1
|
Furqan F, Ahn KW, Kaur M, Patel J, Ansell S, Awan FT, Baird J, Bezerra E, Farooq U, Fung H, Khurana A, Lekakis L, Lutfi F, McCarty J, Mukherjee A, Nath R, Romancik J, Schuster SJ, Smith M, Winter A, Turtle C, Sauter C, Shadman M, Herrara A, Hamadani M. Autologous Transplant or CAR-T as Consolidation Options in MYC Rearranged Large B-Cell Lymphoma Patients in Remission After Salvage Treatments. Am J Hematol 2025. [PMID: 40231369 DOI: 10.1002/ajh.27687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Although recent studies have demonstrated the efficacy of chimeric antigen receptor T-cell (CAR-T) therapy in relapsed large B-cell lymphoma (LBCL) with MYC rearrangement (R-MYC), the data comparing CAR-T to autologous hematopoietic cell transplant (auto-HCT) in such patients who achieve a complete or partial response (CR/PR) after salvage therapies are limited. We compared the clinical outcomes of patients with R-MYC LBCL (including double and triple hit lymphomas) who underwent CAR-T or auto-HCT after achieving a CR/PR with salvage therapies using the Center for International Blood & Marrow Transplant Research registry. Among the 252 patients (auto-HCT = 98, CAR-T = 154), relative to auto-HCT, CAR-T was associated with significantly lower overall survival (OS) (Hazard Ratio [HR] 2.09, 95% CI 1.38-3.15, p < 0.001) on multivariate analysis. There were no differences in progression-free survival (PFS) (HR 1.21, 95% CI 0.81-1.8 p = 0.36), risk of relapse (HR 1.1, 95% CI 0.71-1.69 p = 0.68), nonrelapse mortality (NRM) (HR 1.74, 95% CI 0.64-4.7 p = 0.28) while the post-relapse survival was longer in auto-HCT relative to CAR-T (HR 1.93, 95% CI 1.21-3.06 p = 0.01). On propensity score matched analysis accounting for differences in characteristics across the two cohorts, we detected no significant differences in OS (HR 1.72, 95% CI 0.92-3.21 p = 0.09), PFS (HR 1.04, 95% CI 0.64-1.68 p = 0.88), NRM (HR 1.22, 95% CI 0.35-4.2 p = 0.76), relapse (HR = 0.93, 95% CI 0.54-1.6 p = 0.8) and post-relapse survival (HR 2.25, 95% CI 0.98-5.17, p = 0.06). These data, although retrospective, support consideration for auto-HCT in patients with R-MYC LBCL who achieve a CR/PR after salvage therapies, particularly in regions with no or limited access to CAR-T.
Collapse
Affiliation(s)
- Fateeha Furqan
- BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kwang W Ahn
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Manmeet Kaur
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jinalben Patel
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephen Ansell
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Farrukh T Awan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John Baird
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Evandro Bezerra
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Umar Farooq
- Department of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Henry Fung
- Department of Bone Marrow Transplant and Cellular Therapy at Fox Chase Cancer Center, Temple University, Philadelphia, Pennsylvania, USA
| | - Arushi Khurana
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lazaros Lekakis
- Division of Transplantation and Cellular Therapy, University of Miami Hospital and Clinics, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Forat Lutfi
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, Kansas, USA
| | - John McCarty
- Massey Cancer Center Bone Marrow Transplant Program, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Rajneesh Nath
- Banner MD Anderson Cancer Center, Gilbert, Arizona, USA
| | - Jason Romancik
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, Georgia, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melody Smith
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Allison Winter
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cameron Turtle
- Division of Hematology and Medical Oncology, University of Washington, Seattle, WA, USA
| | - Craig Sauter
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mazyar Shadman
- Division of Hematology and Medical Oncology, University of Washington, Seattle, WA, USA
| | - Alex Herrara
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Sasaki G, Uetani H, Kuroda JI, Kitajima M, Ishiuchi S, Sato K, Wang Y, Mukasa A, Hirai T. Dynamic susceptibility contrast perfusion MRI helps in differentiating double-expressor from non-double-expressor subtypes in primary central nervous system lymphoma. Neuroradiology 2025; 67:541-551. [PMID: 39699645 DOI: 10.1007/s00234-024-03511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE In the 2016 WHO Classification of Lymphoid Tissue Neoplasms, co-expression of MYC and BCL2 is newly designated as double expressor lymphoma. Patients with primary central nervous system lymphoma with double expressor (DE-PCNSL) have been reported to have a higher risk of recurrence and a worse prognosis than those with PCNSL without double expressor (non-DE-PCNSL). The aim of this study was to determine whether DE-PCNSL has characteristic clinical and MR imaging features compared to non-DE-PCNSL. METHODS This study included 36 immunocompetent patients with PCNSL, including 16 with double expressor and 20 without double expressor. The enhancement pattern and the values of apparent diffusion coefficient (ADC), relative cerebral blood volume (rCBV), leakage-corrected rCBV, and K2 at enhancing lesions were compared between the DE-PCNSL and non-DE-PCNSL groups. The mean and minimum values from the ROI on ADC maps were designated as ADCmean and ADCmin, respectively. The data of rCBV, leakage-corrected rCBV and K2 were obtained from dynamic susceptibility contrast (DSC) perfusion MRI. The Kaplan-Meier method was used to estimate progression-free survival (PFS) differences. RESULTS DE-PCNSL was significantly more common in women (12 of 16 patients, 75%) compared to non-DE-PCNSL (7 of 20 patients, 35%; P =.02). The rCBV ratio and leakage-corrected rCBV ratio were significantly lower in DE-PCNSL compared to non-DE-PCNSL (P =.02 and P =.03, respectively). There was no significant difference in the enhancement pattern and ADCmean, ADCmin and K2 values between the two groups. DE-PCNSL tended to have a shorter PFS than non-DE-PCNSL, although the difference was not significant. CONCLUSION rCBV and leakage-corrected rCBV may help differentiate double-expressor from non-double-expressor subtypes in PCNSL.
Collapse
Affiliation(s)
- Goh Sasaki
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun-Ichiro Kuroda
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mika Kitajima
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Soichiro Ishiuchi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kanako Sato
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Davies AJ. The high-grade B-cell lymphomas: double hit and more. Blood 2024; 144:2583-2592. [PMID: 39427343 DOI: 10.1182/blood.2023020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024] Open
Abstract
ABSTRACT Both the 2022 World Health Organization Classification of Hematolymphoid Tumors, 5th Edition and the International Consensus Classification of lymphoma have refined the way we now approach high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 rearrangements moving the previous generation of classification a step forward. The unifying biology of MYC/BCL2 tumors has become clearer and their inferior prognosis confirmed compared with those with morphologic similar phenotypes but lacking the classifcation defining cytogenetic abnormalities. Fluorescent in situ hybridization testing has now become largely population based, and we have learned much from this. We can readily define molecular categories and apply these widely to clinical practice. Uncertainty has, however, been shed on the place of MYC/BCL6 translocations in defining a common disease group of double hit lymphoma due to biological heterogeneity. We have enhanced our knowledge of outcomes and the role of therapy intensification to overcome chemotherapy resistance in HGBL. For those patients failed by initial induction chemotherapy, immunotherapy approaches, including chimeric antigen receptor T-cell therapies, are improving outcomes. Novel inhibitors, targeting dysregulated oncogenic proteins, are being explored at pace. The rare, but difficult, diagnostic classification HGBL (not otherwise specified) remains a diagnosis of exclusion with limited data on an optimal clinical approach. The days of talking loosely of double- and triple-hit lymphoma are numbered as biology and outcomes may not be shared. This review synergizes the current data on biology, prognosis, and therapies in HGBL.
