1
|
Davids MS, Brander DM, Alvarado-Valero Y, Diefenbach CS, Egan DN, Dinner SN, Javidi-Sharifi N, Al Malki MM, Begna KH, Bhatt VR, Abedin S, Cook RJ, Collins MC, Roleder C, Dominguez EC, Rajagopalan P, Wiley SE, Ghalie RG, Danilov AV. A phase 1 study of the CDK9 inhibitor voruciclib in relapsed/refractory acute myeloid leukemia and B-cell malignancies. Blood Adv 2025; 9:820-832. [PMID: 39705540 PMCID: PMC11872473 DOI: 10.1182/bloodadvances.2024014633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024] Open
Abstract
ABSTRACT The antiapoptotic protein, myeloid cell leukemia-1 (Mcl-1), contributes to the pathophysiology of acute myeloid leukemia (AML) and certain B-cell malignancies. Tumor dependence on Mcl-1 is associated with resistance to venetoclax. Voruciclib, an oral cyclin-dependent kinase (CDK) inhibitor targeting CDK9, indirectly decreases Mcl-1 protein expression and synergizes with venetoclax in preclinical models. This dose escalation study evaluated voruciclib in patients with previously treated hematologic malignancies. Initially, voruciclib was administered daily, continuously, on a 28-day cycle (group 1). After 2 patients with prior allogeneic stem cell transplantation had a dose-limiting toxicity (DLT) of interstitial pneumonitis at 100 mg, voruciclib administration was changed to days 1 to 14 of a 28-day cycle (group 2). Forty patients, 21 with AML and 19 with B-cell malignancies, were enrolled. Patients had a median of 3 prior lines of therapy (range, 1-8). Dose escalation in group 2 was stopped at 200 mg, a dose that achieved plasma concentrations sufficient for target inhibition, without DLTs observed. The most common adverse events were diarrhea (30%), nausea (25%), anemia (22%), fatigue (22%), constipation (17%), dizziness (15%), and dyspnea (15%). In AML, 1 patient achieved a morphologic leukemia-free state, and 2 had stable disease. Voruciclib treatment led to a decrease in MCL1 messenger RNA expression, downregulation of myelocytomatosis (MYC) and NF-κB transcriptional gene sets, and reduced phosphorylation of RNA polymerase 2. Voruciclib on intermittent dosing was well tolerated, with no DLTs, paving the way for evaluation of the combination of voruciclib with venetoclax for patients with previously treated AML. This trial was registered at www.clinicaltrials.gov as #NCT03547115.
Collapse
Affiliation(s)
- Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Danielle M. Brander
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke Cancer Institute, Durham, NC
| | - Yesid Alvarado-Valero
- Department of Leukemia, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX
| | - Catherine S. Diefenbach
- Department of Medicine, Division of Hematology and Medical Oncology, New York University Langone Perlmutter Cancer Institute, New York, NY
| | - Daniel N. Egan
- Center for Blood Disorders and Stem Cell Transplantation, Swedish Cancer Institute, Seattle, WA
| | - Shira N. Dinner
- Hematology Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | | | - Monzr M. Al Malki
- Division of Leukemia, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Kebede H. Begna
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Vijaya Raj Bhatt
- Department of Internal Medicine, Division of Oncology & Hematology, The Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Sameem Abedin
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Rachel J. Cook
- Center for Hematologic Malignancies, Oregon Health & Science University, Portland, OR
| | - Mary C. Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Carly Roleder
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Edward C. Dominguez
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | | | | | | | - Alexey V. Danilov
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| |
Collapse
|
2
|
Sun Z, Sun S, Li X, Li X, Li C, Tang L, Cheng M, Liu Y. Discovery of new imidazole[1,2- a] pyridine derivatives as CDK9 inhibitors: design, synthesis and biological evaluation. RSC Med Chem 2025:d5md00016e. [PMID: 40162202 PMCID: PMC11951174 DOI: 10.1039/d5md00016e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/09/2025] [Indexed: 04/02/2025] Open
Abstract
Colorectal cancer (CRC) is a highly aggressive and extensive malignancy. Presently, targeting the transcriptional regulation of cyclin-dependent kinase 9 (CDK9) is a promising therapeutic approach. Herein, twenty-five compounds (LA-1-LA-13 and LB-1-LB-12) were designed and synthesized with AZD5438 as the lead compound using an imidazole[1,2-a] pyridine skeleton. Compound LB-1 exhibited potent CDK9 inhibition and induced apoptosis in the HCT116 cell line. Moreover, compared with AZD5438, LB-1 demonstrated highly selective CDK9 inhibitory activity, with an IC50 value of 9.22 nM. Accordingly, compound LB-1 could be further developed as a selective, target-oriented CDK9 inhibitor for colorectal cancer.
Collapse
Affiliation(s)
- Zihan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Shijun Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Xiayu Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Xiang Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Chuang Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Li Tang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 China
| |
Collapse
|
3
|
Perner F, Gadrey JY, Armstrong SA, Kühn MWM. Targeting the Menin-KMT2A interaction in leukemia: Lessons learned and future directions. Int J Cancer 2025. [PMID: 39887730 DOI: 10.1002/ijc.35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Chromosomal rearrangements involving the Mixed Lineage Leukemia gene (MLL1, KMT2A) are defining a genetically distinct subset in about 10% of human acute leukemias. Translocations involving the KMT2A-locus at chromosome 11q23 are resulting in the formation of a chimeric oncogene, where the N-terminal part of KMT2A is fused to a variety of translocation partners. The most frequently found fusion partners of KMT2A in acute leukemia are the C-terminal parts of AFF1, MLLT3, MLLT1 and MLLT10. Unfortunately, the presence of an KMT2A-rearrangements is associated with adverse outcomes in leukemia patients. Moreover, non-rearranged KMT2A-complexes have been demonstrated to be crucial for disease development and maintenance in NPM1-mutated and NUP98-rearranged leukemia, expanding the spectrum of genetic disease subtypes that are dependent on KMT2A. Recent advances in the development of targeted therapy strategies to disrupt the function of KMT2A-complexes in leukemia have led to the establishment of Menin-KMT2A interaction inhibitors that effectively eradicate leukemia in preclinical model systems and show favorable tolerability and significant efficacy in early-phase clinical trials. Indeed, one Menin inhibitor, Revumenib, was recently approved for the treatment of patients with relapsed or refractory KMT2A-rearranged acute leukemia. However, single agent therapy can lead to resistance. In this Review article we summarize our current understanding about the biology of pathogenic KMT2A-complex function in cancer, specifically leukemia, and give a systematic overview of lessons learned from recent clinical and preclinical studies using Menin inhibitors.
