU mitigates kidney injury by reducing the deleterious effects of circulating heme and inflammation, supporting its potential to slow or prevent progressive kidney injury in SCD.
Collapse
Affiliation(s)
- William Kwaku Agbozo
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
| | - Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | - Cecilia Elorm Lekpor
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | - Isaac Joe Erskine
- Department of Pathology, Korle-Bu Teaching Hospital, P.O. Box 77 Korle Bu-Accra, Ghana
| | - Babayewa Oguljahan
- Center for Laboratory Animal Resources, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Alaijah Bashi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | | | - Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581 Legon-Accra, Ghana
| | - Lily Paemka
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
| | - Solomon Fifii Ofori-Acquah
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
- West African Genetic Medicine Center (WAGMC), University of Ghana, P.O. Box LG 25 Legon-Accra, Ghana
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (W.K.A.)
| |
Collapse
|
2
|
Diamantidis MD, Ikonomou G, Argyrakouli I, Pantelidou D, Delicou S. Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with Beta Thalassemia and Sickle Cell Disease. Int J Mol Sci 2024; 25:11886. [PMID: 39595957 PMCID: PMC11593634 DOI: 10.3390/ijms252211886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in patients with β-thalassemia (quantitative disorder), while SCD is a serious disease in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels (qualitative disorder). Despite the revolutionary progress in recent years with the approval of gene therapy and gene editing for specific patients, there is an unmet need for highlighting the mechanisms influencing hemoglobin production and for the development of novel drugs and targeted therapies. The identification of the transcription factors and other genetic modifiers of hemoglobin expression is of utmost importance for discovering novel therapeutic approaches for patients with hemoglobinopathies. The aim of this review is to describe these complex molecular mechanisms and pathways affecting hemoglobin expression and to highlight the relevant investigational approaches or pharmaceutical interventions focusing on restoring the hemoglobin normal function by linking the molecular background of the disease with the clinical perspective. All the associated drugs increasing the hemoglobin expression in patients with hemoglobinopathies, along with gene therapy and gene editing, are also discussed.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Georgia Ikonomou
- Thalassemia and Sickle Cell Disease Prevention Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Ioanna Argyrakouli
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Despoina Pantelidou
- Thalassemia and Sickle Cell Disease Unit, AHEPA University General Hospital, 41221 Thessaloniki, Greece;
| | - Sophia Delicou
- Center of Expertise in Hemoglobinopathies and Their Complications, Thalassemia and Sickle Cell Disease Unit, Hippokration General Hospital, 41221 Athens, Greece;
| |
Collapse
|
3
|
Ala C, Joshi RP, Gupta P, Goswami SG, Ramalingam S, Kondapalli Venkata Gowri CS, Sankaranarayanan M. A critical review of therapeutic interventions in sickle cell disease: Progress and challenges. Arch Pharm (Weinheim) 2024; 357:e2400381. [PMID: 39031925 DOI: 10.1002/ardp.202400381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Sickle cell disease (SCD) is an autosomal recessive genetic disorder that occurs due to the point mutation in the β-globin gene, which results in the formation of sickle hemoglobin (HbS) in the red blood cells (RBCs). When HbS is exposed to an oxygen-depleted environment, it polymerizes, resulting in hemolysis, vaso-occlusion pain, and impaired blood flow. Still, there is no affordable cure for this inherited disease. Approved medications held promise but were met with challenges due to limited patient tolerance and undesired side effects, thereby inhibiting their ability to enhance the quality of life across various individuals with SCD. Progress has been made in understanding the pathophysiology of SCD during the past few decades, leading to the discovery of novel targets and therapies. However, there is a compelling need for research to discover medications with improved efficacy and reduced side effects. Also, more clinical investigations on various drug combinations with different mechanisms of action are needed. This review comprehensively presents therapeutic approaches for SCD, including those currently available or under investigation. It covers fundamental aspects of the disease, such as epidemiology and pathophysiology, and provides detailed discussions on various disease-modifying agents. Additionally, expert insights are offered on the future development of pharmacotherapy for SCD.
Collapse
Affiliation(s)
- Chandu Ala
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Medicinal Chemistry Research Laboratory, Pilani Campus, Pilani, Rajasthan, India
| | - Renuka Parshuram Joshi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Medicinal Chemistry Research Laboratory, Pilani Campus, Pilani, Rajasthan, India
| | - Pragya Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | | | | | | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Medicinal Chemistry Research Laboratory, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
4
|
Zhang C, Xue ZH, Luo WH, Jiang MY, Wu Y. The therapeutic potential of phosphodiesterase 9 (PDE9) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:759-772. [PMID: 38979973 DOI: 10.1080/13543776.2024.2376632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Zhao-Hang Xue
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, P. R. China
| | - Mei-Yan Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Lugthart S, Ginete C, Kuona P, Brito M, Inusa BPD. An update review of new therapies in sickle cell disease: the prospects for drug combinations. Expert Opin Pharmacother 2024; 25:157-170. [PMID: 38344818 DOI: 10.1080/14656566.2024.2317336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Sickle cell disease (SCD) is an inherited disorder characterised by polymerisation of deoxygenated haemoglobin S and microvascular obstruction. The cardinal feature is generalised pain referred to as vaso-occlusive crises (VOC), multi-organ damage and premature death. SCD is the most prevalent inherited life-threatening disorders in the world and over 85% of world's 400,000 annual births occur low-and-middle-income countries. Hydroxyurea remained the only approved disease modifying therapy (1998) until the FDA approved L-glutamine (2017), Crizanlizumab and Voxelotor (2019) and gene therapies (Exa-cel and Lovo-cel, 2023). AREAS COVERED Clinical trials performed in the last 10 years (November 2013 - November 2023) were selected for the review. They were divided according to the mechanisms of drug action. The following pubmed central search terms [sickle cell disease] or [sickle cell anaemia] Hydroxycarbamide/ Hydroxyurea, L-Glutamine, Voxelotor, Crizanlizumab, Mitapivat, Etavopivat, gene therapy, haematopoietic stem cell transplantation, and combination therapy. EXPERT OPINION We recommend future trials of combination therapies for specific complications such as VOCs, chronic pain and renal impairment as well as personalised medicine approach based on phenotype and patient characteristics. Following recent approval of gene therapy for SCD, the challenge is addressing the role of shared decision-making with families, global access and affordability.
Collapse
Affiliation(s)
- Sanne Lugthart
- Haematology department, University Hospitals of Bristol and Weston Foundation Trust, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Catarina Ginete
- Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Portugal
| | - Patience Kuona
- Child, Adolescent and Women's Health Department, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Miguel Brito
- Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Portugal
| | - Baba Psalm Duniya Inusa
- Paediatric Haematology, Evelina London, Guy's and St Thomas NHS Foundation Trust, London
- Women's and Children Academic health, Life Sciences and Medicine, King's College London, London
| |
Collapse
|
6
|
Hodroj MH, Akiki N, Bou-Fakhredin R, Taher AT. Beta-thalassemia: is cure still a dream? Minerva Med 2023; 114:850-860. [PMID: 37534831 DOI: 10.23736/s0026-4806.23.08501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
β-thalassemia is a monogenic disorder characterized by decreased hemoglobin production, resulting in chronic anemia. There are several factors affecting the clinical presentation of patients with β-thalassemia, and several complications such as iron overload or ineffective erythropoiesis have been linked to this disease. Until nowadays, several conservative therapies namely blood transfusions, iron chelation, and the FDA-approved drug Luspatercept have been adopted alongside other debatable permanent cures. Other clinical trials are being conducted to develop better and safer management techniques for these patients. This review will discuss the different treatment strategies of β-thalassemia including novel therapies, besides all possible curative therapies that are being developed for this disease.
