1
|
Liu J, Zhang Z, Xu W, Jia M, Zeng X, Wu C, Fu Z, Xu X, Ye C, Wu C, Xu H, Lei H, Wu Y, Yan H. Targeting the RBM39-MEK5 axis synergizes with bortezomib to inhibit the malignant growth of multiple myeloma. Blood Adv 2025; 9:1991-2005. [PMID: 40048740 PMCID: PMC12034074 DOI: 10.1182/bloodadvances.2025015815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 04/23/2025] Open
Abstract
ABSTRACT Aberrant alternative splicing is one of the hallmarks of cancer and is potentially based on upregulated expression-of-splicing factors in some types of cancer. Our previous study suggested that the splicing factor RBM39 is significantly upregulated in multiple myeloma (MM) and that its upregulation is positively associated with poor prognosis. Here, we further demonstrate that the survival and proliferation of MM cells rely on RBM39 and that RBM39 knockdown inhibits the malignant growth of MM. Indisulam, a "molecular glue" that mediates the proteasomal degradation of RBM39, has potent suppressive effects on MM both in vitro and in vivo. Deletion of RBM39 results in extensively altered splicing, with mis-splicing of MEK5 verified to inhibit the malignant growth of MM. Full-length MEK5 plays a vital role in maintaining MM cell survival, whereas aberrant MEK5 isoforms with exon loss exhibit loss of function and a propensity for proteasomal degradation. Targeting RBM39 or MEK5 synergistically increases the cytotoxicity of bortezomib in MM cells via the inhibition of p65. Our study validates the specific mechanism of RBM39 in MM, providing an approach for broader targeting and optimized therapeutic strategies for MM.
Collapse
Affiliation(s)
- Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyuan Jia
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zeng
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Fu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Xu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjing Ye
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanzhang Xu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu Lei
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Wu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Liu Y, Liao Y, Lai S, Wu X, Liang L, Zhang Y, Wei R, Chen Y. Targeting CLK2 and serine/arginine-rich splicing factors inhibits multiple myeloma through downregulating RAE1 by nonsense-mediated mRNA decay mechanism. Cancer Sci 2025; 116:164-177. [PMID: 39526400 PMCID: PMC11711041 DOI: 10.1111/cas.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Multiple myeloma (MM) is closely related to abnormal RNA splicing in its pathogenesis. CDC2-like kinase-2 (CLK2) regulates RNA splicing by phosphorylating serine/arginine-rich splicing factors (SRSFs), but the role of CLK2 in MM remains undefined. This study was to explore the role and mechanism of CLK2 in MM. Analyzing GEO datasets of MM patients found that high CLK2 expression predicted poor prognosis. Overexpression of CLK2 promoted the cell proliferation and cell cycle progression of MM cell ARP1 and H929. Knockdown or inhibition of CLK2 suppressed cell proliferation and induced cell apoptosis and cell cycle arrest in ARP1 and H929 cells in vitro. An MM xenograft tumor experiment showed that CLK2 overexpression promoted tumor growth, while CLK2 inhibition suppressed tumor growth in vivo. Mechanistic studies revealed that interfering CLK2 inhibited SRSF phosphorylation, and induced exon 9 skipping of RAE1, resulting in nonsense-mediated mRNA decay (NMD) of RAE1. In addition, RAE1 knockdown inhibited cell proliferation in ARP1 and H929 cells. Moreover, RAE1 overexpression promoted cell proliferation and cell cycle progression of ARP1 and H929 cells, and partially reversed the antitumor effect of CLK2 knockdown. Targeting CLK2 shows antitumor effects on MM partially through inhibiting SRSF phosphorylation and inducing NMD of RAE1. Therefore, targeting the CLK2/SRSFs/RAE1 axis could be a potential therapeutic strategy for MM.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yaping Liao
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shuping Lai
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xiaoyan Wu
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Laoqi Liang
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yihao Zhang
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Rongfang Wei
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yan Chen
- Department of Hematology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
3
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
4
|
Miglierina E, Ordanoska D, Le Noir S, Laffleur B. RNA processing mechanisms contribute to genome organization and stability in B cells. Oncogene 2024; 43:615-623. [PMID: 38287115 PMCID: PMC10890934 DOI: 10.1038/s41388-024-02952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
RNA processing includes post-transcriptional mechanisms controlling RNA quality and quantity to ensure cellular homeostasis. Noncoding (nc) RNAs that are regulated by these dynamic processes may themselves fulfill effector and/or regulatory functions, and recent studies demonstrated the critical role of RNAs in organizing both chromatin and genome architectures. Furthermore, RNAs can threaten genome integrity when accumulating as DNA:RNA hybrids, but could also facilitate DNA repair depending on the molecular context. Therefore, by qualitatively and quantitatively fine-tuning RNAs, RNA processing contributes directly or indirectly to chromatin states, genome organization, and genome stability. B lymphocytes represent a unique model to study these interconnected mechanisms as they express ncRNAs transcribed from key specific sequences before undergoing physiological genetic remodeling processes, including V(D)J recombination, somatic hypermutation, and class switch recombination. RNA processing actors ensure the regulation and degradation of these ncRNAs for efficient DNA repair and immunoglobulin gene remodeling while failure leads to B cell development alterations, aberrant DNA repair, and pathological translocations. This review highlights how RNA processing mechanisms contribute to genome architecture and stability, with emphasis on their critical roles during B cell development, enabling physiological DNA remodeling while preventing lymphomagenesis.
