1
|
Martínez-López MF, López-Gil JF. Small Fish, Big Answers: Zebrafish and the Molecular Drivers of Metastasis. Int J Mol Sci 2025; 26:871. [PMID: 39940643 PMCID: PMC11817282 DOI: 10.3390/ijms26030871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer metastasis is a leading cause of cancer-related deaths and represents one of the most challenging processes to study due to its complexity and dynamic nature. Zebrafish (Danio rerio) have become an invaluable model in metastasis research, offering unique advantages such as optical transparency, rapid development, and the ability to visualize tumor interactions with the microenvironment in real time. This review explores how zebrafish models have elucidated the critical steps of metastasis, including tumor invasion, vascular remodeling, and immune evasion, while also serving as platforms for drug testing and personalized medicine. Advances such as patient-derived xenografts and innovative genetic tools have further established zebrafish as a cornerstone in cancer research, particularly in understanding the molecular drivers of metastasis and identifying therapeutic targets. By bridging the experimental findings with clinical relevance, zebrafish continue transforming our understanding of cancer biology and therapy.
Collapse
|
2
|
El Omar R, Abdellaoui N, Coulibaly ST, Fontenille L, Lanza F, Gachet C, Freund JN, Negroni M, Kissa K, Tavian M. Macrophage depletion overcomes human hematopoietic cell engraftment failure in zebrafish embryo. Cell Death Dis 2024; 15:305. [PMID: 38693109 PMCID: PMC11063059 DOI: 10.1038/s41419-024-06682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.
Collapse
Affiliation(s)
- Reine El Omar
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
- Université de Lorraine, CITHEFOR, F-54505, Vandoeuvre Les Nancy, France
| | | | - Safiatou T Coulibaly
- University of Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
- ITI Innovec, Strasbourg, France
| | | | - François Lanza
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Christian Gachet
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Jean-Noel Freund
- ITI Innovec, Strasbourg, France
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, Strasbourg, France
- INSERM, U1256 - NGERE, Université de Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Matteo Negroni
- University of Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
- ITI Innovec, Strasbourg, France
| | - Karima Kissa
- University of Montpellier, VBIC, INSERM U1047, Montpellier, France
- AZELEAD SAS, Montpellier, France
| | - Manuela Tavian
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.
- ITI Innovec, Strasbourg, France.
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, Strasbourg, France.
| |
Collapse
|
3
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
4
|
Murali Shankar N, Ortiz-Montero P, Kurzyukova A, Rackwitz W, Künzel SR, Wels WS, Tonn T, Knopf F, Eitler J. Preclinical assessment of CAR-NK cell-mediated killing efficacy and pharmacokinetics in a rapid zebrafish xenograft model of metastatic breast cancer. Front Immunol 2023; 14:1254821. [PMID: 37885894 PMCID: PMC10599014 DOI: 10.3389/fimmu.2023.1254821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Natural killer (NK) cells are attractive effectors for adoptive immunotherapy of cancer. Results from first-in-human studies using chimeric antigen receptor (CAR)-engineered primary NK cells and NK-92 cells are encouraging in terms of efficacy and safety. In order to further improve treatment strategies and to test the efficacy of CAR-NK cells in a personalized manner, preclinical screening assays using patient-derived tumor samples are needed. Zebrafish (Danio rerio) embryos and larvae represent an attractive xenograft model to study growth and dissemination of patient-derived tumor cells because of their superb live cell imaging properties. Injection into the organism's circulation allows investigation of metastasis, cancer cell-to-immune cell-interactions and studies of the tumor cell response to anti-cancer drugs. Here, we established a zebrafish larval xenograft model to test the efficacy of CAR-NK cells against metastatic breast cancer in vivo by injecting metastatic breast cancer cells followed by CAR-NK cell injection into the Duct of Cuvier (DoC). We validated the functionality of the system with two different CAR-NK cell lines specific for PD-L1 and ErbB2 (PD-L1.CAR NK-92 and ErbB2.CAR NK-92 cells) against the PD-L1-expressing MDA-MB-231 and ErbB2-expressing MDA-MB-453 breast cancer cell lines. Injected cancer cells were viable and populated peripheral regions of the larvae, including the caudal hematopoietic tissue (CHT), simulating homing of cancer cells to blood forming sites. CAR-NK cells injected 2.5 hours later migrated to the CHT and rapidly eliminated individual cancer cells throughout the organism. Unmodified NK-92 also demonstrated minor in vivo cytotoxicity. Confocal live-cell imaging demonstrated intravascular migration and real-time interaction of CAR-NK cells with MDA-MB-231 cells, explaining the rapid and effective in vivo cytotoxicity. Thus, our data suggest that zebrafish larvae can be used for rapid and cost-effective in vivo assessment of CAR-NK cell potency and to predict patient response to therapy.