Collapse
Affiliation(s)
- Andrew J Davies
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Zanelli M, Sanguedolce F, Zizzo M, Ricci S, Bisagni A, Palicelli A, Fragliasso V, Donati B, Broggi G, Boutas I, Koufopoulos N, Foroni M, Coppa F, Morini A, Parente P, Zuccalà V, Caltabiano R, Fabozzi M, Cimino L, Neri A, Ascani S. A Diagnostic Approach in Large B-Cell Lymphomas According to the Fifth World Health Organization and International Consensus Classifications and a Practical Algorithm in Routine Practice. Int J Mol Sci 2024; 25:13213. [PMID: 39684922 PMCID: PMC11642027 DOI: 10.3390/ijms252313213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
In this article, we provide a review of large B-cell lymphomas (LBCLs), comparing the recently published fifth edition of the WHO classification and the International Consensus Classification (ICC) on hematolymphoid tumors. We focus on updates in the classification of LBCL, an heterogeneous group of malignancies with varying clinical behaviors and different pathological and molecular features, providing a comparison between the two classifications. Besides the well-recognized diagnostic role of clinical, morphological and immunohistochemical data, both classifications recognize the ever-growing impact of molecular data in the diagnostic work-up of some entities. The main aim is to offer a guide for clinicians and pathologists on how the new classifications can be applied to LBCL diagnosis in routine practice. In the first part of the paper, we review the following categories: LBLs transformed from indolent B-cell lymphomas, diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), double-hit/triple-hit lymphomas (DH/TH), high-grade large B-cell lymphoma, not otherwise specified (HGBCL, NOS), LBCL with IRF4 rearrangement, Burkitt lymphoma (BL) and HGBCL/LBCL with 11q aberration, focusing on the differences between the two classifications. In the second part of the paper, we provide a practical diagnostic algorithm when facing LBCLs in routine daily practice.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.R.); (A.B.); (A.P.); (M.F.)
| | | | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.M.); (M.F.)
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.R.); (A.B.); (A.P.); (M.F.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.R.); (A.B.); (A.P.); (M.F.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.R.); (A.B.); (A.P.); (M.F.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emila, Italy; (V.F.); (B.D.)
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emila, Italy; (V.F.); (B.D.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Ioannis Boutas
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece; (I.B.); (N.K.)
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece; (I.B.); (N.K.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.R.); (A.B.); (A.P.); (M.F.)
| | - Francesca Coppa
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (F.C.); (S.A.)
| | - Andrea Morini
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.M.); (M.F.)
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Valeria Zuccalà
- Pathology Unit, Dipertimento di Patologia Umana Dell’Adulto e Dell’Età Evolutiva, Ospedale Gaetano Barresi, Università degli Studi di Messina, 98121 Messina, Italy;
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Massimiliano Fabozzi
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.M.); (M.F.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (F.C.); (S.A.)
| |
Collapse
|
5
|
Ferrández MC, Golla SSV, Eertink JJ, Wiegers SE, Zwezerijnen GJC, Heymans MW, Lugtenburg PJ, Kurch L, Hüttmann A, Hanoun C, Dührsen U, Barrington SF, Mikhaeel NG, Ceriani L, Zucca E, Czibor S, Györke T, Chamuleau MED, Zijlstra JM, Boellaard R. Validation of an Artificial Intelligence-Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma. J Nucl Med 2024; 65:1802-1807. [PMID: 39362767 DOI: 10.2967/jnumed.124.268191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
The aim of this study was to validate a previously developed deep learning model in 5 independent clinical trials. The predictive performance of this model was compared with the international prognostic index (IPI) and 2 models incorporating radiomic PET/CT features (clinical PET and PET models). Methods: In total, 1,132 diffuse large B-cell lymphoma patients were included: 296 for training and 836 for external validation. The primary outcome was 2-y time to progression. The deep learning model was trained on maximum-intensity projections from PET/CT scans. The clinical PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, SUVpeak, age, and performance status. The PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, and SUVpeak Model performance was assessed using the area under the curve (AUC) and Kaplan-Meier curves. Results: The IPI yielded an AUC of 0.60 on all external data. The deep learning model yielded a significantly higher AUC of 0.66 (P < 0.01). For each individual clinical trial, the model was consistently better than IPI. Radiomic model AUCs remained higher for all clinical trials. The deep learning and clinical PET models showed equivalent performance (AUC, 0.69; P > 0.05). The PET model yielded the highest AUC of all models (AUC, 0.71; P < 0.05). Conclusion: The deep learning model predicted outcome in all trials with a higher performance than IPI and better survival curve separation. This model can predict treatment outcome in diffuse large B-cell lymphoma without tumor delineation but at the cost of a lower prognostic performance than with radiomics.
Collapse
Affiliation(s)
- Maria C Ferrández
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jakoba J Eertink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sanne E Wiegers
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martijn W Heymans
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieternella J Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lars Kurch
- Clinic and Polyclinic for Nuclear Medicine, Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Andreas Hüttmann
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christine Hanoun
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sally F Barrington
- School of Biomedical Engineering and Imaging Sciences, King's College London and Guy's and St Thomas' PET Centre, King's Health Partners, King's College London, London, United Kingdom
| | - N George Mikhaeel
- Department of Clinical Oncology, Guy's Cancer Centre and School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Luca Ceriani
- Department of Nuclear Medicine and PET/CT Centre, Imaging Institute of Southern Switzerland-EOC, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- SAKK Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Emanuele Zucca
- SAKK Swiss Group for Clinical Cancer Research, Bern, Switzerland
- Department of Oncology, Oncology Institute of Southern Switzerland-EOC, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; and
| | - Sándor Czibor
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Tamás Györke
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Martine E D Chamuleau
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Zayac AS, Landsburg DJ, Hughes ME, Bock AM, Nowakowski GS, Ayers EC, Girton M, Hu M, Beckman AK, Li S, Medeiros LJ, Chang JE, Stepanovic A, Kurt H, Sandoval-Sus J, Ansari-Lari MA, Kothari SK, Kress A, Xu ML, Torka P, Sundaram S, Smith SD, Naresh KN, Karimi YH, Epperla N, Bond DA, Farooq U, Saad M, Evens AM, Pandya K, Naik SG, Kamdar M, Haverkos B, Karmali R, Oh TS, Vose JM, Nutsch H, Rubinstein PG, Chaudhry A, Olszewski AJ. High-grade B-cell lymphoma, not otherwise specified: a multi-institutional retrospective study. Blood Adv 2023; 7:6381-6394. [PMID: 37171397 PMCID: PMC10598493 DOI: 10.1182/bloodadvances.2023009731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
In this multi-institutional retrospective study, we examined the characteristics and outcomes of 160 patients with high-grade B-cell lymphoma, not otherwise specified (HGBL-NOS)-a rare category defined by high-grade morphologic features and lack of MYC rearrangements with BCL2 and/or BCL6 rearrangements ("double hit"). Our results show that HGBL-NOS tumors are heterogeneous: 83% of patients had a germinal center B-cell immunophenotype, 37% a dual-expressor immunophenotype (MYC and BCL2 expression), 28% MYC rearrangement, 13% BCL2 rearrangement, and 11% BCL6 rearrangement. Most patients presented with stage IV disease, a high serum lactate dehydrogenase, and other high-risk clinical factors. Most frequent first-line regimens included dose-adjusted cyclophosphamide, doxorubicin, vincristine, and etoposide, with rituximab and prednisone (DA-EPOCH-R; 43%); rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP; 33%); or other intensive chemotherapy programs. We found no significant differences in the rates of complete response (CR), progression-free survival (PFS), or overall survival (OS) between these chemotherapy regimens. CR was attained by 69% of patients. PFS at 2 years was 55.2% and OS was 68.1%. In a multivariable model, the main prognostic factors for PFS and OS were poor performance status, lactate dehydrogenase >3 × upper limit of normal, and a dual-expressor immunophenotype. Age >60 years or presence of MYC rearrangement were not prognostic, but patients with TP53 alterations had a dismal PFS. Presence of MYC rearrangement was not predictive of better PFS in patients treated with DA-EPOCH-R vs R-CHOP. Improvements in the diagnostic criteria and therapeutic approaches beyond dose-intense chemotherapy are needed to overcome the unfavorable prognosis of patients with HGBL-NOS.