Collapse
Affiliation(s)
- Mohammad H Hodroj
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Akiki
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ali T Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon -
| |
Collapse
|
7
|
Zheng L, Zhou ZZ. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential. Eur J Med Chem 2023; 259:115682. [PMID: 37536210 DOI: 10.1016/j.ejmech.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
9
|
Xu M, An G. A Pharmacometrics Model to Characterize a New Type of Target-Mediated Drug Disposition (TMDD) - Nonlinear Pharmacokinetics of Small-Molecule PF-07059013 Mediated By Its High-capacity Pharmacological Target Hemoglobin With Positive Cooperative Binding. AAPS J 2023; 25:41. [PMID: 37055588 DOI: 10.1208/s12248-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
In general, small-molecule target-mediated drug disposition (TMDD) is caused by the interaction of a drug with its high-affinity, low-capacity pharmacological target. In the current work, we developed a pharmacometrics model to characterize a new type of TMDD, where the nonlinear pharmacokinetics (PK) is mediated by a high-capacity pharmacological target with cooperative binding instead of target saturation. The model drug we used was PF-07059013, a noncovalent hemoglobin modulator that demonstrated promising preclinical efficacy to treat sickle cell disease (SCD), and showed complex nonlinear PK in mice with the fraction of unbound drug in blood (fub) decreased with an increase in PF-07059013 concentrations/doses due to the positive cooperative binding of PF-07059013 to hemoglobin. Among the various models we evaluated, the best one is a semi-mechanistic model where only drug molecules not bound to hemoglobin were allowed for elimination, with the nonlinear pharmacokinetics being captured by incorporating cooperative binding for drug molecules bound to hemoglobin. Our final model provided valuable insight on target binding-related parameters, such as the Hill coefficient γ (estimated to be 1.6), binding constant KH (estimated to be 1450 µM), and the amount of total hemoglobin Rtot (estimated to be 2.13 µmol). As the dose selection of a compound with positive cooperative binding is tricky and challenging due to the nonproportional and steep response, our model may be valuable in facilitating the rational dose regimen selection for future preclinical animal and clinical trials for PF-07059013 and other compounds whose nonlinear pharmacokinetics are caused by similar mechanisms.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
10
|
Pathophysiological characterization of the Townes mouse model for sickle cell disease. Transl Res 2023; 254:77-91. [PMID: 36323381 DOI: 10.1016/j.trsl.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
A deeper pathophysiologic understanding of available mouse models of sickle cell disease (SCD), such as the Townes model, will help improve preclinical studies. We evaluated groups of Townes mice expressing either normal adult human hemoglobin (HbA), sickle cell trait (HbAS), or SCD (HbS), comparing younger versus older adults, and females versus males. We obtained hematologic parameters in steady-state and hypoxic conditions and evaluated metabolic markers and cytokines from serum. Kidney function was evaluated by measuring the urine protein/creatinine ratio and urine osmolality. In vivo studies included von Frey assay, non-invasive plethysmography, and echocardiography. Histopathological evaluations were performed in lung, liver, spleen, and kidney tissues. HbS mice displayed elevated hemolysis markers and white blood cell counts, with some increases more pronounced in older adults. After extended in vivo hypoxia, hemoglobin, platelet counts, and white blood cell counts decreased significantly in HbS mice, whereas they remained stable in HbA mice. Cytokine analyses showed increased TNF-alpha in HbS mice. Kidney function assays revealed worsened kidney function in HbS mice. The von Frey assay showed a lower threshold to response in the HbS mice than controls, with more noticeable differences in males. Echocardiography in HbS mice suggested left ventricular hypertrophy and dilatation. Plethysmography suggested obstructive lung disease and inflammatory changes in HbS mice. Histopathological studies showed vascular congestion, increased iron deposition, and disruption of normal tissue architecture in HbS mice. These data correlate with clinical manifestations in SCD patients and highlight analyses and groups to be included in preclinical therapeutic studies.
Collapse
|
11
|
Abstract
Advances in understanding the underlying pathophysiology of β-thalassemia have enabled efforts toward the development of novel therapeutic modalities. These can be classified into three major categories based on their ability to target different features of the underlying disease pathophysiology: correction of the α/β globin chain imbalance, targeting ineffective erythropoiesis, and targeting iron dysregulation. This article provides an overview of these different emerging therapies that are currently in development for β-thalassemia.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kevin H M Kuo
- Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Ali T Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
12
|
Gibson JS, Rees DC. Emerging drug targets for sickle cell disease: shedding light on new knowledge and advances at the molecular level. Expert Opin Ther Targets 2023; 27:133-149. [PMID: 36803179 DOI: 10.1080/14728222.2023.2179484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION In sickle cell disease (SCD), a single amino acid substitution at β6 of the hemoglobin (Hb) chain replaces glutamate with valine, forming HbS instead of the normal adult HbA. Loss of a negative charge, and the conformational change in deoxygenated HbS molecules, enables formation of HbS polymers. These not only distort red cell morphology but also have other profound effects so that this simple etiology belies a complex pathogenesis with multiple complications. Although SCD represents a common severe inherited disorder with life-long consequences, approved treatments remain inadequate. Hydroxyurea is currently the most effective, with a handful of newer treatments, but there remains a real need for novel, efficacious therapies. AREAS COVERED This review summarizes important early events in pathogenesis to highlight key targets for novel treatments. EXPERT OPINION A thorough understanding of early events in pathogenesis closely associated with the presence of HbS is the logical starting point for identification of new targets rather than concentrating on more downstream effects. We discuss ways of reducing HbS levels, reducing the impact of HbS polymers, and of membrane events perturbing cell function, and suggest using the unique permeability of sickle cells to target drugs specifically into those more severely compromised.
Collapse
Affiliation(s)
- John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, UK
| |
Collapse
|
13
|
Meibom D, Micus S, Andreevski AL, Anlauf S, Bogner P, von Buehler CJ, Dieskau AP, Dreher J, Eitner F, Fliegner D, Follmann M, Gericke KM, Maassen S, Meyer J, Schlemmer KH, Steuber H, Tersteegen A, Wunder F. BAY-7081: A Potent, Selective, and Orally Bioavailable Cyanopyridone-Based PDE9A Inhibitor. J Med Chem 2022; 65:16420-16431. [PMID: 36475653 PMCID: PMC9791655 DOI: 10.1021/acs.jmedchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite advances in the treatment of heart failure in recent years, options for patients are still limited and the disease is associated with considerable morbidity and mortality. Modulating cyclic guanosine monophosphate levels within the natriuretic peptide signaling pathway by inhibiting PDE9A has been associated with beneficial effects in preclinical heart failure models. We herein report the identification of BAY-7081, a potent, selective, and orally bioavailable PDE9A inhibitor with very good aqueous solubility starting from a high-throughput screening hit. Key aspect of the optimization was a switch in metabolism of our lead structures from glucuronidation to oxidation. The switch proved being essential for the identification of compounds with improved pharmacokinetic profiles. By studying a tool compound in a transverse aortic constriction mouse model, we were able to substantiate the relevance of PDE9A inhibition in heart diseases.