Collapse
Affiliation(s)
- Emma Miglierina
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Delfina Ordanoska
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Sandrine Le Noir
- UMR CNRS 7276, Inserm 1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B cell Nuclear Architecture, Immunoglobulin genes and Oncogenes, Limoges, France
| | - Brice Laffleur
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France.
| |
Collapse
|
5
|
Brünnert D, Seupel R, Goyal P, Bach M, Schraud H, Kirner S, Köster E, Feineis D, Bargou RC, Schlosser A, Bringmann G, Chatterjee M. Ancistrocladinium A Induces Apoptosis in Proteasome Inhibitor-Resistant Multiple Myeloma Cells: A Promising Therapeutic Agent Candidate. Pharmaceuticals (Basel) 2023; 16:1181. [PMID: 37631095 PMCID: PMC10459547 DOI: 10.3390/ph16081181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent.
Collapse
Affiliation(s)
- Daniela Brünnert
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Raina Seupel
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh 305817, India;
| | - Matthias Bach
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Heike Schraud
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Stefanie Kirner
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Eva Köster
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Ralf C. Bargou
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Manik Chatterjee
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| |
Collapse
|
6
|
Fang T, Sun H, Sun X, He Y, Tang P, Gong L, Yu Z, Liu L, Xie S, Wang T, Xu Z, Yi S, An G, Xu Y, Zhu G, Qiu L, Hao M. Exosome miRNAs profiling in serum and prognostic evaluation in patients with multiple myeloma. BLOOD SCIENCE 2023; 5:196-208. [PMID: 37546707 PMCID: PMC10400059 DOI: 10.1097/bs9.0000000000000160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 08/08/2023] Open
Abstract
MicroRNAs (MiRNAs) carried by exosomes play pivotal roles in the crosstalk between cell components in the tumor microenvironment. Our study aimed at identifying the expression profile of exosomal miRNAs (exo-miRNAs) in the serum of multiple myeloma (MM) patients and investigating the regulation networks and their potential functions by integrated bioinformatics analysis. Exosomes in serum from 19 newly diagnosed MM patients and 9 healthy donors were isolated and the miRNA profile was investigated by small RNA sequencing. Differential expression of exo-miRNAs was calculated and target genes of miRNAs were predicted. CytoHubba was applied to identify the hub miRNAs and core target genes. The LASSO Cox regression model was used to develop the prognostic model, and the ESTIMATE immune score was calculated to investigate the correlation between the model and immune status in MM patients. The top six hub differentially expressed serum exo-miRNAs were identified. 513 target genes of the six hub exo-miRNAs were confirmed to be differentially expressed in MM cells in the Zhan Myeloma microarray dataset. Functional enrichment analysis indicated that these target genes were mainly involved in mRNA splicing, cellular response to stress, and deubiquitination. 13 core exo-miRNA target genes were applied to create a novel prognostic signature to provide risk stratification for MM patients, which is associated with the immune microenvironment of MM patients. Our study comprehensively investigated the exo-miRNA profiles in MM patients. A novel prognostic signature was constructed to facilitate the risk stratification of MM patients with distinct outcomes.
Collapse
Affiliation(s)
- Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Peixia Tang
- Hematology Department, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou 350001, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shiyi Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhenshu Xu
- Hematology Department, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou 350001, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Gobroad Healthcare Group, Beijing 100072, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
7
|
Ogiya D, Chyra Z, Verselis SJ, O'Keefe M, Cobb J, Abiatari I, Talluri S, Sithara AA, Hideshima T, Chu MP, Hájek R, Dorfman DM, Pilarski LM, Anderson KC, Adamia S. Identification of disease-related aberrantly spliced transcripts in myeloma and strategies to target these alterations by RNA-based therapeutics. Blood Cancer J 2023; 13:23. [PMID: 36737429 PMCID: PMC9898564 DOI: 10.1038/s41408-023-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Novel drug discoveries have shifted the treatment paradigms of most hematological malignancies, including multiple myeloma (MM). However, this plasma cell malignancy remains incurable, and novel therapies are therefore urgently needed. Whole-genome transcriptome analyses in a large cohort of MM patients demonstrated that alterations in pre-mRNA splicing (AS) are frequent in MM. This manuscript describes approaches to identify disease-specific alterations in MM and proposes RNA-based therapeutic strategies to eradicate such alterations. As a "proof of concept", we examined the causes of aberrant HMMR (Hyaluronan-mediated motility receptor) splicing in MM. We identified clusters of single nucleotide variations (SNVs) in the HMMR transcript where the altered splicing took place. Using bioinformatics tools, we predicted SNVs and splicing factors that potentially contribute to aberrant HMMR splicing. Based on bioinformatic analyses and validation studies, we provided the rationale for RNA-based therapeutic strategies to selectively inhibit altered HMMR splicing in MM. Since splicing is a hallmark of many cancers, strategies described herein for target identification and the design of RNA-based therapeutics that inhibit gene splicing can be applied not only to other genes in MM but also more broadly to other hematological malignancies and solid tumors as well.