Collapse
Affiliation(s)
- Adam S. Zayac
- Division of Hematology/Oncology, The Warren Alpert Medical School Medical School of Brown University, Providence, RI
| | | | | | | | | | - Emily C. Ayers
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Mark Girton
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Marie Hu
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Amy K. Beckman
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Shaoying Li
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - L. Jeffrey Medeiros
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Julie E. Chang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Adam Stepanovic
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Habibe Kurt
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Jose Sandoval-Sus
- Department of Malignant Hematology and Cellular Therapy, Moffitt Cancer Center at Memorial Healthcare System, Pembroke Pines, FL
| | | | - Shalin K. Kothari
- Division of Hematology, Yale University School of Medicine, New Haven, CT
| | - Anna Kress
- Division of Hematology, Yale University School of Medicine, New Haven, CT
| | - Mina L. Xu
- Department of Pathology and Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - Pallawi Torka
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Suchitra Sundaram
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Stephen D. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| | | | - Yasmin H. Karimi
- Division of Hematology-Oncology, University of Michigan Health, Ann Arbor, MI
| | | | - David A. Bond
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Umar Farooq
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA
| | - Mahak Saad
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA
| | - Andrew M. Evens
- Department of Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Karan Pandya
- Department of Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Seema G. Naik
- Penn State Cancer Institute, Penn State Hershey Medical Center, Hershey, PA
| | - Manali Kamdar
- Division of Hematology, Hematologic Malignancies and Stem Cell Transplantation, University of Colorado, Denver, CO
| | - Bradley Haverkos
- Division of Hematology, Hematologic Malignancies and Stem Cell Transplantation, University of Colorado, Denver, CO
| | - Reem Karmali
- Division of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Timothy S. Oh
- Division of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Julie M. Vose
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Heather Nutsch
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Paul G. Rubinstein
- Department of Medicine, Section of Hematology-Oncology, University of Illinois, Chicago, IL
| | - Amina Chaudhry
- Department of Medicine, Section of Hematology-Oncology, University of Illinois, Chicago, IL
| | - Adam J. Olszewski
- Division of Hematology/Oncology, The Warren Alpert Medical School Medical School of Brown University, Providence, RI
| |
Collapse
|
7
|
Tavakkoli M, Barta SK. 2024 Update: Advances in the risk stratification and management of large B-cell lymphoma. Am J Hematol 2023; 98:1791-1805. [PMID: 37647158 DOI: 10.1002/ajh.27075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with varying clinical outcomes. Our understanding of its molecular makeup continues to improve risk stratification, and artificial-intelligence and ctDNA-based analyses have the potential to enhance risk assessment and disease monitoring. R-CHOP and Pola-R-CHP are used in the frontline setting; chimeric antigen receptor therapy (CART) is now the new standard-of-care for most with primary refractory disease; both CART and autologous stem cell transplantation are utilized in the relapsed and refractory setting. In this review, we summarize the classification and management of DLBCL with an emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Montreh Tavakkoli
- Department of Hematology Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan K Barta
- Department of Hematology Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Alderuccio JP, Kuker RA, Yang F, Moskowitz CH. Quantitative PET-based biomarkers in lymphoma: getting ready for primetime. Nat Rev Clin Oncol 2023; 20:640-657. [PMID: 37460635 DOI: 10.1038/s41571-023-00799-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/20/2023]
Abstract
The use of functional quantitative biomarkers extracted from routine PET-CT scans to characterize clinical responses in patients with lymphoma is gaining increased attention, and these biomarkers can outperform established clinical risk factors. Total metabolic tumour volume enables individualized estimation of survival outcomes in patients with lymphoma and has shown the potential to predict response to therapy suitable for risk-adapted treatment approaches in clinical trials. The deployment of machine learning tools in molecular imaging research can assist in recognizing complex patterns and, with image classification, in tumour identification and segmentation of data from PET-CT scans. Initial studies using fully automated approaches to calculate metabolic tumour volume and other PET-based biomarkers have demonstrated appropriate correlation with calculations from experts, warranting further testing in large-scale studies. The extraction of computer-based quantitative tumour characterization through radiomics can provide a comprehensive view of phenotypic heterogeneity that better captures the molecular and functional features of the disease. Additionally, radiomics can be integrated with genomic data to provide more accurate prognostic information. Further improvements in PET-based biomarkers are imminent, although their incorporation into clinical decision-making currently has methodological shortcomings that need to be addressed with confirmatory prospective validation in selected patient populations. In this Review, we discuss the current knowledge, challenges and opportunities in the integration of quantitative PET-based biomarkers in clinical trials and the routine management of patients with lymphoma.
Collapse
Affiliation(s)
- Juan Pablo Alderuccio
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Russ A Kuker
- Department of Radiology, Division of Nuclear Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fei Yang
- Department of Radiation Oncology, Division of Medical Physics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Craig H Moskowitz
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Zeremski V, Kropf S, Koehler M, Gebauer N, McPhail ED, Habermann T, Schieppati F, Mougiakakos D. Induction treatment in high-grade B-cell lymphoma with a concurrent MYC and BCL2 and/or BCL6 rearrangement: a systematic review and meta-analysis. Front Oncol 2023; 13:1188478. [PMID: 37546419 PMCID: PMC10399221 DOI: 10.3389/fonc.2023.1188478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Background and aim High-grade B cell lymphomas with concomitant MYC and BCL2 and/or BCL6 rearrangements (HGBCL-DH/TH) have a poor prognosis when treated with the standard R-CHOP-like chemoimmunotherapy protocol. Whether this can be improved using intensified regimens is still under debate. However, due to the rarity of HGBCL-DH/TH there are no prospective, randomized controlled trials (RCT) available. Thus, with this systematic review and meta-analysis we attempted to compare survival in HGBCL-DH/TH patients receiving intensified vs. R-CHOP(-like) regimens. Methods The PubMed and Web of Science databases were searched for original studies reporting on first-line treatment in HGBCL-DH/TH patients from 08/2014 until 04/2022. Studies with only localized stage disease, ≤10 patients, single-arm, non-full peer-reviewed publications, and preclinical studies were excluded. The quality of literature and the risk of bias was assessed using the Methodological Index for Non-Randomized Studies (MINORS) and National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Random-effect models were used to compare R-CHOP-(like) and intensified regimens regarding 2-year overall survival (2y-OS) and 2-year progression-free survival (2y-PFS). Results Altogether, 11 retrospective studies, but no RCT, with 891 patients were included. Only four studies were of good quality based on aforementioned criteria. Intensified treatment could improve 2y-OS (hazard ratio [HR]=0.78 [95% confidence interval [CI] 0.63-0.96]; p=0.02) as well as 2y-PFS (HR=0.66 [95% CI 0.44-0.99]; p=0.045). Conclusions This meta-analysis indicates that intensified regimens could possibly improve 2y-OS and 2y-PFS in HGBCL-DH/TH patients. However, the significance of these results is mainly limited by data quality, data robustness, and its retrospective nature. There is still a need for innovative controlled clinical trials in this difficult to treat patient population. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022313234.
Collapse
Affiliation(s)
- Vanja Zeremski
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Department for Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Koehler
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Specialty Practice for Psycho-Oncology, Magdeburg, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ellen D. McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Thomas Habermann
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | | | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Chan JY, Somasundaram N, Grigoropoulos N, Lim F, Poon ML, Jeyasekharan A, Yeoh KW, Tan D, Lenz G, Ong CK, Lim ST. Evolving therapeutic landscape of diffuse large B-cell lymphoma: challenges and aspirations. Discov Oncol 2023; 14:132. [PMID: 37466782 PMCID: PMC10361453 DOI: 10.1007/s12672-023-00754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents the commonest subtype of non-Hodgkin lymphoma and encompasses a group of diverse disease entities, each harboring unique molecular and clinico-pathological features. The understanding of the molecular landscape of DLBCL has improved significantly over the past decade, highlighting unique genomic subtypes with implications on targeted therapy. At the same time, several new treatment modalities have been recently approved both in the frontline and relapsed settings, ending a dearth of negative clinical trials that plagued the past decade. Despite that, in the real-world setting, issues like drug accessibility, reimbursement policies, physician and patient preference, as well as questions regarding optimal sequencing of treatment options present difficulties and challenges in day-to-day oncology practice. Here, we review the recent advances in the therapeutic armamentarium of DLBCL and discuss implications on the practice landscape, with a particular emphasis on the context of the healthcare system in Singapore.
Collapse
Affiliation(s)
- Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Nagavalli Somasundaram
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Nicholas Grigoropoulos
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Francesca Lim
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Michelle Limei Poon
- Department of Haematology, National University Cancer Institute, Singapore, Singapore
| | - Anand Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Kheng Wei Yeoh
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
- Division of Radiation Oncology, National University Cancer Institute, Singapore, Singapore
| | - Daryl Tan
- Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - Georg Lenz
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore.
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore.