Collapse
Affiliation(s)
- Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
| | - Jayant Y Gadrey
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W M Kühn
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Koolivand Z, Bahreini F, Rayzan E, Rezaei N. Inducing apoptosis in acute myeloid leukemia; mechanisms and limitations. Heliyon 2025; 11:e41355. [PMID: 39811307 PMCID: PMC11730532 DOI: 10.1016/j.heliyon.2024.e41355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Acute myeloid leukemia is the expansion of leukemic stem cells which might originate from a stem cell or a progenitor which has acquired self-renewal capacity. An aggregation of leukemic blasts in bone marrow, peripheral blood, and extramedullary tissue will result in acute myeloid leukemia. The main difficulty in treating acute myeloid leukemia is multidrug resistance, leading to treatment failure. This unfortunate phenomenon is practically elevated because of apoptosis inhibition in tumor cells. Two general apoptotic pathways are the Bcl-2 regulated pathway (the intrinsic pathway) and the death receptor pathway. Deficiencies in each of these apoptotic pathways can cause the usual resistance mechanism in this disease. This article reviews and highlights different antiapoptotic pathways, currently-used treatments, and new findings in this field, which may lead to the development of treatment methods for acute myeloid leukemia.
Collapse
Affiliation(s)
- Zahra Koolivand
- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Carter JL, Su Y, Al-Antary ET, Zhao J, Qiao X, Wang G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Buck SA, Hüttemann M, Allen JE, Prabhu VV, Yang J, Taub JW, Ge Y. ONC213: a novel strategy to resensitize resistant AML cells to venetoclax through induction of mitochondrial stress. J Exp Clin Cancer Res 2025; 44:10. [PMID: 39780285 PMCID: PMC11714820 DOI: 10.1186/s13046-024-03267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction. We previously reported that ONC213 disrupts oxidative phosphorylation and decreases Mcl-1 protein, which play a key role in venetoclax resistance. Here we investigated the antileukemic activity and underlying molecular mechanism of the combination of ONC213 + venetoclax against AML cells. METHODS Flow cytometry was used to determine drug-induced apoptosis. Protein level changes were determined by western blot. An AML cell line-derived xenograft mouse model was used to determine the effects of ONC213 + venetoclax on survival. A patient-derived xenograft (PDX) mouse model was used to determine drug effects on CD45+/CD34+/CD38-/CD123 + cells. Colony formation assays were used to assess drug effects on AML progenitor cells. Mcl-1 and Bax/Bak knockdown and Mcl-1 overexpression were used to confirm their role in the mechanism of action. The effect of ONC213 + venetoclax on mitochondrial respiration was determined using a Seahorse bioanalyzer. RESULTS ONC213 + venetoclax synergistically kills AML cells, including those resistant to venetoclax alone as well as venetoclax + azacitidine. The combination significantly reduced colony formation capacity of primary AML progenitors compared to the control and either treatment alone. Further, the combination prolonged survival in an AML cell line-derived xenograft model and significantly decreased LSCs in an AML PDX model. CONCLUSIONS ONC213 can resensitize VEN + AZA-resistant AML cells to venetoclax therapy and target LSCs ex vivo and in vivo.
Collapse
MESH Headings
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Mice
- Mitochondria/metabolism
- Mitochondria/drug effects
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Female
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Steven A Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Maik Hüttemann
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | | | | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA.
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA.
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Yu G, Zhang W, Basyal M, Nishida Y, Mizumo H, Ly C, Zhang H, Rice WG, Andreeff M. The multi-kinase inhibitor CG-806 exerts anti-cancer activity against acute myeloid leukemia by co-targeting FLT3, BTK, and aurora kinases. Leuk Lymphoma 2024; 65:1659-1674. [PMID: 38871487 DOI: 10.1080/10428194.2024.2364839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/01/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Despite the development of several Fms-like tyrosine kinase 3 (FLT3) inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemia (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways, such as those regulated by BTK, aurora kinases (AuroK), and potentially others, in addition to acquired tyrosine kinase domain (TKD) mutations of FLT3 gene. FLT3 may not always be a driver mutation. We evaluated the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, to circumvent drug resistance and target FLT3 wild-type (WT) cells. The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing the cell cycle using flow cytometry in vitro. CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile against FLT3, BTK, and AuroK. In FLT3 mutant cells, CG-806 induced G1 phase blockage, whereas in FLT3 WT cells, it resulted in G2/M phase arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously results in a synergistic pro-apoptotic effect in FLT3 mutant leukemia cells. The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemic efficacy regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).