Collapse
|
14
|
Runge A, Brazel D, Pakbaz Z. Stroke in sickle cell disease and the promise of recent disease modifying agents. J Neurol Sci 2022; 442:120412. [PMID: 36150233 DOI: 10.1016/j.jns.2022.120412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy affecting approximately 100,000 individuals in the United States. Cerebrovascular disease is among the most common and debilitating complications of SCA, with 53% experiencing silent cerebral infarct by age 30 and 3.8% experiencing overt stroke by age 40 years. This review highlights the burden of cerebrovascular disease in SCD, including both stroke and silent cerebral infarct (SCI). We then discuss the pathophysiology of stroke and cerebral fat embolism in the absence of a patent foramen ovale. This review also reveals that options for primary and secondary stroke prevention in SCD are still limited to hydroxyurea and blood transfusion, and that the role of aspirin and anticoagulation in SCD stroke has not been adequately studied. Limited data suggest that the novel disease-modifying agents for SCD management may improve renal dysfunction, leg ulcers, and lower the abnormally high TCD flow velocity. Further research is urgently needed to investigate their role in stroke prevention in SCD, as these novel agents target the main stroke contributors in SCD - hemolysis and vaso-occlusion. This literature review also explores the role of healthcare disparities in slowing progress in SCD management and research in the United States, highlighting the need for more investment in patient and clinician education, SCD management, and research.
Collapse
Affiliation(s)
- Ava Runge
- University of California Irvine School of Medicine, CA, USA
| | - Danielle Brazel
- University of California Irvine Medical Center, Department of Medicine, Orange California, CA, USA
| | - Zahra Pakbaz
- University of California Irvine School of Medicine, CA, USA; University of California Irvine Medical Center, Department of Medicine, Orange California, CA, USA; University of California Irvine Medical Center, Division of Hematology Oncology, CA, USA.
| |
Collapse
|
15
|
Costa E, Cappellini MD, Rivella S, Chilin A, Alessi E, Riccaboni M, Leufkens HGM, Luzzatto L. Emergent treatments for β-thalassemia and orphan drug legislations. Drug Discov Today 2022; 27:103342. [PMID: 36058507 DOI: 10.1016/j.drudis.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023]
Abstract
In many countries, β-thalassemia (β-THAL) is not uncommon; however, it qualifies as a rare disease in the US and in European Union (EU), where thalassemia drugs are eligible for Orphan Drug Designation (ODD). In this paper, we evaluate all 28 ODDs for β-THAL granted since 2001 in the US and the EU: of these, ten have since been discontinued, twelve are pending, and six have become licensed drugs available for clinical use. The prime mover for these advances has been the increasing depth of understanding of the pathophysiology of β-THAL; at the same time, and even though only one-fifth of β-THAL ODDs have become licensed drugs, the ODD legislation has clearly contributed substantially to the development of improved treatments for β-THAL.
Collapse
Affiliation(s)
- Enrico Costa
- WHO Collaborating Centre for Pharmaceutical Policy and Regulation at Utrecht University, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Science, Utrecht, the Netherlands.
| | | | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Affinity Group (CAMB), University of Pennsylvania, Philadelphia, PA, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Penn Center for Musculoskeletal Disorders, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | | | | | - Hubert G M Leufkens
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Science, Utrecht, the Netherlands.
| | - Lucio Luzzatto
- Department of Haematology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania.
| |
Collapse
|
16
|
Walker AL, Crosby D, Miller V, Weidert F, Ofori-Acquah S. Hydroxyurea Decouples Persistent F-Cell Elevation and Induction of γ-Globin. Exp Hematol 2022; 112-113:15-23.e1. [PMID: 35843392 DOI: 10.1016/j.exphem.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
Mechanisms that control the fetal-to-adult hemoglobin switch are attractive therapeutic targets in sickle cell disease. In this study, we investigated developmental γ-globin silencing in the Townes humanized knock-in mouse model, which harbors a construct containing the human γ-, βA-, and βS-globin genes, and examined the utility of this model in evaluation of pharmacologic induction of fetal hemoglobin (HbF). We studied mouse pups on the day of delivery (P0) to 28 days after birth (P28). Regardless of the hemoglobin genotype (SS, AS, or AA), the proportion of F cells in peripheral blood was 100% at P0, declined sharply to 20% at P2, and was virtually undetectable at P14. Developmental γ-globin silencing in Townes mice was complete at P4 in association with significantly increased BCL11A expression in the primary erythropoietic organs of the mouse. Hydroxyurea given at P2 significantly sustained elevated percentages of F cells in mice at P14. However, the percentage of F cells declined at P14 for treatment begun at P4. A lack of augmentation of γ-globin mRNA in erythroid tissues suggests that the apparent increase in HbF in red cells caused by hydroxyurea was not due to sustained or re-activation of γ-globin transcription, but was instead a function of erythropoiesis suppression. Thus, we provide new details of the hemoglobin switch in the Townes murine model that recapitulates postnatal γ- to β-globin switch in humans and identify the myelosuppressive toxicity of hydroxyurea as a superseding factor in interpreting pharmacologic induction of HbF.
Collapse
Affiliation(s)
- Aisha L Walker
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Pediatrics, Emory University, Atlanta, GA.
| | - Danielle Crosby
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Valerie Miller
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Frances Weidert
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Solomon Ofori-Acquah
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; School of Biomedical and Allied Health Sciences, Accra, Ghana
| |
Collapse
|
17
|
Abstract
Thalassaemia is a diverse group of genetic disorders with a worldwide distribution affecting globin chain synthesis. The pathogenesis of thalassaemia lies in the unbalanced globin chain production, leading to ineffective erythropoiesis, increased haemolysis, and deranged iron homoeostasis. The clinical phenotype shows heterogeneity, ranging from close to normal without complications to severe requiring lifelong transfusion support. Conservative treatment with transfusion and iron chelation has transformed the natural history of thalassaemia major into a chronic disease with a prolonged life expectancy, albeit with co-morbidities and substantial disease burden. Curative therapy with allogeneic haematopoietic stem cell transplantation is advocated for suitable patients. The understanding of the pathogenesis of the disease is guiding therapeutic advances. Novel agents have shown efficacy in improving anaemia and transfusion burden, and initial results from gene therapy approaches are promising. Despite scientific developments, worldwide inequality in the access of health resources is a major concern, because most patients live in underserved areas.