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
11
|
Dooper S, Pinckaers H, Aswolinskiy W, Hebeda K, Jarkman S, van der Laak J, Litjens G. Gigapixel end-to-end training using streaming and attention. Med Image Anal 2023; 88:102881. [PMID: 37437452 DOI: 10.1016/j.media.2023.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Current hardware limitations make it impossible to train convolutional neural networks on gigapixel image inputs directly. Recent developments in weakly supervised learning, such as attention-gated multiple instance learning, have shown promising results, but often use multi-stage or patch-wise training strategies risking suboptimal feature extraction, which can negatively impact performance. In this paper, we propose to train a ResNet-34 encoder with an attention-gated classification head in an end-to-end fashion, which we call StreamingCLAM, using a streaming implementation of convolutional layers. This allows us to train end-to-end on 4-gigapixel microscopic images using only slide-level labels. We achieve a mean area under the receiver operating characteristic curve of 0.9757 for metastatic breast cancer detection (CAMELYON16), close to fully supervised approaches using pixel-level annotations. Our model can also detect MYC-gene translocation in histologic slides of diffuse large B-cell lymphoma, achieving a mean area under the ROC curve of 0.8259. Furthermore, we show that our model offers a degree of interpretability through the attention mechanism.
Collapse
Affiliation(s)
- Stephan Dooper
- Computational Pathology Group, Department of Pathology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Hans Pinckaers
- Computational Pathology Group, Department of Pathology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Witali Aswolinskiy
- Computational Pathology Group, Department of Pathology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Konnie Hebeda
- Computational Pathology Group, Department of Pathology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Sofia Jarkman
- Department of Clinical Pathology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping 581 85, Sweden
| | - Jeroen van der Laak
- Computational Pathology Group, Department of Pathology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands; Center for Medical Image Science and Visualization, Linköping University, Linköping 581 85, Sweden
| | - Geert Litjens
- Computational Pathology Group, Department of Pathology, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
12
|
Eertink JJ, Zwezerijnen GJC, Heymans MW, Pieplenbosch S, Wiegers SE, Dührsen U, Hüttmann A, Kurch L, Hanoun C, Lugtenburg PJ, Barrington SF, Mikhaeel NG, Ceriani L, Zucca E, Czibor S, Györke T, Chamuleau MED, Hoekstra OS, de Vet HCW, Boellaard R, Zijlstra JM. Baseline PET radiomics outperforms the IPI risk score for prediction of outcome in diffuse large B-cell lymphoma. Blood 2023; 141:3055-3064. [PMID: 37001036 PMCID: PMC10646814 DOI: 10.1182/blood.2022018558] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
The objective of this study is to externally validate the clinical positron emission tomography (PET) model developed in the HOVON-84 trial and to compare the model performance of our clinical PET model using the international prognostic index (IPI). In total, 1195 patients with diffuse large B-cell lymphoma (DLBCL) were included in the study. Data of 887 patients from 6 studies were used as external validation data sets. The primary outcomes were 2-year progression-free survival (PFS) and 2-year time to progression (TTP). The metabolic tumor volume (MTV), maximum distance between the largest lesion and another lesion (Dmaxbulk), and peak standardized uptake value (SUVpeak) were extracted. The predictive values of the IPI and clinical PET model (MTV, Dmaxbulk, SUVpeak, performance status, and age) were tested. Model performance was assessed using the area under the curve (AUC), and diagnostic performance, using the positive predictive value (PPV). The IPI yielded an AUC of 0.62. The clinical PET model yielded a significantly higher AUC of 0.71 (P < .001). Patients with high-risk IPI had a 2-year PFS of 61.4% vs 51.9% for those with high-risk clinical PET, with an increase in PPV from 35.5% to 49.1%, respectively. A total of 66.4% of patients with high-risk IPI were free from progression or relapse vs 55.5% of patients with high-risk clinical PET scores, with an increased PPV from 33.7% to 44.6%, respectively. The clinical PET model remained predictive of outcome in 6 independent first-line DLBCL studies, and had higher model performance than the currently used IPI in all studies.
Collapse
Affiliation(s)
- J. J. Eertink
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - G. J. C. Zwezerijnen
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M. W. Heymans
- Epidemiology and Data Science, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Methodology, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - S. Pieplenbosch
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S. E. Wiegers
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - U. Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - A. Hüttmann
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - L. Kurch
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig, Leipzig, Germany
| | - C. Hanoun
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - P. J. Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - S. F. Barrington
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s Health Partners, King’s College London, London, United Kingdom
| | - N. G. Mikhaeel
- Department of Clinical Oncology, Guy’s Cancer Centre and School of Cancer and Pharmaceutical Sciences, King’s College London University, London, United Kingdom
| | - L. Ceriani
- Department of Nuclear Medicine and PET/CT Centre, Imaging Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
- SAKK Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - E. Zucca
- SAKK Swiss Group for Clinical Cancer Research, Bern, Switzerland
- Department of Oncology, IOSI - Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - S. Czibor
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - T. Györke
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - M. E. D. Chamuleau
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - O. S. Hoekstra
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - H. C. W. de Vet
- Epidemiology and Data Science, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Methodology, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - R. Boellaard
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J. M. Zijlstra
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - PETRA Consortium
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Methodology, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig, Leipzig, Germany
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s Health Partners, King’s College London, London, United Kingdom
- Department of Clinical Oncology, Guy’s Cancer Centre and School of Cancer and Pharmaceutical Sciences, King’s College London University, London, United Kingdom
- Department of Nuclear Medicine and PET/CT Centre, Imaging Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
- SAKK Swiss Group for Clinical Cancer Research, Bern, Switzerland
- Department of Oncology, IOSI - Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
de Jonge AV, van Werkhoven E, Dinmohamed AG, Nijland M, Zwinderman AH, Bossuyt PM, Veldhuis MS, Rutten EGGM, Mous R, Vermaat JSP, Sandberg Y, de Jongh E, Bilgin YM, Boersma R, Koene H, Kersten MJ, de Jong D, Chamuleau MED. A non-randomized risk-adjusted comparison of lenalidomide + R-CHOP versus R-CHOP for MYC-rearranged DLBCL patients. Blood Cancer J 2023; 13:85. [PMID: 37217463 PMCID: PMC10203347 DOI: 10.1038/s41408-023-00854-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Patients with MYC rearranged (MYC-R) diffuse large B-cell lymphoma (DLBCL) have a poor prognosis. Previously, we demonstrated in a single-arm phase II trial (HOVON-130) that addition of lenalidomide to R-CHOP (R2CHOP) is well-tolerated and yields similar complete metabolic remission rates as more intensive chemotherapy regimens in literature. In parallel with this single-arm interventional trial, a prospective observational screening cohort (HOVON-900) was open in which we identified all newly diagnosed MYC-R DLBCL patients in the Netherlands. Eligible patients from the observational cohort that were not included in the interventional trial served as control group in the present risk-adjusted comparison. R2CHOP treated patients from the interventional trial (n = 77) were younger than patients in the R-CHOP control cohort (n = 56) (median age 63 versus 70 years, p = 0.018) and they were more likely to have a lower WHO performance score (p = 0.013). We adjusted for differences at baseline using 1:1 matching, multivariable analysis, and weighting using the propensity score to reduce treatment-selection bias. These analyses consistently showed improved outcome after R2CHOP with HRs of 0.53, 0.51, and 0.59, respectively, for OS, and 0.53, 0.59, and 0.60 for PFS. Thus, this non-randomized risk-adjusted comparison supports R2CHOP as an additional treatment option for MYC-R DLBCL patients.