Collapse
Affiliation(s)
- Daisuke Ogiya
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Zuzana Chyra
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - Sigitas J Verselis
- Molecular Diagnostic Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Morgan O'Keefe
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Cobb
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ivane Abiatari
- Institute of Medical and Public Health Research, School of Medicine, Ilia State University, Tbilisi, Georgia
| | - Srikanth Talluri
- Molecular Diagnostic Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, USA
| | - Anjana Anilkumar Sithara
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael P Chu
- Department of Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Roman Hájek
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda M Pilarski
- Department of Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Sophia Adamia
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Institute of Medical and Public Health Research, School of Medicine, Ilia State University, Tbilisi, Georgia.
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Roseth Aass K, Nedal TMV, Anshushaug Bouma S, Tryggestad SS, Haukås E, Slørdahl TS, Waage A, Standal T, Mjelle R. Comprehensive small RNA-sequencing of primary myeloma cells identifies miR-105-5p as a predictor of patient survival. Br J Cancer 2023; 128:656-664. [PMID: 36446884 PMCID: PMC9938247 DOI: 10.1038/s41416-022-02065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs), a heterogenous group of non-coding RNAs, are emerging as promising molecules for cancer patient risk stratification and as players in tumour pathogenesis. Here, we have studied microRNAs (miRNAs) and other sRNAs in relation to survival and disease severity in multiple myeloma. METHODS We comprehensively characterised sRNA expression in multiple myeloma patients by performing sRNA-sequencing on myeloma cells isolated from bone marrow aspirates of 86 myeloma patients. The sRNA expression profiles were correlated with the patients' clinical data to investigate associations with survival and disease subgroups, by using cox proportional hazards (coxph) -models and limma-voom, respectively. A publicly available sRNA dataset was used as external validation (n = 151). RESULTS We show that multiple miRNAs are differentially expressed between ISS Stage I and III. Interestingly, we observed the downregulation of seven different U2 spliceosomal RNAs, a type of small nuclear RNAs in severe disease stages. Further, by a discovery-based approach, we identified miRNA miR-105-5p as a predictor of poor overall survival (OS) in multiple myeloma. Multivariate analysis showed that miR-105-5p predict OS independently of established disease markers. CONCLUSIONS Overexpression of miR-105-5p in myeloma cells correlates with reduced OS, potentially improving prognostic risk stratification in multiple myeloma.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Tonje Marie Vikene Nedal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Siri Anshushaug Bouma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Synne Stokke Tryggestad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Einar Haukås
- Department of Hematology, Stavanger University Hospital, 4011, Stavanger, Norway
| | - Tobias Schmidt Slørdahl
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Hematology, St. Olavs University Hospital, 7030, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Hematology, St. Olavs University Hospital, 7030, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Hematology, St. Olavs University Hospital, 7030, Trondheim, Norway.
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway.
- Department of Pathology, St. Olavs University Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
9
|
Liu E, Becker N, Sudha P, Dong C, Liu Y, Keats J, Morgan G, Walker BA. Alternative splicing in multiple myeloma is associated with the non-homologous end joining pathway. Blood Cancer J 2023; 13:16. [PMID: 36670103 PMCID: PMC9859791 DOI: 10.1038/s41408-023-00783-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Alternative splicing plays a pivotal role in tumorigenesis and proliferation. However, its pattern and pathogenic role has not been systematically analyzed in multiple myeloma or its subtypes. Alternative splicing profiles for 598 newly diagnosed myeloma patients with comprehensive genomic annotation identified primary translocations, 1q amplification, and DIS3 events to have more differentially spliced events than those without. Splicing levels were correlated with expression of splicing factors. Moreover, the non-homologous end joining pathway was an independent factor that was highly associated with splicing frequency as well as an increased number of structural variants. We therefore identify an axis of high-risk disease encompassing expression of the non-homologous end joining pathway, increase structural variants, and increased alternative splicing that are linked together. This indicates a joint pathogenic role for DNA damage response and alternative RNA processing in myeloma.