Collapse
Affiliation(s)
- Antonis Kattamis
- Division of Paediatric Haematology-Oncology, First Department of Paediatrics, National and Kapodistrian University of Athens, Athens, Greece.
| | - Janet L Kwiatkowski
- Division of Haematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Paediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yesim Aydinok
- Department of Paediatric Heamatology and Oncology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
18
|
Bou-Fakhredin R, De Franceschi L, Motta I, Cappellini MD, Taher AT. Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals (Basel) 2022; 15:ph15060753. [PMID: 35745672 PMCID: PMC9227505 DOI: 10.3390/ph15060753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
A significant amount of attention has recently been devoted to the mechanisms involved in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile, progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-inducing strategies has been made possible as a result of a better understanding of γ-globin regulation. In this review, we will provide an update on all current pharmacological inducer agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially therapeutic, HbF-inducing agents.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (M.D.C.); (A.T.T.)
| | - Ali T. Taher
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
- Correspondence: (M.D.C.); (A.T.T.)
| |
Collapse
|
19
|
Lopez NH, Li B, Palani C, Siddaramappa U, Takezaki M, Xu H, Zhi W, Pace BS. Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice. PLoS One 2022; 17:e0261799. [PMID: 35639781 PMCID: PMC9154101 DOI: 10.1371/journal.pone.0261799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction.
Collapse
Affiliation(s)
- Nicole H. Lopez
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Chithra Palani
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Umapathy Siddaramappa
- Department of Medicine, Division of Hematology/Oncology Augusta University, Augusta GA, United States of America
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, United States of America
| | - Wenbo Zhi
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States of America
| | - Betty S. Pace
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
20
|
Xi M, Sun T, Chai S, Xie M, Chen S, Deng L, Du K, Shen R, Sun H. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease. Eur J Med Chem 2022; 232:114170. [DOI: 10.1016/j.ejmech.2022.114170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
|
21
|
Dela-Pena JC, King MA, Brown J, Nachar VR. Incorporation of novel therapies for the management of sickle cell disease: A pharmacist's perspective. J Oncol Pharm Pract 2022; 28:646-663. [DOI: 10.1177/10781552211072468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients with sickle cell disease (SCD) experience significant disease-related morbidity including multiorgan damage, chronic anemia, and debilitating pain crises. While hydroxyurea has been the primary disease modifying modality in SCD, novel therapies with unique mechanism of action have recently been approved. This review article examines the evidence surrounding the available SCD therapies to guide pharmacists on potential treatment selection and management strategies for patients with SCD. A systematic search of online databases was performed to identify literature on the management of SCD. While the newly approved novel agents have demonstrated clinical benefit it remains unclear how these agents fit into the treatment paradigm. Pharmacists should be aware of the data supporting the use of these novel agents to optimize use on a patient-specific basis.
Collapse
Affiliation(s)
| | | | - Julia Brown
- C.S. Mott Children’s Hospital, Ann Arbor, Michigan, USA
| | | |
Collapse
|
22
|
Langer AL, Esrick EB. β-Thalassemia: evolving treatment options beyond transfusion and iron chelation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:600-606. [PMID: 34889443 PMCID: PMC8791140 DOI: 10.1182/hematology.2021000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
After years of reliance on transfusion alone to address anemia and suppress ineffective erythropoiesis in β-thalassemia, many new therapies are now in development. Luspatercept, a transforming growth factor-β inhibitor, has demonstrated efficacy in reducing ineffective erythropoiesis, improving anemia, and possibly reducing iron loading. However, many patients do not respond to luspatercept, so additional therapeutics are needed. Several medications in development aim to induce hemoglobin F (HbF): sirolimus, benserazide, and IMR-687 (a phosphodiesterase 9 inhibitor). Another group of agents seeks to ameliorate ineffective erythropoiesis and improve anemia by targeting abnormal iron metabolism in thalassemia: apotransferrin, VIT-2763 (a ferroportin inhibitor), PTG-300 (a hepcidin mimetic), and an erythroferrone antibody in early development. Mitapivat, a pyruvate kinase activator, represents a unique mechanism to mitigate ineffective erythropoiesis. Genetically modified autologous hematopoietic stem cell transplantation offers the potential for lifelong transfusion independence. Through a gene addition approach, lentiviral vectors have been used to introduce a β-globin gene into autologous hematopoietic stem cells. One such product, betibeglogene autotemcel (beti-cel), has reached phase 3 trials with promising results. In addition, 2 gene editing techniques (CRISPR-Cas9 and zinc-finger nucleases) are under investigation as a means to silence BCL11A to induce HbF with agents designated CTX001 and ST-400, respectively. Results from the many clinical trials for these agents will yield results in the next few years, which may end the era of relying on transfusion alone as the mainstay of thalassemia therapy.
Collapse
Affiliation(s)
- Arielle L Langer
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Erica B Esrick
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Musallam KM, Bou‐Fakhredin R, Cappellini MD, Taher AT. 2021 update on clinical trials in β-thalassemia. Am J Hematol 2021; 96:1518-1531. [PMID: 34347889 DOI: 10.1002/ajh.26316] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023]
Abstract
The treatment landscape for patients with β-thalassemia is witnessing a swift evolution, yet several unmet needs continue to persist. Patients with transfusion-dependent β-thalassemia (TDT) primarily rely on regular transfusion and iron chelation therapy, which can be associated with considerable treatment burden and cost. Patients with non-transfusion-dependent β-thalassemia (NTDT) are also at risk of significant morbidity due to the underlying anemia and iron overload, but treatment options in this patient subgroup are limited. In this review, we provide updates on clinical trials of novel therapies targeting the underlying pathology in β-thalassemia, including the α/non-α-globin chain imbalance, ineffective erythropoiesis, and iron dysregulation.
Collapse
Affiliation(s)
- Khaled M. Musallam
- Thalassemia Center, Burjeel Medical City Abu Dhabi United Arab Emirates
- International Network of Hematology London UK
| | - Rayan Bou‐Fakhredin
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community University of Milan, Ca’ Granda Foundation IRCCS Maggiore Policlinico Hospital Milan Italy
| | - Ali T. Taher
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
24
|
Furstenau D, Peer CJ, Hughes TE, Uchida N, Tisdale J, Hall OM, Figg WD, Hsieh M. Alemtuzumab clearance, lymphocyte count, and T-cell chimerism after hematopoietic stem cell transplant in sickle cell disease. Pharmacotherapy 2021; 42:14-22. [PMID: 34669981 DOI: 10.1002/phar.2641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022]
Abstract
STUDY OBJECTIVE Alemtuzumab is a monoclonal antibody that targets the cell surface antigen CD52 on lymphocytes. Although it is used for the treatment of hematologic malignancies, such as chronic lymphocytic leukemia, and incorporated into many hematopoietic stem cell transplant (HSCT) conditioning regimens, few studies have evaluated the pharmacology of alemtuzumab in adult patients with sickle cell disease (SCD). We therefore examined the pharmacokinetics (PK) and pharmacodynamics (PD) of alemtuzumab in adults with SCD who received a matched related donor HSCT to determine if the clearance of alemtuzumab affects transplant outcomes. DESIGN PK and PD analysis of patient data from a single-center clinical trial. SETTING Clinical research center. PATIENTS Twenty-two adult patients with SCD who received one of two nonmyeloablative allogeneic HSCT regimens: alemtuzumab and total body irradiation (Alem-TBI) or pentostatin, cyclophosphamide, alemtuzumab, and total body irradiation (Pento-Cy-Alem-TBI). MEASUREMENTS AND MAIN RESULTS Alemtuzumab serum concentrations, absolute lymphocyte counts, T-cell (CD3), and myeloid (CD14/15) chimerism were collected at distinct time points and analyzed. A semi-mechanistic PK population model was built to understand inter-individual differences in pharmacology. Alemtuzumab was detectable up to 28 days post-HSCT. The mean alemtuzumab level 7 days after transplant for patients on Alem-TBI was 818 ng/ml, significantly lower than the mean level of 1502 ng/ml for patients on Pento-Cy-Alem-TBI (p < 0.001), but this difference decreased as time progressed. The clearance of alemtuzumab was linear, and the half-life was longer in the Pento-Cy-Alem-TBI group (average half-life = 61.1 h) compared to the Alem-TBI group (average half-life = 44.1 h) (p < 0.001). The CD3 chimerism at 2 and 4 months after transplant positively correlated with alemtuzumab levels collected on day 14 after transplant (R2 = 0.40 and p = 0.004 at 2 months, R2 = 0.36 and p = 0.005 at 4 months), but this significance was lost by 6 months after HSCT. No correlation was seen between alemtuzumab levels and CD14/15 chimerism. CONCLUSION Between 2 and 4 months after transplant, higher alemtuzumab levels measured 14 days after transplant correlated with patients having better engraftment, suggesting more lymphodepletion may be needed to reduce graft failure in these two non-myeloablative matched related donor HSCT regimens.