Collapse
Grants
- Genmab (consultancy), Takeda (research funding), Roche (research funding)
- BMS/Celgene, Kite, Roche (honoraria and research funding) Miltenyi Biotech, Novartis, Takeda, Adicet Bio (honoraria)
- KWF Kankerbestrijding (Dutch Cancer Society)
- BMS/Celgene (Honoraria and research funding), Gilead and Genmab (research funding), Roche, Abbvie, Novartis (honoraria)
Collapse
Affiliation(s)
- A Vera de Jonge
- Department of Hematology, Amsterdam UMC location VU, Amsterdam, The Netherlands.
| | - Erik van Werkhoven
- HOVON Data Center, Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Avinash G Dinmohamed
- Department of Hematology, Amsterdam UMC location VU, Amsterdam, The Netherlands
- Erasmus MC, Department of Public Health, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick M Bossuyt
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martine S Veldhuis
- Department of Hematology, Amsterdam UMC location VU, Amsterdam, The Netherlands
| | - Emma G G M Rutten
- Department of Pathology, Amsterdam UMC location VU, Amsterdam, The Netherlands
| | - Rogier Mous
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yorick Sandberg
- Department of Internal Medicine, Maasstad Hospital, Rotterdam, The Netherlands
| | - Eva de Jongh
- Department of Hematology, Albert Schweitzer Ziekenhuis, Dordrecht, The Netherlands
| | - Yavuz M Bilgin
- Department of Internal Medicine, Adrz, Goes, The Netherlands
| | - Rinske Boersma
- Department of Internal Medicine, Amphia Ziekenhuis, Breda, The Netherlands
| | - Harry Koene
- Department of Hematology, St Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC location VU, Amsterdam, The Netherlands
| | - Daphne de Jong
- Department of Pathology, Amsterdam UMC location VU, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Vodicka P, Klener P, Trneny M. Diffuse Large B-Cell Lymphoma (DLBCL): Early Patient Management and Emerging Treatment Options. Onco Targets Ther 2022; 15:1481-1501. [PMID: 36510607 PMCID: PMC9739046 DOI: 10.2147/ott.s326632] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents a curable disease with a 60-70% chance of cure with current R-CHOP chemoimmunotherapy. However, 30-40% of patients are refractory or relapsing. Many attempts failed to improve the outcome of DLBCL patients, including the intensification of R-CHOP regimen, consolidation, or maintenance therapy since the introduction of R-CHOP in 2000. Better understanding of both molecular biology of lymphoma cells and the tumor microenvironment raised the hope for future improvement of DLBCL patients' survival. Novel molecular findings have initiated clinical trials exploring targeted therapy based on driver genetic alterations with an intent to improve survival of high-risk subsets of patients. But the preliminary results remain ambiguous. The approach "agnostic" to specific molecular alterations of lymphoma cell includes antibody-drug conjugates (especially polatuzumab vedotin), immunotherapy comprising different antibodies with immunomodulatory effect (tafasitamab, lenalidomide), and T-cell engaging therapy (bispecific antibodies, early use of CAR T-cell). This approach could increase the cure rates and change the current therapeutic paradigm. However, better prognostic stratification, smarter designs of clinical trials, modification of endpoints including the use of ctDNA are needed. This review covers the complexity of DLBCL management.
Collapse
Affiliation(s)
- Prokop Vodicka
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Klener
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Kabiesz D, Smolewski P. Does standard pharmacotherapy still have a major role in the treatment of aggressive B-cell malignancies? Expert Opin Pharmacother 2022; 23:1761-1764. [DOI: 10.1080/14656566.2022.2141567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Dominika Kabiesz
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma. Blood Adv 2022; 7:214-223. [PMID: 36306337 PMCID: PMC9841040 DOI: 10.1182/bloodadvances.2022008629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography-computed tomography of 323 patients, which included maximum standardized uptake value (SUVmax), SUVpeak, SUVmean, metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUVpeak between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients.
Collapse
|
17
|
Liu J, Mi R, Chen L, Guo X, Liang T, Yin Q. Efficacy and safety of lenalidomide in diffuse large B-cell lymphoma: a meta-analysis of randomized controlled trials. Clin Exp Med 2022:10.1007/s10238-022-00920-2. [PMID: 36315313 PMCID: PMC10390621 DOI: 10.1007/s10238-022-00920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
As an immunomodulatory agent with antitumor activity, lenalidomide has been evaluated for its value in diffuse large B-cell lymphoma (DLBCL). We performed a meta-analysis to gain a better understanding of the efficacy and safety of lenalidomide in DLBCL. PubMed, Cochrane Library, and Embase were searched up to March 2022 for potential studies. The pooled hazard ratio (HR) and relative risk (RR) with 95% confidence interval (CI) were estimated by the fixed/random effects model. Overall, 6 randomized controlled trials including 1938 patients were included. The complete response rate (CRR) of the group containing lenalidomide was 47.7% (95%CI 28.5-67.2%), which was higher than the 37.8% (95%CI 16.7-61.5%) of the control group without lenalidomide (RR = 1.11, 95%CI 1.03-1.20, P = 0.008). The overall estimation of survival showed a benefit for progression-free survival (PFS) (HR = 0.77, 95%CI 0.66-0.90, P = 0.001) but not overall survival (OS) or event-free survival (EFS). The lenalidomide group had a significant incidence of grade ≥ 3 hematological adverse events (AEs) involving neutropenia (RR = 1.56, 95%CI 1.15-2.11, P = 0.004) and febrile neutropenia (RR = 1.81, 95%CI 1.31-2.49, P < 0.001), with the incidence of neutropenia (48.3%, 95%CI 37.5-59.1%) being highest. In conclusion, addition of lenalidomide results in a higher CRR and better PFS but a higher incidence of grade ≥ 3 hematological AEs involving neutropenia and febrile neutropenia.
Collapse
Affiliation(s)
- Jia Liu
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ruihua Mi
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lin Chen
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoli Guo
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Taotao Liang
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingsong Yin
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
18
|
Mendeville M, Roemer MGM, Los-de Vries GT, Chamuleau MED, de Jong D, Ylstra B. The path towards consensus genome classification of diffuse large B-cell lymphoma for use in clinical practice. Front Oncol 2022; 12:970063. [DOI: 10.3389/fonc.2022.970063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a widely heterogeneous disease in presentation, treatment response and outcome that results from a broad biological heterogeneity. Various stratification approaches have been proposed over time but failed to sufficiently capture the heterogeneous biology and behavior of the disease in a clinically relevant manner. The most recent DNA-based genomic subtyping studies are a major step forward by offering a level of refinement that could serve as a basis for exploration of personalized and targeted treatment for the years to come. To enable consistent trial designs and allow meaningful comparisons between studies, harmonization of the currently available knowledge into a single genomic classification widely applicable in daily practice is pivotal. In this review, we investigate potential avenues for harmonization of the presently available genomic subtypes of DLBCL inspired by consensus molecular classifications achieved for other malignancies. Finally, suggestions for laboratory techniques and infrastructure required for successful clinical implementation are described.
Collapse
|
19
|
García R, Hussain A, Chen W, Wilson K, Koduru P. An artificial intelligence system applied to recurrent cytogenetic aberrations and genetic progression scores predicts MYC rearrangements in large B-cell lymphoma. EJHAEM 2022; 3:707-721. [PMID: 36051032 PMCID: PMC9421965 DOI: 10.1002/jha2.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma, is characterized by MYC rearrangements (MYC R) in up to 15% of cases, and these have unfavorable prognosis. Due to cryptic rearrangements and variations in MYC breakpoints, MYC R may be undetectable by conventional methods in up to 10%-15% of cases. In this study, a retrospective proof of concept study, we sought to identify recurrent cytogenetic aberrations (RCAs), generate genetic progression scores (GP) from RCAs and apply these to an artificial intelligence (AI) algorithm to predict MYC status in the karyotypes of published cases. The developed AI algorithm is validated for its performance on our institutional cases. In addition, cytogenetic evolution pattern and clinical impact of RCAs was performed. Chromosome losses were associated with MYC-, while partial gain of chromosome 1 was significant in MYC R tumors. MYC R was the sole driver alteration in MYC-rearranged tumors, and evolution patterns revealed RCAs associated with gene expression signatures. A higher GPS value was associated with MYC R tumors. A subsequent AI algorithm (composed of RCAs + GPS) obtained a sensitivity of 91.4 and specificity of 93.8 at predicting MYC R. Analysis of an additional 59 institutional cases with the AI algorithm showed a sensitivity and specificity of 100% and 87% each with positive predictive value of 92%, and a negative predictive value of 100%. Cases with a MYC R showed a shorter survival.