Collapse
Affiliation(s)
- Nivedha Murali Shankar
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Paola Ortiz-Montero
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Anastasia Kurzyukova
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Wiebke Rackwitz
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Stephan R. Künzel
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Torsten Tonn
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden University of Technology, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Jiri Eitler
- Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| |
Collapse
|
5
|
Wertman JN, Berman JN. Back to the future: evolutionary biology reveals a key regulatory switch in neuroblastoma pathogenesis. J Clin Invest 2023; 133:e167824. [PMID: 37183823 PMCID: PMC10178827 DOI: 10.1172/jci167824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
While MYCN expression is an important contributing factor to heterogeneity in the natural history of neuroblastoma (NBL), a mechanistic understanding of this often mutationally quiet tumor has remained elusive. In this issue of the JCI, Weichert-Leahey and authors focused on the adrenergic and mesenchymal core regulatory circuitries (CRC) as NBL transcriptional programs. The authors previously showed that overexpression of LIM-domain-only 1 (LMO1), a transcriptional coregulator, synergizes with MYCN to accelerate tumor formation and metastasis in an NBL-zebrafish model. They now demonstrate experimentally, using genome-edited zebrafish, that a polymorphism in the human rs2168101 locus of the LMO1 gene determines which CRC is active in a tumor. In some cases, LMO3 compensated for LMO1 loss and drove the adrenergic CRC in MYCN-positive NBL. This study exemplifies the value of evolutionary relationships and zebrafish models in the investigation of human disease and reveals pathways of NBL development that may affect prevention or intervention strategies.
Collapse
Affiliation(s)
- Jaime N. Wertman
- Department of Pediatrics, Izaak Walton Killam Health Centre and College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute and Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Identity matters: cancer stem cells and tumour plasticity in head and neck squamous cell carcinoma. Expert Rev Mol Med 2023; 25:e8. [PMID: 36740973 DOI: 10.1017/erm.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents frequent yet aggressive tumours that encompass complex ecosystems of stromal and neoplastic components including a dynamic population of cancer stem cells (CSCs). Recently, research in the field of CSCs has gained increased momentum owing in part to their role in tumourigenicity, metastasis, therapy resistance and relapse. We provide herein a comprehensive assessment of the latest progress in comprehending CSC plasticity, including newly discovered influencing factors and their possible application in HNSCC. We further discuss the dynamic interplay of CSCs within tumour microenvironment considering our evolving appreciation of the contribution of oral microbiota and the pressing need for relevant models depicting their features. In sum, CSCs and tumour plasticity represent an exciting and expanding battleground with great implications for cancer therapy that are only beginning to be appreciated in head and neck oncology.