Collapse
Affiliation(s)
- Dana Furstenau
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas E Hughes
- Clinical Center Pharmacy Department, National Institutes of Health, Bethesda, Maryland, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Oliver Morgan Hall
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew Hsieh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Jang T, Poplawska M, Cimpeanu E, Mo G, Dutta D, Lim SH. Vaso-occlusive crisis in sickle cell disease: a vicious cycle of secondary events. J Transl Med 2021; 19:397. [PMID: 34544432 PMCID: PMC8454100 DOI: 10.1186/s12967-021-03074-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Painful vaso-occlusive crisis (VOC) remains the most common reason for presenting to the Emergency Department and hospitalization in patients with sickle cell disease (SCD). Although two new agents have been approved by the Food and Drug Administration for treating SCD, they both target to reduce the frequency of VOC. Results from studies investigating various approaches to treat and shorten VOC have so far been generally disappointing. In this paper, we will summarize the complex pathophysiology and downstream events of VOC and discuss the likely reasons for the disappointing results using monotherapy. We will put forward the rationale for exploring some of the currently available agents to either protect erythrocytes un-involved in the hemoglobin polymerization process from sickling induced by the secondary events, or a multipronged combination approach that targets the complex downstream pathways of VOC.
Collapse
Affiliation(s)
- Tim Jang
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC #20, Brooklyn, NY, 11203, USA
| | - Maria Poplawska
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC #20, Brooklyn, NY, 11203, USA
| | - Emanuela Cimpeanu
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC #20, Brooklyn, NY, 11203, USA
| | - George Mo
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC #20, Brooklyn, NY, 11203, USA
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC #20, Brooklyn, NY, 11203, USA
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Medical Center, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC #20, Brooklyn, NY, 11203, USA.
| |
Collapse
|
26
|
Ineffective erythropoiesis in sickle cell disease: new insights and future implications. Curr Opin Hematol 2021; 28:171-176. [PMID: 33631786 DOI: 10.1097/moh.0000000000000642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Sickle cell disease (SCD) is a hemolytic anemia caused by a point mutation in the β globin gene leading to the expression of an abnormal hemoglobin (HbS) that polymerizes under hypoxic conditions driving red cell sickling. Circulating red cells have been extensively characterized in SCD, as their destruction and removal from peripheral blood are the major contributors to anemia. However, few reports showed cellular abnormalities during erythropoiesis in SCD, suggesting that anemia could also be influenced by defects of central origin. RECENT FINDINGS El Hoss et al. demonstrated ineffective erythropoiesis (IE) in SCD and deciphered the molecular mechanism underlying cell death during the hemoglobin synthesis phase of terminal differentiation. They showed that HbS polymerization induces apoptosis of differentiating erythroblasts and that fetal hemoglobin rescues these cells through its antipolymerization function. SUMMARY IE is the major cause of anemia in β-thalassemia patients, and it is generally surmised that it contributes little to anemia of SCD. Recent reports demonstrate the occurrence of IE in SCD patients and show important alterations in the hematopoietic and erythroid niches, both in SCD patients and in the humanized Townes SCD mouse model. This implies that therapeutic strategies initially designed to improve red cell survival in the circulation of SCD patients would also positively impact erythropoiesis and bone marrow cellularity.
Collapse
|
27
|
Tchernychev B, Li H, Lee S, Gao X, Ramanarasimhaiah R, Liu G, Hall KC, Bernier SG, Jones JE, Feil S, Feil R, Buys ES, Graul RM, Frenette PS, Masferrer JL. Olinciguat, a stimulator of soluble guanylyl cyclase, attenuates inflammation, vaso-occlusion and nephropathy in mouse models of sickle cell disease. Br J Pharmacol 2021; 178:3463-3475. [PMID: 33864386 PMCID: PMC8453770 DOI: 10.1111/bph.15492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduced bioavailability of NO, a hallmark of sickle cell disease (SCD), contributes to intravascular inflammation, vasoconstriction, vaso-occlusion and organ damage observed in SCD patients. Soluble guanylyl cyclase (sGC) catalyses synthesis of cGMP in response to NO. cGMP-amplifying agents, including NO donors and phosphodiesterase 9 inhibitors, alleviate TNFα-induced inflammation in wild-type C57BL/6 mice and in 'humanised' mouse models of SCD. EXPERIMENTAL APPROACH Effects of the sGC stimulator olinciguat on intravascular inflammation and renal injury were studied in acute (C57BL6 and Berkeley mice) and chronic (Townes mice) mouse models of TNFα-induced and systemic inflammation associated with SCD. KEY RESULTS Acute treatment with olinciguat attenuated increases in plasma biomarkers of endothelial cell activation and leukocyte-endothelial cell interactions in TNFα-challenged mice. Co-treatment with hydroxyurea, an FDA-approved SCD therapeutic agent, further augmented the anti-inflammatory effect of olinciguat. In the Berkeley mouse model of TNFα-induced vaso-occlusive crisis, a single dose of olinciguat attenuated leukocyte-endothelial cell interactions, improved blood flow and prolonged survival time compared to vehicle-treated mice. In Townes SCD mice, plasma biomarkers of inflammation and endothelial cell activation were lower in olinciguat- than in vehicle-treated mice. In addition, kidney mass, water consumption, 24-h urine excretion, plasma levels of cystatin C and urinary excretion of N-acetyl-β-d-glucosaminidase and neutrophil gelatinase-associated lipocalin were lower in Townes mice treated with olinciguat than in vehicle-treated mice. CONCLUSION AND IMPLICATIONS Our results suggest that the sGC stimulator olinciguat attenuates inflammation, vaso-occlusion and kidney injury in mouse models of SCD and systemic inflammation.