Collapse
Affiliation(s)
- Enze Liu
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Nathan Becker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Parvathi Sudha
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Chuanpeng Dong
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jonathan Keats
- Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, USA
| | - Gareth Morgan
- NYU Langone Medical Center, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Zhang J, Wang Z, Wang K, Xin D, Wang L, Fan Y, Xu Y. Increased Expression of SRSF1 Predicts Poor Prognosis in Multiple Myeloma. JOURNAL OF ONCOLOGY 2023; 2023:9998927. [PMID: 37206090 PMCID: PMC10191755 DOI: 10.1155/2023/9998927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 05/21/2023]
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell disorder which still lacks sufficient prognostic factors. The serine/arginine-rich splicing factor (SRSF) family serves as an important splicing regulator in organ development. Among all members, SRSF1 plays an important role in cell proliferation and renewal. However, the role of SRSF1 in MM is still unknown. Methods SRSF1 was selected from the primary bioinformatics analysis of SRSF family members, and then we integrated 11 independent datasets and analyzed the relationship between SRSF1 expression and MM clinical characteristics. Gene set enrichment analysis (GSEA) was conducted to explore the potential mechanism of SRSF1 in MM progression. ImmuCellAI was used to estimate the abundance of immune infiltrating cells between the SRSF1high and SRSF1low groups. The ESTIMATE algorithm was used to evaluate the tumor microenvironment in MM. The expression of immune-related genes was compared between the groups. Additionally, SRSF1 expression was validated in clinical samples. SRSF1 knockdown was conducted to explore the role of SRSF1 in MM development. Results SRSF1 expression showed an increasing trend with the progression of myeloma. Besides, SRSF1 expression increased as the age, ISS stage, 1q21 amplification level, and relapse times increased. MM patients with higher SRSF1 expression had worse clinical features and poorer outcomes. Univariate and multivariate analysis indicated that upregulated SRSF1 expression was an independent poor prognostic factor for MM. Enrichment pathway analysis confirmed that SRSF1 takes part in the myeloma progression via tumor-associated and immune-related pathways. Several checkpoints and immune-activating genes were significantly downregulated in the SRSF1high groups. Furthermore, we detected that SRSF1 expression was significantly higher in MM patients than that in control donors. SRSF1 knockdown resulted in proliferation arrest in MM cell lines. Conclusion The expression value of SRSF1 is positively associated with myeloma progression, and high SRSF1 expression might be a poor prognostic biomarker in MM patients.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zanzan Wang
- Department of Hematology, Ningbo First Hospital, Ningbo 315010, China
| | - Kailai Wang
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Aktas Samur A, Fulciniti M, Avet-Loiseau H, Lopez MA, Derebail S, Corre J, Minvielle S, Magrangeas F, Moreau P, Anderson KC, Parmigiani G, Samur MK, Munshi NC. In-depth analysis of alternative splicing landscape in multiple myeloma and potential role of dysregulated splicing factors. Blood Cancer J 2022; 12:171. [PMID: 36535935 PMCID: PMC9763261 DOI: 10.1038/s41408-022-00759-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Splicing changes are common in cancer and are associated with dysregulated splicing factors. Here, we analyzed RNA-seq data from 323 newly diagnosed multiple myeloma (MM) patients and described the alternative splicing (AS) landscape. We observed a large number of splicing pattern changes in MM cells compared to normal plasma cells (NPC). The most common events were alterations of mutually exclusive exons and exon skipping. Most of these events were observed in the absence of overall changes in gene expression and often impacted the coding potential of the alternatively spliced genes. To understand the molecular mechanisms driving frequent aberrant AS, we investigated 115 splicing factors (SFs) and associated them with the AS events in MM. We observed that ~40% of SFs were dysregulated in MM cells compared to NPC and found a significant enrichment of SRSF1, SRSF9, and PCB1 binding motifs around AS events. Importantly, SRSF1 overexpression was linked with shorter survival in two independent MM datasets and was correlated with the number of AS events, impacting tumor cell proliferation. Together with the observation that MM cells are vulnerable to splicing inhibition, our results may lay the foundation for developing new therapeutic strategies for MM. We have developed a web portal that allows custom alternative splicing event queries by using gene symbols and visualizes AS events in MM and subgroups. Our portals can be accessed at http://rconnect.dfci.harvard.edu/mmsplicing/ and https://rconnect.dfci.harvard.edu/mmleafcutter/ .
Collapse
Affiliation(s)
- Anil Aktas Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Herve Avet-Loiseau
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Michael A Lopez
- Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Sanika Derebail
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jill Corre
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Stephane Minvielle
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Florence Magrangeas
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Philippe Moreau
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Giovanni Parmigiani
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA.
| | - Mehmet K Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA.