Collapse
Affiliation(s)
- Guopan Yu
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Zhang
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahesh Basyal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideaki Mizumo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlie Ly
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Murthy GSG, Saliba AN, Szabo A, Harrington A, Abedin S, Carlson K, Michaelis L, Runaas L, Baim A, Hinman A, Maldonado-Schmidt S, Venkatachalam A, Flatten KS, Peterson KL, Schneider PA, Litzow M, Kaufmann SH, Atallah E. A phase I study of pevonedistat, azacitidine, and venetoclax in patients with relapsed/refractory acute myeloid leukemia. Haematologica 2024; 109:2864-2872. [PMID: 38572562 PMCID: PMC11367232 DOI: 10.3324/haematol.2024.285014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Azacitidine/venetoclax is an active regimen in patients with newly diagnosed acute myeloid leukemia (AML). However, primary or secondary resistance to azacitidine/venetoclax is an area of unmet need and overexpression of MCL1 is suggested to be a potential resistance mechanism. Pevonedistat inhibits MCL1 through activation of NOXA, and pevonedistat/azacitidine has previously shown activity in AML. To assess the tolerability and efficacy of adding pevonedistat to azacitidine/ venetoclax in relapsed/refractory AML, we conducted a phase I, multicenter, open-label study in 16 adults with relapsed/ refractory AML. Patients were treated with azacitidine, venetoclax along with pevonedistat intravenously on days 1, 3 and 5 of each 28-day cycle at doses of 10, 15 or 20 mg/m2 in successive cohorts in the dose escalation phase. The impact of treatment on protein neddylation as well as expression of pro-apoptotic BCL2 family members was assessed. The recommended phase II dose of pevonedistat was 20 mg/m2. Grade 3 or higher adverse events included neutropenia (31%), thrombocytopenia (13%), febrile neutropenia (19%), anemia (19%), hypertension (19%) and sepsis (19%). The overall response rate was 46.7% for the whole cohort including complete remission in five of seven (71.4%) patients who had not previously been treated with the hypomethylating agent/venetoclax. No measurable residual disease was detected in 80.0% of the patients who achieved complete remission. The median time to best response was 50 (range, 23-77) days. Four patients were bridged to allogeneic stem cell transplantation. The combination of azacitidine, venetoclax and pevonedistat is safe and shows encouraging preliminary activity in patients with relapsed/refractory AML. (NCT04172844).
Collapse
Affiliation(s)
| | | | - Aniko Szabo
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Sameem Abedin
- Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karen Carlson
- Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura Michaelis
- Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lyndsey Runaas
- Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Arielle Baim
- Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alex Hinman
- Clinical Trials Office, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | - Karen S Flatten
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Kevin L Peterson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Paula A Schneider
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Scott H Kaufmann
- Division of Hematology, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Ehab Atallah
- Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Zhang L, Zhou X, Aryal S, Veasey V, Zhang P, Li FJ, Luan Y, Bhatia R, Zhou Y, Lu R. CRISPR screen of venetoclax response-associated genes identifies transcription factor ZNF740 as a key functional regulator. Cell Death Dis 2024; 15:627. [PMID: 39191721 DOI: 10.1038/s41419-024-06995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BCL-2 inhibitors such as venetoclax offer therapeutic promise in acute myeloid leukemia (AML) and other cancers, but drug resistance poses a significant challenge. It is crucial to understand the mechanisms that regulate venetoclax response. While correlative studies have identified numerous genes linked to venetoclax sensitivity, their direct impact on the drug response remains unclear. In this study, we targeted around 1400 genes upregulated in venetoclax-sensitive primary AML samples and carried out a CRISPR knockout screen to evaluate their direct effects on venetoclax response. Our screen identified the transcription factor ZNF740 as a critical regulator, with its expression consistently predicting venetoclax sensitivity across subtypes of the FAB classification. ZNF740 depletion leads to increased resistance to ventoclax, while its overexpression enhances sensitivity to the drug. Mechanistically, our integrative transcriptomic and genomic analysis identifies NOXA as a direct target of ZNF740, which negatively regulates MCL-1 protein stability. Loss of ZNF740 downregulates NOXA and increases the steady state protein levels of MCL-1 in AML cells. Restoring NOXA expression in ZNF740-depleted cells re-sensitizes AML cells to venetoclax treatment. Furthermore, we demonstrated that dual targeting of MCL-1 and BCL-2 effectively treats ZNF740-deficient AML in vivo. Together, our work systematically elucidates the causal relationship between venetoclax response signature genes and establishes ZNF740 as a novel transcription factor regulating venetoclax sensitivity.
Collapse
MESH Headings
- Sulfonamides/pharmacology
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Cell Line, Tumor
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Mice
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yu Luan
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
9
|
Chomczyk M, Gazzola L, Dash S, Firmanty P, George BS, Mohanty V, Abbas HA, Baran N. Impact of p53-associated acute myeloid leukemia hallmarks on metabolism and the immune environment. Front Pharmacol 2024; 15:1409210. [PMID: 39161899 PMCID: PMC11330794 DOI: 10.3389/fphar.2024.1409210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Acute myeloid leukemia (AML), an aggressive malignancy of hematopoietic stem cells, is characterized by the blockade of cell differentiation, uncontrolled proliferation, and cell expansion that impairs healthy hematopoiesis and results in pancytopenia and susceptibility to infections. Several genetic and chromosomal aberrations play a role in AML and influence patient outcomes. TP53 is a key tumor suppressor gene involved in a variety of cell features, such as cell-cycle regulation, genome stability, proliferation, differentiation, stem-cell homeostasis, apoptosis, metabolism, senescence, and the repair of DNA damage in response to cellular stress. In AML, TP53 alterations occur in 5%-12% of de novo AML cases. These mutations form an important molecular subgroup, and patients with these mutations have the worst prognosis and shortest overall survival among patients with AML, even when treated with aggressive chemotherapy and allogeneic stem cell transplant. The frequency of TP53-mutations increases in relapsed and recurrent AML and is associated with chemoresistance. Progress in AML genetics and biology has brought the novel therapies, however, the clinical benefit of these agents for patients whose disease is driven by TP53 mutations remains largely unexplored. This review focuses on the molecular characteristics of TP53-mutated disease; the impact of TP53 on selected hallmarks of leukemia, particularly metabolic rewiring and immune evasion, the clinical importance of TP53 mutations; and the current progress in the development of preclinical and clinical therapeutic strategies to treat TP53-mutated disease.