Collapse
Affiliation(s)
- Rolando García
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
| | - Anas Hussain
- Deccan College of Medical SciencesHyderabadIndia
| | - Weina Chen
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
| | - Kathleen Wilson
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
| | - Prasad Koduru
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
20
|
CAR T-cell Therapy in Highly-Aggressive B-Cell Lymphoma: Emerging Biological and Clinical Insights. Blood 2022; 140:1461-1469. [PMID: 35560330 DOI: 10.1182/blood.2022016226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, significant progress has been made in identifying novel therapies, beyond conventional immunochemotherapy strategies, with efficacy in B-cell lymphomas. One such approach involves targeting the CD19 antigen on B-cells with autologous-derived chimeric antigen receptor (CAR) cells. This strategy is highly effective in patients with relapsed and refractory diffuse large B-cell lymphoma (DLBCL) as evidenced by recent regulatory approvals. Recent reports suggest that this is an effective strategy for high-grade B-cell. The biological underpinnings of these entities and how they overlap with each other and DLBCL continue to be areas of intense investigation. Therefore, as more experience with CAR T-cell approaches is examined, it is interesting to consider how both tumor-cell specific and microenvironment factors that define these highly aggressive subsets influence susceptibility to this approach.
Collapse
|
21
|
de Groot FA, de Groen RAL, van den Berg A, Jansen PM, Lam KH, Mutsaers PGNJ, van Noesel CJM, Chamuleau MED, Stevens WBC, Plaça JR, Mous R, Kersten MJ, van der Poel MMW, Tousseyn T, Woei-a-Jin FJSH, Diepstra A, Nijland M, Vermaat JSP. Biological and Clinical Implications of Gene-Expression Profiling in Diffuse Large B-Cell Lymphoma: A Proposal for a Targeted BLYM-777 Consortium Panel as Part of a Multilayered Analytical Approach. Cancers (Basel) 2022; 14:cancers14081857. [PMID: 35454765 PMCID: PMC9028345 DOI: 10.3390/cancers14081857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Gene-expression profiling (GEP) is used to study the molecular biology of lymphomas. Here, advancing insights from GEP studies in diffuse large B-cell lymphoma (DLBCL) lymphomagenesis are discussed. GEP studies elucidated subtypes based on cell-of-origin principles and profoundly changed the biological understanding of DLBCL with clinical relevance. Studies integrating GEP and next-generation DNA sequencing defined different molecular subtypes of DLBCL entities originating at specific anatomical localizations. With the emergence of high-throughput technologies, the tumor microenvironment (TME) has been recognized as a critical component in DLBCL pathogenesis. TME studies have characterized so-called "lymphoma microenvironments" and "ecotypes". Despite gained insights, unexplained chemo-refractoriness in DLBCL remains. To further elucidate the complex biology of DLBCL, we propose a novel targeted GEP consortium panel, called BLYM-777. This knowledge-based biology-driven panel includes probes for 777 genes, covering many aspects regarding B-cell lymphomagenesis (f.e., MYC signature, TME, immune surveillance and resistance to CAR T-cell therapy). Regarding lymphomagenesis, upcoming DLBCL studies need to incorporate genomic and transcriptomic approaches with proteomic methods and correlate these multi-omics data with patient characteristics of well-defined and homogeneous cohorts. This multilayered methodology potentially enhances diagnostic classification of DLBCL subtypes, prognostication, and the development of novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Fleur A. de Groot
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
| | - Ruben A. L. de Groen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
| | - Anke van den Berg
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Patty M. Jansen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - King H. Lam
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Carel J. M. van Noesel
- Department of Pathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Martine E. D. Chamuleau
- Cancer Center Amsterdam and LYMMCARE, Department of Hematology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (M.E.D.C.); (M.J.K.)
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jessica R. Plaça
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Rogier Mous
- Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Marie José Kersten
- Cancer Center Amsterdam and LYMMCARE, Department of Hematology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (M.E.D.C.); (M.J.K.)
| | - Marjolein M. W. van der Poel
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | | | - Arjan Diepstra
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Joost S. P. Vermaat
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
- Correspondence:
| |
Collapse
|
22
|
DLBCL 1L—What to Expect beyond R-CHOP? Cancers (Basel) 2022; 14:cancers14061453. [PMID: 35326604 PMCID: PMC8946010 DOI: 10.3390/cancers14061453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin’s lymphoma. About two-thirds of patients are cured by the first-line (1L) standard of care (SOC), the R-CHOP (Rituximab, Cyclophosphamide, Doxorubicin, Vincristine and Prednisolone) immunochemotherapy protocol. The profound molecular heterogeneity of DLBCL is the underlying reason why many patients, despite improved next-line options, eventually succumb to the disease. Hence, enhancing the efficacy of 1L treatment is critical for improving long-term outcomes in DLBCL. A plethora of novel treatment options with potential in later lines is currently under evaluation in 1L settings. We summarize here the established and emerging strategies for newly diagnosed DLBCL and emphasize the need for individualized treatment decisions. Abstract The R-CHOP immunochemotherapy protocol has been the first-line (1L) standard of care (SOC) for diffuse large B-cell lymphoma (DLBCL) patients for decades and is curative in approximately two-thirds of patients. Numerous randomized phase III trials, most of them in an “R-CHOP ± X” design, failed to further improve outcomes. This was mainly due to increased toxicity, the large proportion of patients not in need of more than R-CHOP, and the extensive molecular heterogeneity of the disease, raising the bar for “one-size-fits-all” concepts. Recently, an R-CHP regimen extended by the anti-CD79b antibody–drug conjugate (ADC) Polatuzumab Vedotin proved superior to R-CHOP in terms of progression-free survival (PFS) in the POLARIX phase III trial. Moreover, a number of targeted agents, especially the Bruton’s tyrosine kinase (BTK) inhibitor Ibrutinib, seem to have activity in certain patient subsets in 1L and are currently being tested in front-line regimens. Chimeric antigen receptor (CAR) T-cells, achieving remarkable results in ≥3L scenarios, are being exploited in earlier lines of therapy, while T-cell-engaging bispecific antibodies emerge as conceptual competitors of CAR T-cells. Hence, we present here the findings and lessons learnt from phase III 1L trials and piloting phase II studies in relapsed/refractory (R/R) and 1L settings, and survey chemotherapy-free regimens with respect to their efficacy and future potential in 1L. Novel agents and their mode of action will be discussed in light of the molecular landscape of DLBCL and personalized 1L perspectives for the challenging patient population not cured by the SOC.
Collapse
|
23
|
Plaça JR, Diepstra A, Los T, Mendeville M, Seitz A, Lugtenburg PJ, Zijlstra J, Lam K, da Silva WA, Ylstra B, de Jong D, van den Berg A, Nijland M. Reproducibility of Gene Expression Signatures in Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14051346. [PMID: 35267654 PMCID: PMC8909016 DOI: 10.3390/cancers14051346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple gene expression profiles have been identified in diffuse large B-cell lymphoma (DLBCL). Besides the cell of origin (COO) classifier, no signatures have been reproduced in independent studies or evaluated for capturing distinct aspects of DLBCL biology. We reproduced 4 signatures in 175 samples of the HOVON-84 trial on a panel of 117 genes using the NanoString platform. The four gene signatures capture the COO, MYC activity, B-cell receptor signaling, oxidative phosphorylation, and immune response. Performance of our classification algorithms were confirmed in the original datasets. We were able to validate three of the four GEP signatures. The COO algorithm resulted in 94 (54%) germinal center B-cell (GCB) type, 58 (33%) activated B-cell (ABC) type, and 23 (13%) unclassified cases. The MYC-classifier revealed 77 cases with a high MYC-activity score (44%) and this MYC-high signature was observed more frequently in ABC as compared to GCB DLBCL (68% vs. 32%, p < 0.00001). The host response (HR) signature of the consensus clustering was present in 55 (31%) patients, while the B-cell receptor signaling, and oxidative phosphorylation clusters could not be reproduced. The overlap of COO, consensus cluster and MYC activity score differentiated six gene expression clusters: GCB/MYC-high (12%), GCB/HR (16%), GCB/non-HR (27%), COO-Unclassified (13%), ABC/MYC-high (25%), and ABC/MYC-low (7%). In conclusion, the three validated signatures identify distinct subgroups based on different aspects of DLBCL biology, emphasizing that each classifier captures distinct molecular profiles.