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- VA Boston Healthcare System, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Wang X, Wang J, Raza SHA, Deng J, Ma J, Qu X, Yu S, Zhang D, Alshammari AM, Almohaimeed HM, Zan L. Identification of the hub genes related to adipose tissue metabolism of bovine. Front Vet Sci 2022; 9:1014286. [PMID: 36439361 PMCID: PMC9682410 DOI: 10.3389/fvets.2022.1014286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Due to the demand for high-quality animal protein, there has been consistent interest in how to obtain more high-quality beef. As well-known, the adipose content of beef has a close connection with the taste and quality of beef, and cattle with different energy or protein diet have corresponding effects on the lipid metabolism of beef. Thus, we performed weighted gene co-expression network analysis (WGCNA) with subcutaneous adipose genes from Norwegian red heifers fed different diets to identify hub genes regulating bovine lipid metabolism. For this purpose, the RNA sequencing data of subcutaneous adipose tissue of 12-month-old Norwegian red heifers (n = 48) with different energy or protein levels were selected from the GEO database, and 7,630 genes with the largest variation were selected for WGCNA analysis. Then, three modules were selected as hub genes candidate modules according to the correlation between modules and phenotypes, including pink, magenta and grey60 modules. GO and KEGG enrichment analysis showed that genes were related to metabolism, and participated in Rap, MAPK, AMPK, VEGF signaling pathways, and so forth. Combined gene interaction network analysis using Cytoscape software, eight hub genes of lipid metabolism were identified, including TIA1, LOC516108, SNAPC4, CPSF2, ZNF574, CLASRP, MED15 and U2AF2. Further, the expression levels of hub genes in the cattle tissue were also measured to verify the results, and we found hub genes in higher expression in muscle and adipose tissue in adult cattle. In summary, we predicted the key genes of lipid metabolism in the subcutaneous adipose tissue that were affected by the intake of various energy diets to find the hub genes that coordinate lipid metabolism, which provide a theoretical basis for regulating beef quality.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Jiahan Deng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaopeng Qu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
- *Correspondence: Linsen Zan
| |
Collapse
|
13
|
Yang Y, Huang T, Fan Y, Lu H, Shao J, Wang Y, Shen A. Significance of Spliceosome-Related Genes in the Prediction of Prognosis and Treatment Strategies for Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1753563. [PMID: 36389112 PMCID: PMC9652092 DOI: 10.1155/2022/1753563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 08/25/2023]
Abstract
BACKGROUND The leading cause of cancer-related fatalities globally is lung cancer; lung adenocarcinoma (LUAD) is the most common histological type in it. The spliceosome plays an important role in a majority of malignancies. However, it is yet unclear how spliceosome-related genes affect patients with LUAD in terms of treatment course and prognosis. METHODS Spliceosome-related genes were assessed from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database to obtain clinical information and gene expression in patients with LUAD. A spliceosome-related gene signature and prognostic model were constructed by using the least absolute shrinkage and selection operator (LASSO), time-dependent receiver operating characteristic (ROC), and nomogram. Immune infiltrate levels, mutation analysis, and pathway enrichment were predicted potential mechanisms of the signature by using single-sample gene set enrichment analysis (ssGSEA), Gene Set Cancer Analysis (GSCA) database, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) database. Then, a protein-protein interaction (PPI) network and transcription factor- (TF-) hub gene and drug mining network were also established by Cytoscape software. RESULTS Firstly, we constructed a prognostic model for 11 spliceosome signature genes. Based on the prognostic risk score, we stratified patients with LUAD into high- and low-risk groups. The high- and low-risk groups were closely related to the OS, tumor immune infiltration level, immune checkpoint molecules, and tumor mutation burden (TMB) of LUAD patients. Based on PPI networks, we also predict relevant TF genes that may regulate signature prognostic genes. Finally, drugs including oxaliplatin, arsenic trioxide, cisplatin, and sunitinib were excavated for the treatment of the 11 spliceosome signature genes in LUAD patients. CONCLUSION In conclusion, this study is the first to explore the importance of spliceosome-related genes in the prognosis and treatment of LUAD. Through our study, we have innovatively provided potential prognosis genes and new therapeutic drug targets for the treatment of LUAD patients.