Collapse
Affiliation(s)
- Monika Chomczyk
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Luca Gazzola
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Shubhankar Dash
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Firmanty
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Binsah S. George
- Department of Hematology-oncology, The University of Texas Health Sciences, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
11
|
Konopleva MY, Dail M, Daver NG, Garcia JS, Jonas BA, Yee KWL, Kelly KR, Vey N, Assouline S, Roboz GJ, Paolini S, Pollyea DA, Tafuri A, Brandwein JM, Pigneux A, Powell BL, Fenaux P, Olin RL, Visani G, Martinelli G, Onishi M, Wang J, Huang W, Dunshee DR, Hamidi H, Ott MG, Hong WJ, Andreeff M. Venetoclax and Cobimetinib in Relapsed/Refractory AML: A Phase 1b Trial. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:364-374. [PMID: 38378362 DOI: 10.1016/j.clml.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Therapies for relapsed/refractory acute myeloid leukemia remain limited and outcomes poor, especially amongst patients who are ineligible for cytotoxic chemotherapy or targeted therapies. PATIENTS AND METHODS This phase 1b trial evaluated venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, plus cobimetinib, a MEK1/2 inhibitor, in patients with relapsed/refractory acute myeloid leukemia, ineligible for cytotoxic chemotherapy. Two-dimensional dose-escalation was performed for venetoclax dosed daily, and for cobimetinib dosed on days 1-21 of each 28-day cycle. RESULTS Thirty patients (median [range] age: 71.5 years [60-84]) received venetoclax-cobimetinib. The most common adverse events (AEs; in ≥40.0% of patients) were diarrhea (80.0%), nausea (60.0%), vomiting (40.0%), febrile neutropenia (40.0%), and fatigue (40.0%). Overall, 66.7% and 23.3% of patients experienced AEs leading to dose modification/interruption or treatment withdrawal, respectively. The composite complete remission (CRc) rate (complete remission [CR] + CR with incomplete blood count recovery + CR with incomplete platelet recovery) was 15.6%; antileukemic response rate (CRc + morphologic leukemia-free state/partial remission) was 18.8%. For the recommended phase 2 dose (venetoclax: 600 mg; cobimetinib: 40 mg), CRc and antileukemic response rates were both 12.5%. Failure to achieve an antileukemic response was associated with elevated baseline phosphorylated ERK and MCL-1 levels, but not BCL-xL. Baseline mutations in ≥1 signaling gene or TP53 were noted in nonresponders and emerged on treatment. Pharmacodynamic biomarkers revealed inconsistent, transient inhibition of the mitogen-activated protein kinase (MAPK) pathway. CONCLUSION Venetoclax-cobimetinib showed limited preliminary efficacy similar to single-agent venetoclax, but with added toxicity. Our findings will inform future trials of BCL-2/MAPK pathway inhibitor combinations.
Collapse
Affiliation(s)
| | | | - Naval G Daver
- University of Texas, MD Anderson Cancer Center, Houston, TX
| | | | - Brian A Jonas
- University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - Karen W L Yee
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Norbert Vey
- Hematologie Clinique, Institut Paoli Calmettes, Marseille, France
| | | | - Gail J Roboz
- Weill-Cornell Medical College, New York Presbyterian, New York, NY
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, University Hospital Sant'Andrea-Sapienza, Rome, Italy
| | | | - Arnaud Pigneux
- Bordeaux Haut-Leveque University Hospital, Pessac, France
| | - Bayard L Powell
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Pierre Fenaux
- Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Rebecca L Olin
- University of California San Francisco, San Francisco, CA
| | | | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Jue Wang
- Genentech, Inc., South San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
12
|
Chiou JT, Chang LS. ONC212 enhances YM155 cytotoxicity by triggering SLC35F2 expression and NOXA-dependent MCL1 degradation in acute myeloid leukemia cells. Biochem Pharmacol 2024; 224:116242. [PMID: 38679209 DOI: 10.1016/j.bcp.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.
Collapse
MESH Headings
- Humans
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- U937 Cells
- Imidazoles/pharmacology
- Naphthoquinones/pharmacology
- HL-60 Cells
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Drug Synergism
- Benzyl Compounds
- Heterocyclic Compounds, 3-Ring
- Sulfonamides
- Bridged Bicyclo Compounds, Heterocyclic
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
13
|
Krastinaite I, Charkavliuk S, Navakauskiene R, Borutinskaite VV. Metformin as an Enhancer for the Treatment of Chemoresistant CD34+ Acute Myeloid Leukemia Cells. Genes (Basel) 2024; 15:648. [PMID: 38790277 PMCID: PMC11121461 DOI: 10.3390/genes15050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Acute myeloid leukemia is the second most frequent type of leukemia in adults. Due to a high risk of development of chemoresistance to first-line chemotherapy, the survival rate of patients in a 5-year period is below 30%. One of the reasons is that the AML population is heterogeneous, with cell populations partly composed of very primitive CD34+CD38- hematopoietic stem/progenitor cells, which are often resistant to chemotherapy. First-line treatment with cytarabine and idarubicin fails to inhibit the proliferation of CD34+CD38- cells. In this study, we investigated Metformin's effect with or without first-line conventional chemotherapy, or with other drugs like venetoclax and S63845, on primitive and undifferentiated CD34+ AML cells in order to explore the potential of Metformin or S63845 to serve as adjuvant therapy for AML. We found that first-line conventional chemotherapy treatment inhibited the growth of cells and arrested the cells in the S phase of the cell cycle; however, metformin affected the accumulation of cells in the G2/M phase. We observed that CD34+ KG1a cells respond better to lower doses of cytarabine or idarubicin in combination with metformin. Also, we determined that treatment with cytarabine, venetoclax, and S63845 downregulated the strong tendency of CD34+ KG1a cells to form cell aggregates in culture due to the downregulation of leukemic stem cell markers like CD34 and CD44, as well as adhesion markers. Also, we found that idarubicin slightly upregulated myeloid differentiation markers, CD11b and CD14. Treatment with cytarabine, idarubicin, venetoclax, metformin, and S63845 upregulated some cell surface markers like HLA-DR expression, and metformin upregulated CD9, CD31, and CD105 cell surface marker expression. In conclusion, we believe that metformin has the potential to be used as an adjuvant in the treatment of resistant-to-first-line-chemotherapy AML cells. Also, we believe that the results of our study will stimulate further research and the potential use of changes in the expression of cell surface markers in the development of new therapeutic strategies.