Collapse
Affiliation(s)
| | - Huihui Li
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Sung‐Kyun Lee
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Xin Gao
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | | | - Guang Liu
- Cyclerion Therapeutics Inc.BostonMassachusettsUSA
| | | | | | | | - Susanne Feil
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Robert Feil
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | | | | | - Paul S. Frenette
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | | |
Collapse
|
28
|
Makis A, Voskaridou E, Papassotiriou I, Hatzimichael E. Novel Therapeutic Advances in β-Thalassemia. BIOLOGY 2021; 10:biology10060546. [PMID: 34207028 PMCID: PMC8235056 DOI: 10.3390/biology10060546] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary Beta-thalassemia (β-thalassemia) is an autosomal recessive inherited disorder that causes decreased production of hemoglobin. Ineffective erythropoiesis and excess iron deposition are the most significant pathophysiological problems. Chronic red blood cell transfusions along with control of iron overload are the main principles of treatment. Yet, the patients have a problematic quality of life. Recently, novel therapies have emerged based on better knowledge of the pathophysiology of the disease. Aiming at ineffective erythropoiesis through the TGF-β ligand traps, such as luspatercept, has been shown to reduce the transfusion burden. Therapeutic approaches aiming at the iron metabolism mechanisms as well as the pathway of the production of erythroid cyclic guanosine monophosphate are being used in clinical trials with encouraging results. Significant improvements in the technique of hemopoietic stem cell transplantation have been accomplished, with a focus on the improvement of the conditioning regimen and the donor selection. Gene therapy has exhibited remarkable advances using lentiviral β-globin gene insertion techniques or gene editing platforms that target the suppression of γ-globin repressors. All these approaches will have a positive result in the quality of life of thalassemia patients. Abstract The main characteristic of the pathophysiology of β-thalassemia is reduced β-globin chain production. The inevitable imbalance in the α/β-globin ratio and α-globin accumulation lead to oxidative stress in the erythroid lineage, apoptosis, and ineffective erythropoiesis. The result is compensatory hematopoietic expansion and impaired hepcidin production that causes increased intestinal iron absorption and progressive iron overload. Chronic hemolysis and red blood cell transfusions also contribute to iron tissue deposition. A better understanding of the underlying mechanisms led to the detection of new curative or “disease-modifying” therapeutic options. Substantial evolvement has been made in allogeneic hematopoietic stem cell transplantation with current clinical trials investigating new condition regimens as well as different donors and stem cell source options. Gene therapy has also moved forward, and phase 2 clinical trials with the use of β-globin insertion techniques have recently been successfully completed leading to approval for use in transfusion-dependent patients. Genetic and epigenetic manipulation of the γ- or β-globin gene have entered the clinical trial setting. Agents such as TGF-β ligand traps and pyruvate kinase activators, which reduce the ineffective erythropoiesis, have been tested in clinical trials with favorable results. One TGF-β ligand trap, luspatercept, has been approved for use in adults with transfusion-dependent β-thalassemia. The induction of HbF with the phosphodiesterase 9 inhibitor IMR-687, which increase cyclic guanosine monophosphate, is currently being tested. Another therapeutic approach is to target the dysregulation of iron homeostasis, using, for example, hepcidin agonists (inhibitors of TMPRSS6 and minihepcidins) or ferroportin inhibitors (VIT-2763). This review provides an update on the novel therapeutic options that are presently in development at the clinical level in β-thalassemia.
Collapse
Affiliation(s)
- Alexandros Makis
- Department of Pediatrics, Faculty of Medicine, University of Ioannina, Stavros Niarchos Avenue, 45110 Ioannina, Greece
- Correspondence: ; Tel.: +30-2651099793
| | - Ersi Voskaridou
- Centre of Excellence in Rare Haematological Diseases-Haemoglobinopathies, “Laikon” General Hospital, 11527 Athens, Greece;
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, University of Ioannina, Stavros Niarchos Avenue, 45110 Ioannina, Greece;
| |
Collapse
|
29
|
Salinas Cisneros G, Thein SL. Research in Sickle Cell Disease: From Bedside to Bench to Bedside. Hemasphere 2021; 5:e584. [PMID: 34095767 PMCID: PMC8171370 DOI: 10.1097/hs9.0000000000000584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/25/2023] Open
Abstract
Sickle cell disease (SCD) is an exemplar of bidirectional translational research, starting with a remarkable astute observation of the abnormally shaped red blood cells that motivated decades of bench research that have now translated into new drugs and genetic therapies. Introduction of hydroxyurea (HU) therapy, the only SCD-modifying treatment for >30 years and now standard care, was initiated through another clinical observation by a pediatrician. While the clinical efficacy of HU is primarily due to its fetal hemoglobin (HbF) induction, the exact mechanism of how it increases HbF remains not fully understood. Unraveling of the molecular mechanism of how HU increases HbF has provided insights on the development of new HbF-reactivating agents in the pipeline. HU has other salutary effects, reduction of cellular adhesion to the vascular endothelium and inflammation, and dissecting these mechanisms has informed bench-both cellular and animal-research for development of the 3 recently approved agents: endari, voxelotor, and crizanlizumab; truly, a bidirectional bench to bedside translation. Decades of research to understand the mechanisms of fetal to adult hemoglobin have also culminated in promising anti-sickling genetic therapies and the first-in-human studies of reactivating an endogenous (γ-globin) gene HBG utilizing innovative genomic approaches.
Collapse
Affiliation(s)
- Gabriel Salinas Cisneros
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Division of Hematology and Oncology, Children’s National Medical Center, Washington, District of Columbia, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Conran N, Embury SH. Sickle cell vaso-occlusion: The dialectic between red cells and white cells. Exp Biol Med (Maywood) 2021; 246:1458-1472. [PMID: 33794696 DOI: 10.1177/15353702211005392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The pathophysiology of sickle cell anemia, a hereditary hemoglobinopathy, has fascinated clinicians and scientists alike since its description over 100 years ago. A single gene mutation in the HBB gene results in the production of abnormal hemoglobin (Hb) S, whose polymerization when deoxygenated alters the physiochemical properties of red blood cells, in turn triggering pan-cellular activation and pathological mechanisms that include hemolysis, vaso-occlusion, and ischemia-reperfusion to result in the varied and severe complications of the disease. Now widely regarded as an inflammatory disease, in recent years attention has included the role of leukocytes in vaso-occlusive processes in view of the part that these cells play in innate immune processes, their inherent ability to adhere to the endothelium when activated, and their sheer physical and potentially obstructive size. Here, we consider the role of sickle red blood cell populations in elucidating the importance of adhesion vis-a-vis polymerization in vaso-occlusion, review the direct adhesion of sickle red cells to the endothelium in vaso-occlusive processes, and discuss how red cell- and leukocyte-centered mechanisms are not mutually exclusive. Given the initial clinical success of crizanlizumab, a specific anti-P selectin therapy, we suggest that it is appropriate to take a holistic approach to understanding and exploring the complexity of vaso-occlusive mechanisms and the adhesive roles of the varied cell types, including endothelial cells, platelets, leukocytes, and red blood cells.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas-UNICAMP, Barão Geraldo 13083-8, Campinas, SP, Brazil
| | | |
Collapse
|
31
|
Ribeiro PR, Teixeira RDS, Souza AR, Pereira TCS, Boffo EF, Carosio MGA, Ferreira AG, Oliveira RV, Rodrigues LEA, Silva JDJ, de Souza AJ, Ladeia AMT. Blood plasma metabolomics of children and adolescents with sickle cell anaemia treated with hydroxycarbamide: a new tool for uncovering biochemical alterations. Br J Haematol 2021; 192:922-931. [PMID: 33476407 DOI: 10.1111/bjh.17315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
Sickle cell anaemia (SCA) is a debilitating genetic haemoglobinopathy predominantly affecting the disenfranchised strata of society in Africa and the Americas. The most common pharmacological treatment for this disease is the administration of hydroxycarbamide (HC) for which questions remain regarding its mechanism of action, efficacy and long-term toxicity specifically in paediatric individuals. A multiplatform metabolomics approach was used to assess the metabolome of plasma samples from a population of children and adolescents with SCA with and without HC treatment along with non-SCA individuals. Fifty-three metabolites were identified by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and 1 H nuclear magnetic resonance (NMR) with a predominance of membrane lipids, amino acids and organic acids. The partial least-squares discriminant analysis (PLS-DA) analysis allowed a clear discrimination between the different studied groups, revealing clear effects of the HC treatment in the patients' metabolome including rescue of specific metabolites to control levels. Increased creatine/creatinine levels under HC treatment suggests a possible increase in the arginine pool and increased NO synthesis, supporting existing models for HC action in SCA. The metabolomics results extend the current knowledge on the models for SCA pathophysiology including impairment of Lands' cycle and increased synthesis of sphingosine 1-phosphate. Putative novel biomarkers are suggested.