Collapse
Affiliation(s)
- Ying Yang
- Cancer Research Center Nantong, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Tianyi Huang
- Department of Pharmacy, Nantong University Xinling College, Nantong, China
| | - Yihui Fan
- Department of Thoracic Surgery, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Haimin Lu
- Department of Thoracic Surgery, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Yilang Wang
- Department of Oncology, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Aiguo Shen
- Cancer Research Center Nantong, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
14
|
De Kesel J, Fijalkowski I, Taylor J, Ntziachristos P. Splicing dysregulation in human hematologic malignancies: beyond splicing mutations. Trends Immunol 2022; 43:674-686. [PMID: 35850914 DOI: 10.1016/j.it.2022.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Splicing is a fundamental process in pre-mRNA maturation. Whereas alternative splicing (AS) enriches the diversity of the proteome, its aberrant regulation can drive oncogenesis. So far, most attention has been given to spliceosome mutations (SMs) in the context of splicing dysregulation in hematologic diseases. However, in recent years, post-translational modifications (PTMs) and transcriptional alterations of splicing factors (SFs), just as epigenetic signatures, have all been shown to contribute to global splicing dysregulation as well. In addition, the contribution of aberrant splicing to the neoantigen repertoire of cancers has been recognized. With the pressing need for novel therapeutics to combat blood cancers, this article provides an overview of emerging mechanisms that contribute to aberrant splicing, as well as their clinical potential.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
15
|
Soncini D, Martinuzzi C, Becherini P, Gelli E, Ruberti S, Todoerti K, Mastracci L, Contini P, Cagnetta A, Laudisi A, Guolo F, Minetto P, Miglino M, Aquino S, Varaldo R, Reverberi D, Formica M, Passalacqua M, Nencioni A, Neri A, Samur MK, Munshi NC, Fulciniti M, Lemoli RM, Cea M. Apoptosis reprogramming triggered by splicing inhibitors sensitizes multiple myeloma cells to Venetoclax treatment. Haematologica 2022; 107:1410-1426. [PMID: 34670358 PMCID: PMC9152954 DOI: 10.3324/haematol.2021.279276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Identification of novel vulnerabilities in the context of therapeutic resistance is emerging as a key challenge for cancer treatment. Recent studies have detected pervasive aberrant splicing in cancer cells, supporting its targeting for novel therapeutic strategies. Here, we evaluated the expression of several spliceosome machinery components in multiple myeloma (MM) cells and the impact of splicing modulation on tumor cell growth and viability. A comprehensive gene expression analysis confirmed the reported deregulation of spliceosome machinery components in MM cells, compared to normal plasma cells from healthy donors, with its pharmacological and genetic modulation resulting in impaired growth and survival of MM cell lines and patient-derived malignant plasma cells. Consistent with this, transcriptomic analysis revealed deregulation of BCL2 family members, including decrease of anti-apoptotic long form of myeloid cell leukemia-1 (MCL1) expression, as crucial for "priming" MM cells for Venetoclax activity in vitro and in vivo, irrespective of t(11;14) status. Overall, our data provide a rationale for supporting the clinical use of splicing modulators as a strategy to reprogram apoptotic dependencies and make all MM patients more vulnerable to BCL2 inhibitors.
Collapse
Affiliation(s)
- Debora Soncini
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy
| | - Claudia Martinuzzi
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Pamela Becherini
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Elisa Gelli
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy
| | - Samantha Ruberti
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences, University of Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine (DiMI), University of Genoa, Italy
| | - Antonia Cagnetta
- IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Antonella Laudisi
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Fabio Guolo
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Paola Minetto
- IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Maurizio Miglino
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Sara Aquino
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Riccardo Varaldo
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Reverberi
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Formica
- IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Italy
| | | | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy; Department of Internal Medicine (DiMI), University of Genoa, Italy
| | - Antonino Neri
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy; Department of Oncology and Haemato-oncology, University of Milan, Milan, Italy
| | - Mehmet K Samur
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Roberto M Lemoli
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy
| | - Michele Cea
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Clinic of Haematology, Genoa, Italy.