Collapse
MESH Headings
- Humans
- Metformin/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Drug Resistance, Neoplasm/drug effects
- Antigens, CD34/metabolism
- Cell Line, Tumor
- Cytarabine/pharmacology
- Cell Proliferation/drug effects
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Idarubicin/pharmacology
Collapse
Affiliation(s)
| | | | | | - Veronika Viktorija Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (I.K.); (S.C.); (R.N.)
| |
Collapse
|
14
|
Fatima N, Shen Y, Crassini K, Burling O, Thurgood L, Iwanowicz EJ, Lang H, Karanewsky DS, Christopherson RI, Mulligan SP, Best OG. The CIpP activator, TR-57, is highly effective as a single agent and in combination with venetoclax against CLL cells in vitro. Leuk Lymphoma 2024; 65:585-597. [PMID: 38227293 DOI: 10.1080/10428194.2023.2300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Despite advances in treatment, a significant proportion of patients with chronic lymphocytic leukemia (CLL) will relapse with drug-resistant disease. The imipridones, ONC-201 and ONC-212, are effective against a range of different cancers, including acute myeloid leukemia (AML) and tumors of the brain, breast, and prostate. These drugs induce cell death through activation of the mitochondrial protease, caseinolytic protease (CIpP), and the unfolded protein response (UPR). Here we demonstrate that the novel imipridone analog, TR-57, has efficacy as a single agent and synergises with venetoclax against CLL cells under in vitro conditions that mimic the tumor microenvironment. Changes in protein expression suggest TR-57 activates the UPR, inhibits the AKT and ERK1/2 pathways and induces pro-apoptotic changes in the expression of proteins of the BCL-2 family. The study suggests that TR-57, as a single agent and in combination with venetoclax, may represent an effective treatment option for CLL.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Apoptosis/drug effects
- Drug Synergism
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Unfolded Protein Response/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Narjis Fatima
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Yandong Shen
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Kyle Crassini
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
| | - Olivia Burling
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| | - Lauren Thurgood
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| | | | - Henk Lang
- Madera Therapeutics, LLC, Cary, North Carolina, USA
| | | | | | - Stephen P Mulligan
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - O Giles Best
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| |
Collapse
|
15
|
Wang R, Li X, Wang J. Butein inhibits oral squamous cell carcinoma growth via promoting MCL-1 ubiquitination. J Cancer 2024; 15:3173-3182. [PMID: 38706892 PMCID: PMC11064257 DOI: 10.7150/jca.94546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant head and neck carcinoma type. Myeloid cell leukemia-1 (MCL-1), an anti-apoptotic BCL-1 protein, has been verified to be among the most highly upregulated pathologic proteins in human cancers linked to tumor relapse, poor prognosis and therapeutic resistance. Herein, therapeutic targeting MCL-1 is an attractive focus for cancer treatment. The present study found that butein, a potential phytochemical compound, exerted profound antitumor effects on OSCC cells. Butein treatment significantly inhibited cell viability, proliferation capacity and colony formation ability, and activated cell apoptotic process. Further potential mechanism investigation showed that promoting MCL-1 ubiquitination and degradation is the major reason for butein-mediated OSCC cell cytotoxicity. Our results uncovered that butein could facilitate E3 ligase FBW7 combined with MCL-1, which contributed to an increase in the ubiquitination of MCL-1 Ub-K48 and degradation. The results of both in vitro cell experiments and in vivo xenograft models imply a critical antitumor function of butein with the well-tolerated feature, and it might be an attractive and promising agent for OSCC treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jidong Wang
- Department of Oral and Maxillofacial Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde City), Changde, Hunan 415000, China
| |
Collapse
|
16
|
Wright T, Turnis ME, Grace CR, Li X, Brakefield LA, Wang YD, Xu H, Kaminska E, Climer LK, Mukiza TO, Chang CL, Moldoveanu T, Opferman JT. Anti-apoptotic MCL-1 promotes long-chain fatty acid oxidation through interaction with ACSL1. Mol Cell 2024; 84:1338-1353.e8. [PMID: 38503284 PMCID: PMC11017322 DOI: 10.1016/j.molcel.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid β-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Tristen Wright
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lauren A Brakefield
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Xu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ewa Kaminska
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leslie K Climer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tresor O Mukiza
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
17
|
Nachmias B, Aumann S, Haran A, Schimmer AD. Venetoclax resistance in acute myeloid leukaemia-Clinical and biological insights. Br J Haematol 2024; 204:1146-1158. [PMID: 38296617 DOI: 10.1111/bjh.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 04/11/2024]
Abstract
Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.