Collapse
|
7
|
Al-Hamaly MA, Turner LT, Rivera-Martinez A, Rodriguez A, Blackburn JS. Zebrafish Cancer Avatars: A Translational Platform for Analyzing Tumor Heterogeneity and Predicting Patient Outcomes. Int J Mol Sci 2023; 24:2288. [PMID: 36768609 PMCID: PMC9916713 DOI: 10.3390/ijms24032288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Logan T. Turner
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| |
Collapse
|
8
|
Yi ZN, Chen XK, Ma ACH. Modeling leukemia with zebrafish (Danio rerio): Towards precision medicine. Exp Cell Res 2022; 421:113401. [PMID: 36306826 DOI: 10.1016/j.yexcr.2022.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
Leukemia is a type of blood cancer characterized by high genetic heterogeneity and fatality. While chemotherapy remains the primary form of treatment for leukemia, its effectiveness was profoundly diminished by the genetic heterogeneity and cytogenetic abnormalities of leukemic cells. Therefore, there is an unmet need to develop precision medicine for leukemia with distinct genetic backgrounds. Zebrafish (Danio rerio), a freshwater fish with exceptional feasibility in genome editing, is a powerful tool for rapid human cancer modeling. In the past decades, zebrafish have been adopted in modeling human leukemia, exploring the molecular mechanisms of underlying genetic abnormalities, and discovering novel therapeutic agents. Although many recurrent mutations of leukemia have been modeled in zebrafish for pathological study and drug discovery, its great potential in leukemia modeling was not yet fully exploited, particularly in precision medicine. In this review, we evaluated the current zebrafish models of leukemia/pre-leukemia and genetic techniques and discussed the potential of zebrafish models with novel techniques, which may contribute to the development of zebrafish as a disease model for precision medicine in treating leukemia.
Collapse
Affiliation(s)
- Zhen-Ni Yi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
9
|
Dudziak K, Nowak M, Sozoniuk M. One Host-Multiple Applications: Zebrafish ( Danio rerio) as Promising Model for Studying Human Cancers and Pathogenic Diseases. Int J Mol Sci 2022; 23:10255. [PMID: 36142160 PMCID: PMC9499349 DOI: 10.3390/ijms231810255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, zebrafish (ZF) has been increasingly applied as a model in human disease studies, with a particular focus on cancer. A number of advantages make it an attractive alternative for mice widely used so far. Due to the many advantages of zebrafish, modifications can be based on different mechanisms and the induction of human disease can take different forms depending on the research goal. Genetic manipulation, tumor transplantation, or injection of the pathogen are only a few examples of using ZF as a model. Most of the studies are conducted in order to understand the disease mechanism, monitor disease progression, test new or alternative therapies, and select the best treatment. The transplantation of cancer cells derived from patients enables the development of personalized medicine. To better mimic a patient's body environment, immune-deficient models (SCID) have been developed. A lower immune response is mostly generated by genetic manipulation but also by irradiation or dexamethasone treatment. For many studies, using SCID provides a better chance to avoid cancer cell rejection. In this review, we describe the main directions of using ZF in research, explain why and how zebrafish can be used as a model, what kind of limitations will be met and how to overcome them. We collected recent achievements in this field, indicating promising perspectives for the future.
Collapse
Affiliation(s)
- Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
10
|
Pezzotta A, Gentile I, Genovese D, Totaro MG, Battaglia C, Leung AYH, Fumagalli M, Parma M, Cazzaniga G, Fazio G, Alcalay M, Marozzi A, Pistocchi A. HDAC6 inhibition decreases leukemic stem cell expansion driven by Hedgehog hyperactivation by restoring primary ciliogenesis. Pharmacol Res 2022; 183:106378. [PMID: 35918044 DOI: 10.1016/j.phrs.2022.106378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Aberrant activation of the Hh pathway promotes cell proliferation and multi-drug resistance (MDR) in several cancers, including Acute Myeloid Leukemia (AML). Notably, only one Hh inhibitor, glasdegib, has been approved for AML treatment, and most patients eventually relapse, highlighing the urgent need ti discover new therapeutic targets. Hh signal is transduced through the membrane of the primary cilium, a structure expressed by non-proliferating mammalian cells, whose stabilization depends on the activity of HDAC6. Here we describe a positive correlation between Hh, HDAC6, and MDR genes in a cohort of adult AML patients, human leukemic cell lines, and a zebrafish model of Hh overexpression. The hyper-activation of Hh or HDAC6 in zebrafish drove the increased proliferation of hematopoietic stem and progenitor cells (HSPCs). Interestingly, this phenotype was rescued by inhibition of HDAC6 but not of Hh. Also, in human leukemic cell lines, a reduction in vitality was obtained through HDAC6, but not Hh inhibition. Our data showed the presence of a cross-talk between Hh and HDAC6 mediated by stabilization of the primary cilium, which we detect for the first time in zebrafish HSPCs. Inhibition of HDAC6 activity alone or in combination therapy with the chemotherapeutic agent cytarabine, efficiently rescued the hematopoietic phenotype. Our results open the possibility to introduce HDAC6 as therapeutic target to reduce proliferation of leukemic blasts in AML patients.