Collapse
Affiliation(s)
- Jessica Rodrigues Plaça
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
- Center for Cell-Based Therapy, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq), Ribeirão Preto 14051-060, Brazil;
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
| | - Tjitske Los
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Matías Mendeville
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Annika Seitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
| | - Pieternella J. Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, 3015 Rotterdam, The Netherlands;
| | - Josée Zijlstra
- Department of Hematology, Amsterdam UMC, 1105 Amsterdam, The Netherlands;
| | - King Lam
- Department of Pathology, Erasmus MC, 3015 Rotterdam, The Netherlands;
| | - Wilson Araújo da Silva
- Center for Cell-Based Therapy, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq), Ribeirão Preto 14051-060, Brazil;
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, 1105 Amsterdam, The Netherlands; (T.L.); (M.M.); (B.Y.); (D.d.J.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (J.R.P.); (A.D.); (A.S.); (A.v.d.B.)
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-361-2354
| |
Collapse
|
24
|
Zhao WL, Zhang MC, Fu D. [How I diagnose and treat diffuse large B cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:978-984. [PMID: 35045667 PMCID: PMC8770886 DOI: 10.3760/cma.j.issn.0253-2727.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/16/2022]
Affiliation(s)
- W L Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - M C Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - D Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
25
|
Dunleavy K. Double-hit lymphoma: optimizing therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:157-163. [PMID: 34889402 PMCID: PMC8791152 DOI: 10.1182/hematology.2021000247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aggressive B-cell lymphoma is a heterogeneous entity with disparate outcomes based on clinical and pathological characteristics. While most tumors in this category are diffuse large B-cell lymphoma (DLBCL), the recognition that some cases have high-grade morphology and frequently harbor MYC and BCL2 and/or BCL6 translocations has led to their separate categorization. These cases are now considered distinct from DLBCL and are named "high-grade B-cell lymphoma" (HGBL). Most are characterized by distinct rearrangements, but others have high-grade morphological features without these and are called HGBL-not otherwise specified. Studies have demonstrated that this group of diseases leads to poor outcomes following standard rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone therapy; retrospective and recent single-arm, multicenter studies suggest they should be approached with dose-intense treatment platforms. As yet, this has not been validated in randomized trial settings due to the rarity of these diseases. In the relapsed and refractory setting, novel approaches such as anti-CD19 chimeric antigen receptor T cells and antibodies against CD19 have demonstrated high efficacy in this subgroup. Recently, genomic studies have made much progress in investigating some of the molecular underpinnings that drive their lymphomagenesis and have paved the way for testing additional novel approaches.
Collapse
Affiliation(s)
- Kieron Dunleavy
- Correspondence Kieron Dunleavy, Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Hospital, 3800 Reservoir Rd NW, Washington, DC 20057; e-mail:
| |
Collapse
|
26
|
Defining and Treating High-grade B-cell lymphoma, NOS. Blood 2021; 140:943-954. [PMID: 34525177 DOI: 10.1182/blood.2020008374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
High-grade B-cell lymphoma, not otherwise specified (HGBL, NOS) is a recently introduced diagnostic category for aggressive B-cell lymphomas. It includes tumors with Burkitt-like or blastoid morphology that do not have double-hit cytogenetics and that cannot be classified as other well-defined lymphoma subtypes. HBCL, NOS are rare and heterogeneous; most have germinal center B-cell phenotype, and up to 45% carry a single-hit MYC rearrangement, but otherwise they have no unifying immunophenotypic or cytogenetic characteristics. Recent analyses utilizing gene expression profiling (GEP) revealed that up to 15% of tumors currently classified as diffuse large B-cell lymphoma display a HGBL-like GEP signature, indicating a potential to significantly expand the HGBL category using more objective molecular criteria. Optimal treatment of HGBL, NOS is poorly defined due to its rarity and inconsistent diagnostic patterns. A minority of patients have early-stage disease which can be managed with standard RCHOP-based approaches with or without radiation. For advanced-stage HGBL, NOS, which often presents with aggressive, disseminated disease, high lactate dehydrogenase, and involvement of extranodal organs (including the central nervous system [CNS]), intensified Burkitt lymphoma-like regimens with CNS prophylaxis may be appropriate. However, many patients diagnosed at age > 60 years are not eligible for intensive immunochemotherapy. An improved, GEP and/or genomic-based pathologic classification that could facilitate HGBL-specific trials is needed to improve outcomes for all patients. In this review, we discuss the current clinicopathologic concept of HGBL, NOS, existing data on its prognosis and treatment, and delineate potential future taxonomy enrichments based on emerging molecular diagnostics.
Collapse
|
27
|
Eertink JJ, Arens AIJ, Huijbregts JE, Celik F, de Keizer B, Stroobants S, de Jong D, Wiegers SE, Zwezerijnen GJC, Burggraaff CN, Boellaard R, de Vet HCW, Hoekstra OS, Lugtenburg PJ, Chamuleau MED, Zijlstra JM. Aberrant patterns of PET response during treatment for DLBCL patients with MYC gene rearrangements. Eur J Nucl Med Mol Imaging 2021; 49:943-952. [PMID: 34476551 PMCID: PMC8803795 DOI: 10.1007/s00259-021-05498-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Purpose MYC gene rearrangements in diffuse large B-cell lymphoma (DLBCL) patients are associated with poor prognosis. Our aim was to compare patterns of 2[18F]fluoro-2-deoxy-D-glucose positron emission tomography computed tomography (PET/CT) response in MYC + and MYC- DLBCL patients. Methods Interim PET/CT (I-PET) and end of treatment PET/CT (EoT-PET) scans of 81 MYC + and 129 MYC- DLBCL patients from 2 HOVON trials were reviewed using the Deauville 5-point scale (DS). DS1-3 was regarded as negative and DS4-5 as positive. Standardized uptake values (SUV) and metabolic tumor volume (MTV) were quantified at baseline, I-PET, and EoT-PET. Negative (NPV) and positive predictive values (PPV) were calculated using 2-year overall survival. Results MYC + DLBCL patients had significantly more positive EoT-PET scans than MYC- patients (32.5 vs 15.7%, p = 0.004). I-PET positivity rates were comparable (28.8 vs 23.8%). In MYC + patients 23.2% of the I-PET negative patients converted to positive at EoT-PET, vs only 2% for the MYC- patients (p = 0.002). Nine (34.6%) MYC + DLBCL showed initially uninvolved localizations at EoT-PET, compared to one (5.3%) MYC- patient. A total of 80.8% of EoT-PET positive MYC + patients showed both increased lesional SUV and MTV compared to I-PET. In MYC- patients, 31.6% showed increased SUV and 42.1% showed increased MTV. NPV of I-PET and EoT-PET was high for both MYC subgroups (81.8–94.1%). PPV was highest at EoT-PET for MYC + patients (61.5%). Conclusion MYC + DLBCL patients demonstrate aberrant PET response patterns compared to MYC- patients with more frequent progression during treatment after I-PET negative assessment and new lesions at sites that were not initially involved. Trial registration number and date of registration HOVON-84: EudraCT: 2006–005,174-42, retrospectively registered 01–08-2008. HOVON-130: EudraCT: 2014–002,654-39, registered 26–01-2015 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05498-7.
Collapse
Affiliation(s)
- J J Eertink
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - A I J Arens
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - J E Huijbregts
- Department of Radiology and Nuclear Medicine, Gelre Ziekenhuizen, Albert Schweitzerlaan 31, Apeldoorn, The Netherlands
| | - F Celik
- Department of Radiology and Nuclear Medicine, Deventer Ziekenhuis, Nico Bolkesteinlaan 75, Deventer, The Netherlands
| | - B de Keizer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - S Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Antwerp, Belgium
| | - D de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - S E Wiegers
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - G J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - C N Burggraaff
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - H C W de Vet
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - O S Hoekstra
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
| | - P J Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam, The Netherlands
| | - M E D Chamuleau
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - J M Zijlstra
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | | |
Collapse
|
28
|
Lap CJ, Nassereddine S, Dunleavy K. Novel Biological Insights and New Developments in Management of Burkitt Lymphoma and High-Grade B-Cell Lymphoma. Curr Treat Options Oncol 2021; 22:60. [PMID: 34097157 DOI: 10.1007/s11864-021-00857-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Burkitt lymphoma (BL) is highly curable, and prompt institution of therapy is critical to achieving optimal outcomes. Although current "standard" approaches are very effective in disease eradication, treatment-related toxicity makes optimal delivery of curative therapy a challenge, especially in older and immunocompromised individuals. Reduced intensity approaches with fewer toxic complications have been the focus of some recent studies. A critical question is if they can replace "standard" approaches by maintaining high curability with improved tolerability. Additionally, new molecular insights in BL biology suggest that in the future, "targeted therapy" approaches may be feasible using small molecule inhibitors and novel strategies. Recently, a new category of aggressive lymphoma named "high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 translocations" has been recognized. This category overlaps clinically and biologically with BL and has an inferior prognosis compared to most B-cell lymphomas, and the optimal approach to its management remains, as yet, undefined. In this review, we discuss the current landscape of BL treatment including recent results with low-intensity regimens and also consider current approaches to HGBL. We also explore how recently elucidated novel biological insights in BL biology may shape future therapeutic directions including the use of novel cellular therapy approaches.