Collapse
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomzion Aumann
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Sovilj D, Kelemen CD, Dvorakova S, Zobalova R, Raabova H, Kriska J, Hermanova Z, Knotek T, Anderova M, Klener P, Filimonenko V, Neuzil J, Andera L. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak. Apoptosis 2024; 29:424-438. [PMID: 38001340 DOI: 10.1007/s10495-023-01917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Proteins from the Bcl-2 family play an essential role in the regulation of apoptosis. However, they also possess cell death-unrelated activities that are less well understood. This prompted us to study apoptosis-unrelated activities of the Bax and Bak, pro-apoptotic members of the Bcl-2 family. We prepared Bax/Bak-deficient human cancer cells of different origin and found that while respiration in the glioblastoma U87 Bax/Bak-deficient cells was greatly enhanced, respiration of Bax/Bak-deficient B lymphoma HBL-2 cells was slightly suppressed. Bax/Bak-deficient U87 cells also proliferated faster in culture, formed tumours more rapidly in mice, and showed modulation of metabolism with a considerably increased NAD+/NADH ratio. Follow-up analyses documented increased/decreased expression of mitochondria-encoded subunits of respiratory complexes and stabilization/destabilization of the mitochondrial transcription elongation factor TEFM in Bax/Bak-deficient U87 and HBL-2 cells, respectively. TEFM downregulation using shRNAs attenuated mitochondrial respiration in Bax/Bak-deficient U87 as well as in parental HBL-2 cells. We propose that (post)translational regulation of TEFM levels in Bax/Bak-deficient cells modulates levels of subunits of mitochondrial respiratory complexes that, in turn, contribute to respiration and the accompanying changes in metabolism and proliferation in these cells.
Collapse
Affiliation(s)
- Dana Sovilj
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Cristina Daniela Kelemen
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Helena Raabova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kriska
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Klener
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic.
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
19
|
Su Y, Carter JL, Li X, Fukuda Y, Gray A, Lynch J, Edwards H, Ma J, Schreiner P, Polin L, Kushner J, Dzinic SH, Buck SA, Pruett-Miller SM, Hege-Hurrish K, Robinson C, Qiao X, Liu S, Wu S, Wang G, Li J, Allen JE, Prabhu VV, Schimmer AD, Joshi D, Kalhor-Monfared S, Watson IDG, Marcellus R, Isaac MB, Al-awar R, Taub JW, Lin H, Schuetz JD, Ge Y. The Imipridone ONC213 Targets α-Ketoglutarate Dehydrogenase to Induce Mitochondrial Stress and Suppress Oxidative Phosphorylation in Acute Myeloid Leukemia. Cancer Res 2024; 84:1084-1100. [PMID: 38266099 PMCID: PMC11380567 DOI: 10.1158/0008-5472.can-23-2659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.
Collapse
Affiliation(s)
- Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Jenna L. Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Ashley Gray
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38105
| | - John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Patrick Schreiner
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Sijana H. Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Steven A. Buck
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, 48201
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Katie Hege-Hurrish
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Camenzind Robinson
- St. Jude Children’s Research Hospital Shared Imaging Resource, Memphis, TN, 38105
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | | | | | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Dhananjay Joshi
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Shiva Kalhor-Monfared
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Iain D. G. Watson
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Methvin B. Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Rima Al-awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jeffrey W. Taub
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, 48201
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, 130012, P.R. China
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201
| |
Collapse
|
20
|
Seipel K, Mandhair H, Bacher U, Pabst T. FLT3 and IRAK4 Inhibitor Emavusertib in Combination with BH3-Mimetics in the Treatment of Acute Myeloid Leukemia. Curr Issues Mol Biol 2024; 46:2946-2960. [PMID: 38666914 PMCID: PMC11049208 DOI: 10.3390/cimb46040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Harpreet Mandhair
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland
| |
Collapse
|
21
|
Du M, Wang M, Liu M, Fu S, Lin Y, Huo Y, Yu J, Yu X, Wang C, Xiao H, Wang L. C/EBPα-p30 confers AML cell susceptibility to the terminal unfolded protein response and resistance to Venetoclax by activating DDIT3 transcription. J Exp Clin Cancer Res 2024; 43:79. [PMID: 38475919 DOI: 10.1186/s13046-024-02975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.
Collapse
Affiliation(s)
- Mengbao Du
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Meng Liu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yankun Huo
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaohong Yu
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Chong Wang
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China.
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Limengmeng Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
22
|
Mason-Osann E, Pomeroy AE, Palmer AC, Mettetal JT. Synergistic Drug Combinations Promote the Development of Resistance in Acute Myeloid Leukemia. Blood Cancer Discov 2024; 5:95-105. [PMID: 38232314 PMCID: PMC10905516 DOI: 10.1158/2643-3230.bcd-23-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/30/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024] Open
Abstract
Combination therapy is an important part of cancer treatment and is often employed to overcome or prevent drug resistance. Preclinical screening strategies often prioritize synergistic drug combinations; however, studies of antibiotic combinations show that synergistic drug interactions can accelerate the emergence of resistance because resistance to one drug depletes the effect of both. In this study, we aimed to determine whether synergy drives the development of resistance in cancer cell lines using live-cell imaging. Consistent with prior models of tumor evolution, we found that when controlling for activity, drug synergy is associated with increased probability of developing drug resistance. We demonstrate that these observations are an expected consequence of synergy: the fitness benefit of resisting a drug in a combination is greater in synergistic combinations than in nonsynergistic combinations. These data have important implications for preclinical strategies aiming to develop novel combinations of cancer therapies with robust and durable efficacy. SIGNIFICANCE Preclinical strategies to identify combinations for cancer treatment often focus on identifying synergistic combinations. This study shows that in AML cells combinations that rely on synergy can increase the likelihood of developing resistance, suggesting that combination screening strategies may benefit from a more holistic approach rather than focusing on drug synergy. See related commentary by Bhola and Letai, p. 81. This article is featured in Selected Articles from This Issue, p. 80.