Collapse
Affiliation(s)
- Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Gentile
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Donatella Genovese
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | | | - Cristina Battaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | | | - Monica Fumagalli
- Hospital San Gerardo, Clinica Ematologica e Centro Trapianti di Midollo Osseo, Monza, Italy
| | - Matteo Parma
- Hospital San Gerardo, Clinica Ematologica e Centro Trapianti di Midollo Osseo, Monza, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Myriam Alcalay
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milano, Italy; Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
11
|
Kachroo AH, Vandeloo M, Greco BM, Abdullah M. Humanized yeast to model human biology, disease and evolution. Dis Model Mech 2022; 15:275614. [PMID: 35661208 PMCID: PMC9194483 DOI: 10.1242/dmm.049309] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For decades, budding yeast, a single-cellular eukaryote, has provided remarkable insights into human biology. Yeast and humans share several thousand genes despite morphological and cellular differences and over a billion years of separate evolution. These genes encode critical cellular processes, the failure of which in humans results in disease. Although recent developments in genome engineering of mammalian cells permit genetic assays in human cell lines, there is still a need to develop biological reagents to study human disease variants in a high-throughput manner. Many protein-coding human genes can successfully substitute for their yeast equivalents and sustain yeast growth, thus opening up doors for developing direct assays of human gene function in a tractable system referred to as 'humanized yeast'. Humanized yeast permits the discovery of new human biology by measuring human protein activity in a simplified organismal context. This Review summarizes recent developments showing how humanized yeast can directly assay human gene function and explore variant effects at scale. Thus, by extending the 'awesome power of yeast genetics' to study human biology, humanizing yeast reinforces the high relevance of evolutionarily distant model organisms to explore human gene evolution, function and disease.
Collapse
|
12
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Yang H, Zhang H, Luan Y, Liu T, Yang W, Roberts KG, Qian MX, Zhang B, Yang W, Perez-Andreu V, Xu J, Iyyanki S, Kuang D, Stasiak LA, Reshmi SC, Gastier-Foster J, Smith C, Pui CH, Evans WE, Hunger SP, Platanias LC, Relling MV, Mullighan CG, Loh ML, Yue F, Yang JJ. Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nat Genet 2022; 54:170-179. [PMID: 35115686 PMCID: PMC9794680 DOI: 10.1038/s41588-021-00993-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
Inherited noncoding genetic variants confer significant disease susceptibility to childhood acute lymphoblastic leukemia (ALL) but the molecular processes linking germline polymorphisms with somatic lesions in this cancer are poorly understood. Through targeted sequencing in 5,008 patients, we identified a key regulatory germline variant in GATA3 associated with Philadelphia chromosome-like ALL (Ph-like ALL). Using CRISPR-Cas9 editing and samples from patients with Ph-like ALL, we showed that this variant activated a strong enhancer that upregulated GATA3 transcription. This, in turn, reshaped global chromatin accessibility and three-dimensional genome organization, including regions proximal to the ALL oncogene CRLF2. Finally, we showed that GATA3 directly regulated CRLF2 and potentiated the JAK-STAT oncogenic effects during leukemogenesis. Taken together, we provide evidence for a distinct mechanism by which a germline noncoding variant contributes to oncogene activation, epigenetic regulation and three-dimensional genome reprogramming.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mao-Xiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bo Zhang
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, PA, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Virginia Perez-Andreu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Internal Medicine Department, MountainView Hospital, University of Reno, Las Vegas, NV, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
| | - Sriranga Iyyanki
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
| | - Da Kuang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Lena A Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Shalini C Reshmi
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Ohio State University School of Medicine, Columbus, OH, USA
| | - Julie Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Ohio State University School of Medicine, Columbus, OH, USA
| | - Colton Smith
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen P Hunger