| |
Collapse
|
16
|
Zhang Y, Yu X, Sun R, Min J, Tang X, Lin Z, Xie S, Li X, Lu S, Tian Z, Gu C, Teng L, Yang Y. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med 2022; 12:e684. [PMID: 35184390 PMCID: PMC8858635 DOI: 10.1002/ctm2.684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a distinctive malignancy of plasma cell within the bone marrow (BM), of which alternative splicing factors play vital roles in the progression. Splicing factor arginine/serine-rich 8 (SFRS8) is the exclusive factor associated with MM prognosis, however its role in MM remains undefined. METHODS The analyses of 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, immunohistochemistry, flow cytometry and xenograft model were performed to examine cell proliferation, cell cycle and apoptosis in SFRS8 overexpression or knockdown MM cells in vitro and in vivo. The SFRS8-regulated alternative splicing events were identified by RNA immunoprecipitation sequencing (RIP-seq) and validated by RIP-qPCR and Co-IP methods. Exosomes were extracted from the supernatant of myeloma cells by ultracentrifugation. Bone lesion was evaluated by TRAP staining in vitro and SCID/NOD-TIBIA mouse model. A neon electroporation system was utilised to deliver siRNA through exosomes. The effect of siRNA-loaded exosomes in vivo was evaluated by using a patient-derived tumor xenograft (PDX) model and SCID/NOD-TIBIA mouse model. RESULTS SFRS8 was significantly upregulated in MM samples and positively associated with poor overall survival (OS) in MM patients. SFRS8 promoted MM cell proliferation in vitro and in vivo. Furthermore, calcyclin binding protein (CACYBP) was identified as the downstream target of SFRS8. Particularly, SFRS8 could reduce CACYBP isoform1 (NM_014412.3) and increase CACYBP isoform2 (NM_001007214.1) by mediating the alternative splicing of CACYBP, thereby altering the ubiquitination degradation of β-catenin to promote MM progression. In addition, SFRS8 promoted osteoclast differentiation through exosomes in vitro and in vivo. More importantly, exosomal siRNA targeting CACYBP isoform2 inhibited tumour growth in PDX and SCID/NOD-TIBIA mouse models. CONCLUSION Our findings demonstrate that targeting the SFRS8/CACYBP/β-catenin axis may be a promising strategy for MM diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xichao Yu
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Rongze Sun
- School of Life ScienceJilin UniversityChangchunChina
| | - Jie Min
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Zigen Lin
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Siyuan Xie
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xinying Li
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Shengfeng Lu
- Key Laboratory of A cupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Zhidan Tian
- Department of Pathology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lesheng Teng
- School of Life ScienceJilin UniversityChangchunChina
| | - Ye Yang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Key Laboratory of A cupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
17
|
Zhang J, He P, Wang X, Wei S, Ma L, Zhao J. A Novel Model of Tumor-Infiltrating B Lymphocyte Specific RNA-Binding Protein-Related Genes With Potential Prognostic Value and Therapeutic Targets in Multiple Myeloma. Front Genet 2021; 12:778715. [PMID: 34976013 PMCID: PMC8719635 DOI: 10.3389/fgene.2021.778715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Background: RNA-binding proteins (RBPs) act as important regulators in the progression of tumors. However, their role in the tumorigenesis and prognostic assessment in multiple myeloma (MM), a B-cell hematological cancer, remains elusive. Thus, the current study was designed to explore a novel prognostic B-cell-specific RBP signature and the underlying molecular mechanisms. Methods: Data used in the current study were obtained from the Gene Expression Omnibus (GEO) database. Significantly upregulated RBPs in B cells were defined as B cell-specific RBPs. The biological functions of B-cell-specific RBPs were analyzed by the cluster Profiler package. Univariate and multivariate regressions were performed to identify robust prognostic B-cell specific RBP signatures, followed by the construction of the risk classification model. Gene set enrichment analysis (GSEA)-identified pathways were enriched in stratified groups. The microenvironment of the low- and high-risk groups was analyzed by single-sample GSEA (ssGSEA). Moreover, the correlations among the risk score and differentially expressed immune checkpoints or differentially distributed immune cells were calculated. The drug sensitivity of the low- and high-risk groups was assessed via Genomics of Drug Sensitivity in Cancer by the pRRophetic algorithm. In addition, we utilized a GEO dataset involving patients with MM receiving bortezomib therapy to estimate the treatment response between different groups. Results: A total of 56 B-cell-specific RBPs were identified, which were mainly enriched in ribonucleoprotein complex biogenesis and the ribosome pathway. ADAR, FASTKD1 and SNRPD3 were identified as prognostic B-cell specific RBP signatures in MM. The risk model was constructed based on ADAR, FASTKD1 and SNRPD3. Receiver operating characteristic (ROC) curves revealed the good predictive capacity of the risk model. A nomogram based on the risk score and other independent prognostic factors exhibited excellent performance in predicting the overall survival of MM patients. GSEA showed enrichment of the Notch signaling pathway and mRNA cis-splicing via spliceosomes in the high-risk group. Moreover, we found that the infiltration of diverse immune cell subtypes and the expression of CD274, CD276, CTLA4 and VTCN1 were significantly different between the two groups. In addition, the IC50 values of 11 drugs were higher in the low-risk group. Patients in the low-risk group exhibited a higher complete response rate to bortezomib therapy. Conclusion: Our study identified novel prognostic B-cell-specific RBP biomarkers in MM and constructed a unique risk model for predicting MM outcomes. Moreover, we explored the immune-related mechanisms of B cell-specific RBPs in regulating MM. Our findings could pave the way for developing novel therapeutic strategies to improve the prognosis of MM patients.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Le Ma