Collapse
Affiliation(s)
| | - Amy E. Pomeroy
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
23
|
Wang L, Xi C, Liu R, Ye T, Xiang N, Deng J, Li H. Dual targeting of Mcl-1 and Bcl-2 to overcome chemoresistance in cervical and colon cancer. Anticancer Drugs 2024; 35:219-226. [PMID: 37948336 DOI: 10.1097/cad.0000000000001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
After an initial positive response to chemotherapy, cancer patients often become resistant and experience relapse. Our previous research identified eukaryotic translation initiation factor 4E (eIF4E) as a crucial target to overcome chemoresistance. In this study, we delved further into the role and therapeutic potential of myeloid cell leukemia 1 (Mcl-1), an eIF4E-mediated target, in chemoresistance. We showed that the levels of phosphor and total eIF4E, as well as Mcl-1, were elevated in chemoresistant cervical but not colon cancer cells. Mcl-1 inhibitor S64315 decreased Mcl-1 levels in chemoresistant cancer cells, regardless of Mcl-1 upregulation, decreased viability in chemoresistant cancer cells and acted synergistically with chemotherapy drugs. The combined inhibition of Mcl-1 and B-cell lymphoma 2 (Bcl-2), employing both genetic and pharmacological approaches, led to a markedly more substantial decrease in viability compared with the inhibition of either target individually. The combination of S64315 and Bcl-2 inhibitors reduced tumor growth in chemoresistant cervical and colon cancer models without causing general toxicity in mice. This combination also prolonged overall survival compared with using S64315 or venetoclax alone. Our research highlights the therapeutic potential of inhibiting Mcl-1 and Bcl-2 simultaneously in chemoresistant cancers and provides a rationale for initiating clinical trials to investigate the combination of S64315 and venetoclax for the treatment of advanced colon and cervical cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics and Gynaecology
| | - Changlei Xi
- Department of Anorectal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Rong Liu
- Department of Obstetrics and Gynaecology
| | | | - Ning Xiang
- Department of Obstetrics and Gynaecology
| | | | - Hui Li
- Department of Obstetrics and Gynaecology
| |
Collapse
|
24
|
Jin J, Hou S, Yao Y, Liu M, Mao L, Yang M, Tong H, Zeng T, Huang J, Zhu Y, Wang H. Phosphoproteomic Characterization and Kinase Signature Predict Response to Venetoclax Plus 3+7 Chemotherapy in Acute Myeloid Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305885. [PMID: 38161214 PMCID: PMC10953567 DOI: 10.1002/advs.202305885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Resistance to chemotherapy remains a formidable obstacle in acute myeloid leukemia (AML) therapeutic management, necessitating the exploration of optimal strategies to maximize therapeutic benefits. Venetoclax with 3+7 daunorubicin and cytarabine (DAV regimen) in young adult de novo AML patients is evaluated. 90% of treated patients achieved complete remission, underscoring the potential of this regimen as a compelling therapeutic intervention. To elucidate underlying mechanisms governing response to DAV in AML, quantitative phosphoproteomics to discern distinct molecular signatures characterizing a subset of DAV-sensitive patients is used. Cluster analysis reveals an enrichment of phosphoproteins implicated in chromatin organization and RNA processing within DAV-susceptible and DA-resistant AML patients. Furthermore, kinase activity profiling identifies AURKB as a candidate indicator of DAV regimen efficacy in DA-resistant AML due to AURKB activation. Intriguingly, AML cells overexpressing AURKB exhibit attenuated MCL-1 expression, rendering them receptive to DAV treatment and maintaining them resistant to DA treatment. Moreover, the dataset delineates a shared kinase, AKT1, associated with DAV response. Notably, AKT1 inhibition augments the antileukemic efficacy of DAV treatment in AML. Overall, this phosphoproteomic study identifies the role of AURKB as a predictive biomarker for DA, but not DAV, resistance and proposes a promising strategy to counteract therapy resistance in AML.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
- Zhejiang University Cancer CenterHangzhouZhejiangP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanP. R. China
| | - Shangyu Hou
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092P.R. China
| | - Yiyi Yao
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Miaomiao Liu
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092P.R. China
| | - Liping Mao
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
| | - Min Yang
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
| | - Hongyan Tong
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
- Zhejiang University Cancer CenterHangzhouZhejiangP. R. China
| | - Tao Zeng
- Biomedical big data centerthe First Affiliated HospitalZhejiang University School of MedicineHangzhou, Zhejiang310003P.R. China
| | - Jinyan Huang
- Biomedical big data centerthe First Affiliated HospitalZhejiang University School of MedicineHangzhou, Zhejiang310003P.R. China
| | - Yinghui Zhu
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092P.R. China
- Frontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchTongji UniversityShanghai200092P.R. China
| | - Huafeng Wang
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
- Zhejiang University Cancer CenterHangzhouZhejiangP. R. China
| |
Collapse
|
25
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
26
|
Xie Y, Tan L, Wu K, Li D, Li C. MiR-455-3p mediates PPARα through UBN2 to promote apoptosis and autophagy in acute myeloid leukemia cells. Exp Hematol 2023; 128:77-88. [PMID: 37805161 DOI: 10.1016/j.exphem.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Acute myeloid leukemia (AML) is one of the deadliest hematologic malignancies, and its targeted therapy has developed slowly. The molecular mechanism of the pathophysiology of the disease remains to be clarified. The aim of our study was to probe the specific regulatory mechanism of miR-455-3p in AML. This study measured the levels of miR-455-3p and ubinuclein-2 (UBN2) in AML cell lines, evaluated cell viability with CCK-8, used flow cytometry to estimate the cell cycle and apoptosis, detected cell apoptosis and autophagy-related protein levels by Western blotting, and added 50 μM chloroquine (CQ) to evaluate the relationship between autophagy and AML. In animal experiments, HL-60 cells were injected into male non-obese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice through the tail vein to determine survival time and observe the degree of liver and spleen damage in the mice. miR-455-3p was prominently reduced in the peripheral blood and AML cell lines, and UBN2 showed high expression. The transfected miR-455-3p mimic effectively restrained the activity of AML cells, whereas overexpression of UBN2 or the addition of the autophagy inhibitor CQ reversed the effect of miR-455-3p. The interaction between UBN2 and peroxisome proliferator-activated receptor alpha (PPARα) was confirmed by coimmunoprecipitation, and overexpression of PPARα reversed the promoting effect of UBN2 knockdown on apoptosis and autophagy in AML cells. In conclusion, miR-455-3p mediates PPARα protein expression through UBN2, exacerbating AML cell apoptosis and autophagy. This study found that miR-455-3p plays an important role in AML cell apoptosis and autophagy, which may provide novel insights for the treatment of AML diseases.