Collapse
Affiliation(s)
- Paulo R Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Alzenir R Souza
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Tayla C S Pereira
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Elisangela F Boffo
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Maria G A Carosio
- Laboratório de Ressonância Magnética Nuclear, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Antonio G Ferreira
- Laboratório de Ressonância Magnética Nuclear, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Regina V Oliveira
- Núcleo de Pesquisa em Cromatografia (Separare), Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
32
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
33
|
Osunkwo I, Manwani D, Kanter J. Current and novel therapies for the prevention of vaso-occlusive crisis in sickle cell disease. Ther Adv Hematol 2020; 11:2040620720955000. [PMID: 33062233 PMCID: PMC7534097 DOI: 10.1177/2040620720955000] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Individuals with sickle cell disease (SCD) are living further into adulthood in high-resource countries. However, despite increased quantity of life, recurrent, acute painful episodes cause significant morbidity for affected individuals. These SCD-related painful episodes, also referred to as vaso-occlusive crises (VOCs), have multifactorial causes, and they often occur as a result of multicellular aggregation and vascular adherence of red blood cells, neutrophils, and platelets, leading to recurrent and unpredictable occlusion of the microcirculation. In addition to severe pain, long-term complications of vaso-occlusion may include damage to muscle and/or bone, in addition to vital organs such as the liver, spleen, kidneys, and brain. Severe pain associated with VOCs also has a substantial detrimental impact on quality of life for individuals with SCD, and is associated with increased health care utilization, financial hardship, and impairments in education and vocation attainment. Previous treatments have targeted primarily SCD symptom management, or were broad nontargeted therapies, and include oral or parenteral hydration, analgesics (including opioids), nonsteroidal anti-inflammatory agents, and various other types of nonpharmacologic pain management strategies to treat the pain associated with VOC. With increased understanding of the pathophysiology of VOCs, there are several new potential therapies that specifically target the pathologic process of vaso-occlusion. These new therapies may reduce cell adhesion and inflammation, leading to decreased incidence of VOCs and prevention of end-organ damage. In this review, we consider the benefits and limitations of current treatments to reduce the occurrence of VOCs in individuals with SCD and the potential impact of emerging treatments on future disease management.
Collapse
Affiliation(s)
- Ifeyinwa Osunkwo
- Non-Malignant Hematology Section, The Levine Cancer Institute and Atrium Health, Charlotte, NC, USA
| | - Deepa Manwani
- Division of Pediatric Hematology and Oncology, The Children’s Hospital at Montefiore, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie Kanter
- Division of Hematology and Oncology, University of Alabama Birmingham, 1720 2nd Avenue S, NP 2510, Birmingham, AL 35294, USA
| |
Collapse
|
34
|
Ferreira WA, Chweih H, Lanaro C, Almeida CB, Brito PL, Gotardo EMF, Torres L, Miguel LI, Franco-Penteado CF, Leonardo FC, Garcia F, Saad STO, Frenette PS, Brockschnieder D, Costa FF, Stasch JP, Sandner P, Conran N. Beneficial Effects of Soluble Guanylyl Cyclase Stimulation and Activation in Sickle Cell Disease Are Amplified by Hydroxyurea: In Vitro and In Vivo Studies. J Pharmacol Exp Ther 2020; 374:469-478. [PMID: 32631869 PMCID: PMC7445859 DOI: 10.1124/jpet.119.264606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
The complex pathophysiology of sickle cell anemia (SCA) involves intravascular hemolytic processes and recurrent vaso-occlusion, driven by chronic vascular inflammation, which result in the disease's severe clinical complications, including recurrent painful vaso-occlusive episodes. Hydroxyurea, the only drug frequently used for SCA therapy, is a cytostatic agent, although it appears to exert nitric oxide/soluble guanylyl cyclase (sGC) modulating activity. As new drugs that can complement or replace the use of hydroxyurea are sought to further reduce vaso-occlusive episode frequency in SCA, we investigated the effects of the sGC agonists BAY 60-2770 (sGC activator) and BAY 41-2272 (sGC stimulator) in the presence or absence of hydroxyurea on SCA vaso-occlusive mechanisms and cell recruitment both ex vivo and in vivo. These agents significantly reduced stimulated human SCA neutrophil adhesive properties ex vivo in association with the inhibition of surface β2-integrin activation. A single administration of BAY 60-2770 or BAY 41-2272 decreased tumor necrosis factor cytokine-induced leukocyte recruitment in a mouse model of SCA vaso-occlusion. Importantly, the in vivo actions of both agonists were significantly potentiated by the coadministration of hydroxyurea. Erythroid cell fetal hemoglobin (HbF) elevation is also a major goal for SCA therapy. BAY 41-2272 but not BAY 60-2770 at the concentrations employed significantly induced γ-globin gene transcription in association with HbF production in cultured erythroleukemic cells. In conclusion, sGC agonist drugs could represent a promising approach as therapy for SCA, for use either as stand-alone treatments or in combination with hydroxyurea. SIGNIFICANCE STATEMENT: This preclinical study demonstrates that stimulators and activators of sGC are potent inhibitors of the adhesion and recruitment of leukocytes from humans and in mice with sickle cell anemia (SCA) and may represent a promising approach for diminishing vaso-occlusive episode frequency in SCA. Hydroxyurea, a drug already frequently used for treating SCA, was found to potentiate the beneficial effects of sGC agonists in in vivo studies, implying that these classes of compounds could be used alone or in combination therapy.