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhao
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Jing Zhao,
| |
Collapse
|
18
|
Wang W, Xu SW, Zhu XY, Guo QY, Zhu M, Mao XL, Chen YH, Li SW, Luo WD. Identification and Validation of a Novel RNA-Binding Protein-Related Gene-Based Prognostic Model for Multiple Myeloma. Front Genet 2021; 12:665173. [PMID: 33981333 PMCID: PMC8107400 DOI: 10.3389/fgene.2021.665173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant hematopoietic disease that is usually incurable. RNA-binding proteins (RBPs) are involved in the development of many tumors, but their prognostic significance has not been systematically described in MM. Here, we developed a prognostic signature based on eight RBP-related genes to distinguish MM cohorts with different prognoses. METHOD After screening the differentially expressed RBPs, univariate Cox regression was performed to evaluate the prognostic relevance of each gene using The Cancer Genome Atlas (TCGA)-Multiple Myeloma Research Foundation (MMRF) dataset. Lasso and stepwise Cox regressions were used to establish a risk prediction model through the training set, and they were validated in three Gene Expression Omnibus (GEO) datasets. We developed a signature based on eight RBP-related genes, which could classify MM patients into high- and low-score groups. The predictive ability was evaluated using bioinformatics methods. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and gene set enrichment analyses were performed to identify potentially significant biological processes (BPs) in MM. RESULT The prognostic signature performed well in the TCGA-MMRF dataset. The signature includes eight hub genes: HNRNPC, RPLP2, SNRPB, EXOSC8, RARS2, MRPS31, ZC3H6, and DROSHA. Kaplan-Meier survival curves showed that the prognosis of the risk status showed significant differences. A nomogram was constructed with age; B2M, LDH, and ALB levels; and risk status as prognostic parameters. Receiver operating characteristic (ROC) curve, C-index, calibration analysis, and decision curve analysis (DCA) showed that the risk module and nomogram performed well in 1, 3, 5, and 7-year overall survival (OS). Functional analysis suggested that the spliceosome pathway may be a major pathway by which RBPs are involved in myeloma development. Moreover, our signature can improve on the R-International Staging System (ISS)/ISS scoring system (especially for stage II), which may have guiding significance for the future. CONCLUSION We constructed and verified the 8-RBP signature, which can effectively predict the prognosis of myeloma patients, and suggested that RBPs are promising biomarkers for MM.
Collapse
Affiliation(s)
- Wei Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shi-wen Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xia-yin Zhu
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
| | - Qun-yi Guo
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
| | - Min Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wen-da Luo
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
| |
Collapse
|
19
|
A proof-of-concept study for the pathogenetic role of enhancer hypomethylation of MYBPHL in multiple myeloma. Sci Rep 2021; 11:7009. [PMID: 33772052 PMCID: PMC7997988 DOI: 10.1038/s41598-021-86473-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Enhancer DNA methylation and expression of MYBPHL was studied in multiple myeloma (MM). By bisulfite genomic sequencing, among the three CpGs inside the MYBPHL enhancer, CpG1 was significantly hypomethylated in MM cell lines (6.7–50.0%) than normal plasma cells (37.5–75.0%) (P = 0.007), which was negatively correlated with qPCR-measured MYBPHL expression. In RPMI-8226 and WL-2 cells, bearing the highest CpG1 methylation, 5-azadC caused enhancer demethylation and expression of MYBPHL. In primary samples, higher CpG1 methylation was associated with lower MYBPHL expression. By luciferase assay, luciferase activity was enhanced by MYBPHL enhancer compared with empty vector control, but reduced by site-directed mutagenesis of each CpG. RNA-seq data of newly diagnosed MM patients showed that MYBPHL expression was associated with t(11;14). MOLP-8 cells carrying t(11;14) express the highest levels of MYBPHL, and its knockdown reduced cellular proliferation and increased cell death. Herein, as a proof-of-concept, our data demonstrated that the MYBPHL enhancer, particularly CpG1, was hypomethylated and associated with increased MYBPHL expression in MM, which was implicated in myelomagenesis.
Collapse
|
20
|
Chen J, Liu Y, Min J, Wang H, Li F, Xu C, Gong A, Xu M. Alternative splicing of lncRNAs in human diseases. Am J Cancer Res 2021; 11:624-639. [PMID: 33791145 PMCID: PMC7994174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023] Open
Abstract
Alternative splicing (AS), a vital post-transcription process for eukaryote gene expression regulating, can efficiently improve gene utilization and increase the variety of RNA transcripts and proteins. However, AS of non-coding RNAs (ncRNAs) has not been paid enough attention to compared with that of protein-coding RNAs (mRNAs) for a long time. In fact, AS of ncRNAs, especially long noncoding RNAs (lncRNAs), also plays a significant regulatory role in the human disease. Recently, some bifunctional genes transcribed into both mRNA and lncRNA transcripts by AS have been observed. Here, we focus on the AS of lncRNAs and bifunctional genes producing lncRNA transcripts and propose a strategy for the future research of lncRNA AS.
Collapse
Affiliation(s)
- Jiaxi Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Jingyu Min
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Feifan Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Chunhui Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| |
Collapse
|
21
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|