Collapse
Affiliation(s)
- Coen J Lap
- Department of Hematology and Oncology, Medical Faculty Associates, George Washington University, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Samah Nassereddine
- Department of Hematology and Oncology, Medical Faculty Associates, George Washington University, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Kieron Dunleavy
- Division of Hematology-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
29
|
Bilgin YM, Castel R. MYC-Positive Diffuse Large B-Cell Lymphoma in Leukemic Phase at Presentation: A Diagnostic and Therapeutic Challenge. J Hematol 2021; 10:80-82. [PMID: 34007370 PMCID: PMC8110231 DOI: 10.14740/jh818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) in leukemic phase at presentation is a rare condition, and it can be challenging to differentiate from acute leukemia or other types of non-Hodgkin lymphoma. To obtain an accurate diagnosis immunophenotyping and cytogenetic analyses should be performed. Herein, we report a 54-year-old woman who experienced loss of consciousness and fever. Laboratory test results revealed leukocytosis, anemia, thrombopenia and hypercalcemia. Morphology of blood smear revealed two abnormal cell populations. However a specific diagnosis could not be made. Immunophenotyping showed two different populations, which was consistent with non-Hodgkin lymphoma. A fluorescence in situ hybridization (FISH) showed MYC and BCL2 rearrangements. Finally a leukemic DLBCL was diagnosed and immediately treatment with rituximab cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) was started. Due to MYC-positivity, lenalidomide was added to the therapy regimen. After treatment the patient achieved complete remission without any clinical sequelae, which is still ongoing after 4 years. Lenalidomide is an oral immunomodulatory drug that downregulates MYC gene and is commonly used in patients with multiple myeloma. Moreover, it can also be a promising therapeutic option for patients with MYC-positivity DLBCL presenting in leukemic phase.
Collapse
Affiliation(s)
- Yavuz Memis Bilgin
- Department of Internal Medicine, Admiraal de Ruyter Hospital, Goes, the Netherlands
| | - Rob Castel
- Department of Clinical Chemistry, Admiraal de Ruyter Hospital, Goes, the Netherlands
| |
Collapse
|
30
|
Greve P, Meyer-Wentrup FAG, Peperzak V, Boes M. Upcoming immunotherapeutic combinations for B-cell lymphoma. IMMUNOTHERAPY ADVANCES 2021; 1:ltab001. [PMID: 35919738 PMCID: PMC9326875 DOI: 10.1093/immadv/ltab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 01/09/2021] [Indexed: 11/13/2022] Open
Abstract
After initial introduction for B-cell lymphomas as adjuvant therapies to established cancer treatments, immune checkpoint inhibitors and other immunotherapies are now integrated in mainstream regimens, both in adult and pediatric patients. We here provide an overview of the current status of combination therapies for B-cell lymphoma, by in-depth analysis of combination therapy trials registered between 2015–2020. Our analysis provides new insight into the rapid evolution in lymphoma treatment, as propelled by new additions to the treatment arsenal. We conclude with prospects on upcoming clinical trials which will likely use systematic testing approaches of more combinations of established chemotherapy regimens with new agents, as well as new combinations of immunotherapy and targeted therapy. Future trials will be set up as basket or umbrella-type trials to facilitate the evaluation of new drugs targeting specific genetic changes in the tumor or associated immune microenvironment. As such, lymphoma patients will benefit by receiving more tailored treatment that is based on synergistic effects of chemotherapy combined with new agents targeting specific aspects of tumor biology and the immune system.
Collapse
Affiliation(s)
- Patrick Greve
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hematology-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Double Hit Lymphoma Diagnosis and Treatment in Europe-A Cross-Sectional Survey of Clinical Practice by the EHA Lymphoma Working Party (EHA LyG). Hemasphere 2020; 4:e481. [PMID: 33134867 PMCID: PMC7587423 DOI: 10.1097/hs9.0000000000000481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
|
32
|
de Jonge AV, Mutis T, Roemer MGM, Scheijen B, Chamuleau MED. Impact of MYC on Anti-Tumor Immune Responses in Aggressive B Cell Non-Hodgkin Lymphomas: Consequences for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12103052. [PMID: 33092116 PMCID: PMC7589056 DOI: 10.3390/cancers12103052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The human immune system has several mechanisms to attack and eliminate lymphomas. However, the MYC oncogene is thought to facilitate escape from this anti-tumor immune response. Since patients with MYC overexpressing lymphomas face a significant dismal prognosis after treatment with standard immunochemotherapy, understanding the role of MYC in regulating the anti-tumor immune response is highly relevant. In this review, we describe the mechanisms by which MYC attenuates the anti-tumor immune responses in B cell non-Hodgkin lymphomas. We aim to implement this knowledge in the deployment of novel immunotherapeutic approaches. Therefore, we also provide a comprehensive overview of current immunotherapeutic options and we discuss potential future treatment strategies for MYC overexpressing lymphomas. Abstract Patients with MYC overexpressing high grade B cell lymphoma (HGBL) face significant dismal prognosis after treatment with standard immunochemotherapy regimens. Recent preclinical studies indicate that MYC not only contributes to tumorigenesis by its effects on cell proliferation and differentiation, but also plays an important role in promoting escape from anti-tumor immune responses. This is of specific interest, since reversing tumor immune inhibition with immunotherapy has shown promising results in the treatment of both solid tumors and hematological malignancies. In this review, we outline the current understanding of impaired immune responses in B cell lymphoid malignancies with MYC overexpression, with a particular emphasis on diffuse large B cell lymphoma. We also discuss clinical consequences of MYC overexpression in the treatment of HGBL with novel immunotherapeutic agents and potential future treatment strategies.
Collapse
Affiliation(s)
- A. Vera de Jonge
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
- Correspondence:
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
| | - Margaretha G. M. Roemer
- Department of Pathology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands;
| | - Blanca Scheijen
- Department of Pathology, Radboud UMC, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands;
| | - Martine E. D. Chamuleau
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
| |
Collapse
|
33
|
Al-Juhaishi T, Mckay J, Sindel A, Yazbeck V. Perspectives on chemotherapy for the management of double-hit lymphoma. Expert Opin Pharmacother 2020; 21:653-661. [PMID: 32066288 DOI: 10.1080/14656566.2020.1727445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION . Unlike most B-cell lymphomas, they have poor response to standard R-CHOP therapy, tend to quickly develop resistance to cytotoxic chemotherapies, and are associated with higher central nervous system (CNS) infiltration. This can lead to increased risk of relapse and worse prognosis. DHL/THL represent a subset of lymphomas with unmet medical need. AREA COVERED The authors present the available data for the current treatment regimens including intensive chemotherapy regimens, hematopoietic stem-cell transplantation (HSCT), and CNS prophylaxis. They also discuss treatment for relapsed disease including targeted therapies. EXPERT OPINION There is currently no accepted standard of care for DHL/THL. For frontline therapy, we recommend enrollment in a well-designed clinical trial if possible, otherwise DA-EPOCH-R with CNS prophylaxis is a commonly used first-line therapy. The authors recommend close surveillance for patients achieving complete response, but for those who fail to achieve a complete response, then clinical trials, more aggressive salvage chemotherapy regimens, or cellular therapies are usually considered.
Collapse
Affiliation(s)
- Taha Al-Juhaishi
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University , Richmond, VA, USA
| | - John Mckay
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University , Richmond, VA, USA
| | - Ariel Sindel
- Massey Cancer Center, Virginia Commonwealth University , Richmond, VA, USA
| | - Victor Yazbeck
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University , Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University , Richmond, VA, USA
| |
Collapse
|