Collapse
Affiliation(s)
- W A Ferreira
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - H Chweih
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - C Lanaro
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - C B Almeida
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - P L Brito
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - E M F Gotardo
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - L Torres
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - L I Miguel
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - C F Franco-Penteado
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - F C Leonardo
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - F Garcia
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - S T O Saad
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - P S Frenette
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - D Brockschnieder
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - F F Costa
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - J P Stasch
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - P Sandner
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| | - N Conran
- Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
| |
Collapse
|
35
|
El Hoss S, Cochet S, Godard A, Yan H, Dussiot M, Frati G, Boutonnat-Faucher B, Laurance S, Renaud O, Joseph L, Miccio A, Brousse V, Mohandas N, El Nemer W. Fetal hemoglobin rescues ineffective erythropoiesis in sickle cell disease. Haematologica 2020; 106:2707-2719. [PMID: 32855279 PMCID: PMC8485663 DOI: 10.3324/haematol.2020.265462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
While ineffective erythropoiesis has long been recognized as a key contributor to anemia in thalassemia, its role in anemia of sickle cell disease (SCD) has not been critically explored. Using in vitro and in vivo derived human erythroblasts we assessed the extent of ineffective erythropoiesis in SCD. Modeling the bone marrow hypoxic environment, we found that hypoxia induces death of sickle erythroblasts starting at the polychromatic stage, positively selecting cells with high levels of fetal hemoglobin (HbF). Cell death was associated with cytoplasmic sequestration of heat shock protein 70 and was rescued by induction of HbF synthesis. Importantly, we document that in bone marrow of SCD patients similar cell loss occurs during the final stages of terminal differentiation. Our study provides evidence for ineffective erythropoiesis in SCD and highlights an anti-apoptotic role for HbF during the terminal stages of erythroid differentiation. These findings imply that the beneficial effect on anemia of increased HbF levels is not only due to the increased life span of red cells but also a consequence of decreased ineffective erythropoiesis.
Collapse
Affiliation(s)
- Sara El Hoss
- Université de Paris, INSERM UMR_S 1134, Paris, France
| | | | - Auria Godard
- Inserm - INTS - University of Paris, Paris, France
| | - Hongxia Yan
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Michaël Dussiot
- Imagine Institute, Université de Paris, Hopital Necker Enfants Malades, Paris, France
| | - Giacomo Frati
- Université de Paris, Imagine Institute, Paris, France
| | | | | | - Olivier Renaud
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Laure Joseph
- Service de biotherapie, Hôpital Universitaire Necker Enfants Malades, Paris, France
| | | | | | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | | |
Collapse
|
36
|
Salinas Cisneros G, Thein SL. Recent Advances in the Treatment of Sickle Cell Disease. Front Physiol 2020; 11:435. [PMID: 32508672 PMCID: PMC7252227 DOI: 10.3389/fphys.2020.00435] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Sickle cell anemia (SCA) was first described in the Western literature more than 100 years ago. Elucidation of its molecular basis prompted numerous biochemical and genetic studies that have contributed to a better understanding of its pathophysiology. Unfortunately, the translation of such knowledge into developing treatments has been disproportionately slow and elusive. In the last 10 years, discovery of BCL11A, a major γ-globin gene repressor, has led to a better understanding of the switch from fetal to adult hemoglobin and a resurgence of efforts on exploring pharmacological and genetic/genomic approaches for reactivating fetal hemoglobin as possible therapeutic options. Alongside therapeutic reactivation of fetal hemoglobin, further understanding of stem cell transplantation and mixed chimerism as well as gene editing, and genomics have yielded very encouraging outcomes. Other advances have contributed to the FDA approval of three new medications in 2017 and 2019 for management of sickle cell disease, with several other drugs currently under development. In this review, we will focus on the most important advances in the last decade.
Collapse
Affiliation(s)
- Gabriel Salinas Cisneros
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Division of Hematology and Oncology, Children's National Medical Center, Washington, DC, United States
| | - Swee L Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Matte A, Cappellini MD, Iolascon A, Enrica F, De Franceschi L. Emerging drugs in randomized controlled trials for sickle cell disease: are we on the brink of a new era in research and treatment? Expert Opin Investig Drugs 2019; 29:23-31. [PMID: 31847604 DOI: 10.1080/13543784.2020.1703947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Sickle cell disease (SCD) is caused by a mutation in the HBB gene which is key for making a component of hemoglobin. The mutation leads to the formation of an abnormal hemoglobin molecule called sickle hemoglobin (HbS). SCD is a chronic, complex disease with a multiplicity of pathophysiological targets; it has high morbidity and mortality.Hydroxyurea has for many years been the only approved drug for SCD; hence, the development of new therapeutics is critical.Areas covered: This article offers an overview of the key studies of new therapeutic options for SCD. We searched the PubMed database and Cochrane Database of Systemic Reviews for agents in early phase clinic trials and preclinical development.Expert opinion: Although knowledge of SCD has progressed, patient survival and quality of life must be improved. Phase II and phase III clinical trials investigating pathophysiology-based novel agents show promising results in the clinical management of SCD acute events. The design of long-term clinical studies is necessary to fully understand the clinical impact of these new therapeutics on the natural history of the disease. Furthermore, the building of global collaborations will enhance the clinical management of SCD and the design of primary outcomes of future clinical trials.
Collapse
Affiliation(s)
- Alessandro Matte
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Maria Domenica Cappellini
- Ca Granda Foundation IRCCS, Dept of Clinical Science and Community, University of Milan, Milan, Italy
| | - Achille Iolascon
- Dept of Chemical Sciences, University Federico II, Naples, Italy
| | - Federti Enrica
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
38
|
Olubiyi OO, Olagunju MO, Strodel B. Rational Drug Design of Peptide-Based Therapies for Sickle Cell Disease. Molecules 2019; 24:E4551. [PMID: 31842406 PMCID: PMC6943517 DOI: 10.3390/molecules24244551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) is a group of inherited disorders affecting red blood cells, which is caused by a single mutation that results in substitution of the amino acid valine for glutamic acid in the sixth position of the β-globin chain of hemoglobin. These mutant hemoglobin molecules, called hemoglobin S, can polymerize upon deoxygenation, causing erythrocytes to adopt a sickled form and to suffer hemolysis and vaso-occlusion. Until recently, only two drug therapies for SCD, which do not even fully address the manifestations of SCD, were approved by the United States (US) Food and Drug Administration. A third treatment was newly approved, while a monoclonal antibody preventing vaso-occlusive crises is also now available. The complex nature of SCD manifestations provides multiple critical points where drug discovery efforts can be and have been directed. These notwithstanding, the need for new therapeutic approaches remains high and one of the recent efforts includes developments aimed at inhibiting the polymerization of hemoglobin S. This review focuses on anti-sickling approaches using peptide-based inhibitors, ranging from individual amino acid dipeptides investigated 30-40 years ago up to more promising 12- and 15-mers under consideration in recent years.
Collapse
Affiliation(s)
- Olujide O. Olubiyi
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany; (M.O.O.); (B.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Maryam O. Olagunju
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany; (M.O.O.); (B.S.)
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany; (M.O.O.); (B.S.)
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|