- Division of Oncology and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Piccolo O, Lincoln JD, Melong N, Orr BC, Fernandez NR, Borsavage J, Berman JN, Robar J, Ha MN. Radiation dose enhancement using gold nanoparticles with a diamond linear accelerator target: a multiple cell type analysis. Sci Rep 2022; 12:1559. [PMID: 35091583 PMCID: PMC8799734 DOI: 10.1038/s41598-022-05339-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy (RT) is an effective cancer treatment modality, but standard RT often causes collateral damage to nearby healthy tissues. To increase therapeutic ratio, radiosensitization via gold nanoparticles (GNPs) has been shown to be effective. One challenge is that megavoltage beams generated by clinical linear accelerators are poor initiators of the photoelectric effect. Previous computer models predicted that a diamond target beam (DTB) will yield 400% more low-energy photons, increasing the probability of interacting with GNPs to enhance the radiation dose by 7.7-fold in the GNP vicinity. After testing DTB radiation coupled with GNPs in multiple cell types, we demonstrate decreased head-and-neck cancer (HNC) cell viability in vitro and enhanced cell-killing in zebrafish xenografts compared to standard RT. HNC cell lines also displayed increased double-stranded DNA breaks with DTB irradiation in the presence of GNPs. This study presents preclinical responses to GNP-enhanced radiotherapy with the novel DTB, providing the first functional data to support the theoretical evidence for radiosensitization via GNPs in this context, and highlighting the potential of this approach to optimize the efficacy of RT in anatomically difficult-to-treat tumors.
Collapse
Affiliation(s)
- Olivia Piccolo
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
| | - John D Lincoln
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Nicole Melong
- Children's Hospital of Eastern Ontario Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Benno C Orr
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
| | - Nicholas R Fernandez
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
| | - Jennifer Borsavage
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
- Children's Hospital of Eastern Ontario Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - James Robar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Radiation Oncology, Dalhousie University, Halifax, NS, Canada
| | - Michael N Ha
- Department of Radiation Oncology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
15
|
Segura MF, Soriano A, Roma J, Piskareva O, Jiménez C, Boloix A, Fletcher JI, Haber M, Gray JC, Cerdá-Alberich L, Martínez de Las Heras B, Cañete A, Gallego S, Moreno L. Methodological advances in the discovery of novel neuroblastoma therapeutics. Expert Opin Drug Discov 2021; 17:167-179. [PMID: 34807782 DOI: 10.1080/17460441.2022.2002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Neuroblastoma is a cancer of the sympathetic nervous system that causes up to 15% of cancer-related deaths among children. Among the ~1,000 newly diagnosed cases per year in Europe, more than half are classified as high-risk, with a 5-year survival rate <50%. Current multimodal treatments have improved survival among these patients, but relapsed and refractory tumors remain a major therapeutic challenge. A number of new methodologies are paving the way for the development of more effective and safer therapies to ultimately improve outcomes for high-risk patients. AREAS COVERED The authors provide a critical review on methodological advances aimed at providing new therapeutic opportunities for neuroblastoma patients, including preclinical models of human disease, generation of omics data to discover new therapeutic targets, and artificial intelligence-based technologies to implement personalized treatments. EXPERT OPINION While survival of childhood cancer has improved over the past decades, progress has been uneven. Still, survival is dismal for some cancers, including high-risk neuroblastoma. Embracing new technologies (e.g. molecular profiling of tumors, 3D in vitro models, etc.), international collaborative efforts and the incorporation of new therapies (e.g. RNA-based therapies, epigenetic therapies, immunotherapy) will ultimately lead to more effective and safer therapies for these subgroups of neuroblastoma patients.
Collapse
Affiliation(s)
- Miguel F Segura
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aroa Soriano
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Roma
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Olga Piskareva
- Cancer Bioengineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,National Children's Research Centre, OLCHC, Dublin, Ireland School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Carlos Jiménez
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ariadna Boloix
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, Australia
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, UK
| | - Leonor Cerdá-Alberich
- Grupo de Investigación Biomédica En Imagen, Instituto de Investigación Sanitaria La Fe, Spain
| | | | - Adela Cañete
- Unidad de Oncohematología Pediátrica, Hospital Universitario y Politécnico La Fe, Spain
| | - Soledad Gallego
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain.,Pediatric Oncology and Hematology Department, Vall d'Hebron University Hospital-UAB, Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain.,Pediatric Oncology and Hematology Department, Vall d'Hebron University Hospital-UAB, Barcelona, Spain
| |
Collapse
|
16
|
Molina B, Chavez J, Grainger S. Zebrafish models of acute leukemias: Current models and future directions. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e400. [PMID: 33340278 PMCID: PMC8213871 DOI: 10.1002/wdev.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.
Collapse
Affiliation(s)
- Brandon Molina
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jasmine Chavez
- Biology Department, San Diego State University, San Diego, California, USA
| | - Stephanie Grainger
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
17
|
Yan C, Yang Q, Zhang S, Millar DG, Alpert EJ, Do D, Veloso A, Brunson DC, Drapkin BJ, Stanzione M, Scarfò I, Moore JC, Iyer S, Qin Q, Wei Y, McCarthy KM, Rawls JF, Dyson NJ, Cobbold M, Maus MV, Langenau DM. Single-cell imaging of T cell immunotherapy responses in vivo. J Exp Med 2021; 218:e20210314. [PMID: 34415995 PMCID: PMC8383813 DOI: 10.1084/jem.20210314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022] Open
Abstract
T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.
Collapse
Affiliation(s)
- Chuan Yan
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Qiqi Yang
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Songfa Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - David G. Millar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Eric J. Alpert
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Alexandra Veloso
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Dalton C. Brunson
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Benjamin J. Drapkin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Marcello Stanzione
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Irene Scarfò
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - John C. Moore
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Sowmya Iyer
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Qian Qin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Yun Wei
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Karin M. McCarthy
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Nick J. Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Early Oncology R&D, AstraZeneca, Gaithersburg, MD
| | - Marcela V. Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - David M. Langenau
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
18
|
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021; 20:611-628. [PMID: 34117457 PMCID: PMC9210578 DOI: 10.1038/s41573-021-00210-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Numerous drug treatments that have recently entered the clinic or clinical trials have their genesis in zebrafish. Zebrafish are well established for their contribution to developmental biology and have now emerged as a powerful preclinical model for human disease, as their disease characteristics, aetiology and progression, and molecular mechanisms are clinically relevant and highly conserved. Zebrafish respond to small molecules and drug treatments at physiologically relevant dose ranges and, when combined with cell-specific or tissue-specific reporters and gene editing technologies, drug activity can be studied at single-cell resolution within the complexity of a whole animal, across tissues and over an extended timescale. These features enable high-throughput and high-content phenotypic drug screening, repurposing of available drugs for personalized and compassionate use, and even the development of new drug classes. Often, drugs and drug leads explored in zebrafish have an inter-organ mechanism of action and would otherwise not be identified through targeted screening approaches. Here, we discuss how zebrafish is an important model for drug discovery, the process of how these discoveries emerge and future opportunities for maximizing zebrafish potential in medical discoveries.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, Western General Hospital Campus, University of Edinburgh, Edinburgh, UK.
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School; Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| | - David M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, USA.
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. BIOLOGY 2021; 10:biology10040252. [PMID: 33804830 PMCID: PMC8063817 DOI: 10.3390/biology10040252] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The identification and development of new anti-cancer drugs requires extensive testing in animal models to establish safety and efficacy of drug candidates. The transplantation of human tumor tissue into mouse (tumor xenografts) is commonly used to study cancer progression and to test potential drugs for their anti-cancer activity. Mouse models do not afford the ability to test a large number of drug candidates quickly as it takes several weeks to conduct these experiments. In contrast, tumor xenograft studies in zebrafish provide an efficient platform for rapid testing of safety and efficacy in less than two weeks. Abstract In order to develop new cancer therapeutics, rapid, reliable, and relevant biological models are required to screen and validate drug candidates for both efficacy and safety. In recent years, the zebrafish (Danio rerio) has emerged as an excellent model organism suited for these goals. Larval fish or immunocompromised adult fish are used to engraft human cancer cells and serve as a platform for screening potential drug candidates. With zebrafish sharing ~80% of disease-related orthologous genes with humans, they provide a low cost, high-throughput alternative to mouse xenografts that is relevant to human biology. In this review, we provide background on the methods and utility of zebrafish xenograft models in cancer research.
Collapse
Affiliation(s)
- John T. Gamble
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Juliet A. Greenwood
- School of Mathematics and Natural Sciences, Arizona State University, Scotsdale, AZ 85257, USA;
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
- Correspondence:
| |
Collapse
|
20
|
Somasagara RR, Huang X, Xu C, Haider J, Serody JS, Armistead PM, Leung T. Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. Sci Rep 2021; 11:5715. [PMID: 33707624 PMCID: PMC7952715 DOI: 10.1038/s41598-021-85141-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Personalized medicine holds tremendous promise for improving safety and efficacy of drug therapies by optimizing treatment regimens. Rapidly developed patient-derived xenografts (pdx) could be a helpful tool for analyzing the effect of drugs against an individual's tumor by growing the tumor in an immunodeficient animal. Severe combined immunodeficiency (SCID) mice enable efficient in vivo expansion of vital tumor cells and generation of personalized xenografts. However, they are not amenable to large-scale rapid screening, which is critical in identifying new compounds from large compound libraries. The development of a zebrafish model suitable for pdx could facilitate large-scale screening of drugs targeted against specific malignancies. Here, we describe a novel strategy for establishing a zebrafish model for drug testing in leukemia xenografts. We used chronic myelogenous leukemia and acute myeloid leukemia for xenotransplantation into SCID zebrafish to evaluate drug screening protocols. We showed the in vivo efficacy of the ABL inhibitor imatinib, MEK inhibitor U0126, cytarabine, azacitidine and arsenic trioxide. We performed corresponding in vitro studies, demonstrating that combination of MEK- and FLT3-inhibitors exhibit an enhanced effect in vitro. We further evaluated the feasibility of zebrafish for transplantation of primary human hematopoietic cells that can survive at 15 day-post-fertilization. Our results provide critical insights to guide development of high-throughput platforms for evaluating leukemia.
Collapse
Affiliation(s)
- Ranganatha R Somasagara
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Chunyu Xu
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jamil Haider
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jonathan S Serody
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul M Armistead
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA. .,Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
21
|
Li S, Yeo KS, Levee TM, Howe CJ, Her ZP, Zhu S. Zebrafish as a Neuroblastoma Model: Progress Made, Promise for the Future. Cells 2021; 10:cells10030580. [PMID: 33800887 PMCID: PMC8001113 DOI: 10.3390/cells10030580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties. We have also included visual diagram and figures to illustrate the workflow of cancer model development in zebrafish and provide a summary comparison of commonly used animal models in cancer research, as well as key findings of cooperative contributions between MYCN and diverse singling pathways in NB pathogenesis.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Taylor M. Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Cassie J. Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
- Correspondence:
| |
Collapse
|
22
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
23
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
24
|
Loveless R, Shay C, Teng Y. Unveiling Tumor Microenvironment Interactions Using Zebrafish Models. Front Mol Biosci 2021; 7:611847. [PMID: 33521055 PMCID: PMC7841114 DOI: 10.3389/fmolb.2020.611847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a rich and active arena that is strategically evolved overtime by tumors to promote their survival and dissemination. Over the years, attention has been focused to characterize and identify the tumor-supporting roles and subsequent targeting potentials of TME components. Nevertheless, recapitulating the human TME has proved inherently challenging, leaving much to be explored. In this regard, in vivo model systems like zebrafish, with its optical clarity, ease of genetic manipulation, and high engraftment, have proven to be indispensable for TME modeling and investigation. In this review, we discuss the recent ways by which zebrafish models have lent their utility to provide new insights into the various cellular and molecular mechanisms driving TME dynamics and tumor support. Specifically, we report on innate immune cell interactions, cytokine signaling, metastatic plasticity, and other processes within the metastatic cascade. In addition, we reflect on the arrival of adult zebrafish models and the potential of patient-derived xenografts.
Collapse
Affiliation(s)
- Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, United States
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, United States
| |
Collapse
|
25
|
Tamplin OJ. Making fish a little more human: a zebrafish hematopoietic xenotransplant model is improved by the expression of human cytokines. Haematologica 2020; 105:2346-2347. [PMID: 33054071 PMCID: PMC7556669 DOI: 10.3324/haematol.2020.256909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Owen J Tamplin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.
| |
Collapse
|
26
|
Kocere A, Resseguier J, Wohlmann J, Skjeldal FM, Khan S, Speth M, Dal NJK, Ng MYW, Alonso-Rodriguez N, Scarpa E, Rizzello L, Battaglia G, Griffiths G, Fenaroli F. Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis. EBioMedicine 2020; 58:102902. [PMID: 32707448 PMCID: PMC7381511 DOI: 10.1016/j.ebiom.2020.102902] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The developing zebrafish is an emerging tool in nanomedicine, allowing non-invasive live imaging of the whole animal at higher resolution than is possible in the more commonly used mouse models. In addition, several transgenic fish lines are available endowed with selected cell types expressing fluorescent proteins; this allows nanoparticles to be visualized together with host cells. METHODS Here, we introduce the zebrafish neural tube as a robust injection site for cancer cells, excellently suited for high resolution imaging. We use light and electron microscopy to evaluate cancer growth and to follow the fate of intravenously injected nanoparticles. FINDINGS Fluorescently labelled mouse melanoma B16 cells, when injected into this structure proliferated rapidly and stimulated angiogenesis of new vessels. In addition, macrophages, but not neutrophils, selectively accumulated in the tumour region. When injected intravenously, nanoparticles made of Cy5-labelled poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) (PEG-PDPA) selectively accumulated in the neural tube cancer region and were seen in individual cancer cells and tumour associated macrophages. Moreover, when doxorubicin was released from PEG-PDPA, in a pH dependant manner, these nanoparticles could strongly reduce toxicity and improve the treatment outcome compared to the free drug in zebrafish xenotransplanted with mouse melanoma B16 or human derived melanoma cells. INTERPRETATION The zebrafish has the potential of becoming an important intermediate step, before the mouse model, for testing nanomedicines against patient-derived cancer cells. FUNDING We received funding from the Norwegian research council and the Norwegian cancer society.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Oslo, Department of Biosciences, Blindernveien 31, 0371 Oslo, Norway
| | - Julien Resseguier
- University of Oslo, Department of Biosciences, Blindernveien 31, 0371 Oslo, Norway
| | - Jens Wohlmann
- University of Oslo, Department of Biosciences, Blindernveien 31, 0371 Oslo, Norway
| | | | - Shanawaz Khan
- University of Oslo, Department of Biosciences, Blindernveien 31, 0371 Oslo, Norway
| | - Martin Speth
- University of Oslo, Department of Biosciences, Blindernveien 31, 0371 Oslo, Norway
| | | | | | | | - Edoardo Scarpa
- University College London, Department of Chemistry, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Loris Rizzello
- University of Milan, Department of Pharmaceutical Sciences, via Mangiagalli 25, 20133 Milan (Italy); Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona (Spain)
| | - Giuseppe Battaglia
- University College London, Department of Chemistry, 20 Gordon Street, WC1H 0AJ London, United Kingdom; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona (Spain); Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, London, United Kingdom; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 2308010 Barcelona, Spain
| | - Gareth Griffiths
- University of Oslo, Department of Biosciences, Blindernveien 31, 0371 Oslo, Norway
| | - Federico Fenaroli
- University of Oslo, Department of Biosciences, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
27
|
Xiao J, Glasgow E, Agarwal S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer 2020; 6:569-579. [PMID: 32312681 DOI: 10.1016/j.trecan.2020.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer is the second leading cause of death in the world. Given that cancer is a highly individualized disease, predicting the best chemotherapeutic treatment for individual patients can be difficult. Ex vivo models such as mouse patient-derived xenografts (PDX) and organoids are being developed to predict patient-specific chemosensitivity profiles before treatment in the clinic. Although promising, these models have significant disadvantages including long growth times that introduce genetic and epigenetic changes to the tumor. The zebrafish xenograft assay is ideal for personalized medicine. Imaging of the small, transparent fry is unparalleled among vertebrate organisms. In addition, the speed (5-7 days) and small patient tissue requirements (100-200 cells per animal) are unique features of the zebrafish xenograft model that enable patient-specific chemosensitivity analyses.
Collapse
Affiliation(s)
- Jerry Xiao
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
28
|
|