Collapse
Affiliation(s)
- Yu Xie
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Tan
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kun Wu
- Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Deyun Li
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chengping Li
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
27
|
Nishida Y, Ishizawa J, Ayoub E, Montoya RH, Ostermann LB, Muftuoglu M, Ruvolo VR, Patsilevas T, Scruggs DA, Khazaei S, Mak PY, Tao W, Carter BZ, Boettcher S, Ebert BL, Daver NG, Konopleva M, Seki T, Kojima K, Andreeff M. Enhanced TP53 reactivation disrupts MYC transcriptional program and overcomes venetoclax resistance in acute myeloid leukemias. SCIENCE ADVANCES 2023; 9:eadh1436. [PMID: 38019903 PMCID: PMC10686564 DOI: 10.1126/sciadv.adh1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The tumor suppressor TP53 is frequently inactivated in a mutation-independent manner in cancers and is reactivated by inhibiting its negative regulators. We here cotarget MDM2 and the nuclear exporter XPO1 to maximize transcriptional activity of p53. MDM2/XPO1 inhibition accumulated nuclear p53 and elicited a 25- to 60-fold increase of its transcriptional targets. TP53 regulates MYC, and MDM2/XPO1 inhibition disrupted the c-MYC-regulated transcriptome, resulting in the synergistic induction of apoptosis in acute myeloid leukemia (AML). Unexpectedly, venetoclax-resistant AMLs express high levels of c-MYC and are vulnerable to MDM2/XPO1 inhibition in vivo. However, AML cells persisting after MDM2/XPO1 inhibition exhibit a quiescence- and stress response-associated phenotype. Venetoclax overcomes that resistance, as shown by single-cell mass cytometry. The triple inhibition of MDM2, XPO1, and BCL2 was highly effective against venetoclax-resistant AML in vivo. Our results propose a novel, highly translatable therapeutic approach leveraging p53 reactivation to overcome nongenetic, stress-adapted venetoclax resistance.
Collapse
Affiliation(s)
- Yuki Nishida
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Ayoub
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rafael Heinz Montoya
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren B. Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muharrem Muftuoglu
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tallie Patsilevas
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Darah A. Scruggs
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shayaun Khazaei
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Z. Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steffen Boettcher
- Department of Medical Oncology and Haematology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, The Broad Institute, Boston, MA 02115, USA
| | - Benjamin L. Ebert
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, The Broad Institute, Boston, MA 02115, USA
| | - Naval G. Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Section of Leukemia Biology Research, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Hematology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Arnett E, Pahari S, Leopold Wager CM, Hernandez E, Bonifacio JR, Lumbreras M, Renshaw C, Montoya MJ, Opferman JT, Schlesinger LS. Combination of MCL-1 and BCL-2 inhibitors is a promising approach for a host-directed therapy for tuberculosis. Biomed Pharmacother 2023; 168:115738. [PMID: 37864894 PMCID: PMC10841846 DOI: 10.1016/j.biopha.2023.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023] Open
Abstract
Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.
Collapse
Affiliation(s)
- Eusondia Arnett
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Susanta Pahari
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Chrissy M Leopold Wager
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elizabeth Hernandez
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jordan R Bonifacio
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Miranda Lumbreras
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Charles Renshaw
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Maria J Montoya
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
29
|
Wu T, Zhang Z, Gong G, Du Z, Xu Y, Yu S, Ma F, Zhang X, Wang Y, Chen H, Wu S, Xu X, Qiu Z, Li Z, Wu H, Bian J, Wang J. Discovery of novel flavonoid-based CDK9 degraders for prostate cancer treatment via a PROTAC strategy. Eur J Med Chem 2023; 260:115774. [PMID: 37672930 DOI: 10.1016/j.ejmech.2023.115774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
CDK9 plays a vital role in regulating RNA transcription and significantly impacts the expression of short-lived proteins such as Mcl-1 and c-Myc. Thus, targeting CDK9 holds great promise for the development of antitumor drugs. Natural flavonoid derivatives have recently gained considerable attention in the field of antitumor drug research due to their broad bioactivity and low toxicity. In this study, the PROTAC strategy was used to perform structural modifications of the flavonoid derivative LWT-111 to design a series of flavonoid-based CDK9 degraders. Notably, compound CP-07 emerged as a potent CDK9 degrader, effectively suppressing the proliferation and colony formation of 22RV1 cells by downregulating Mcl-1 and c-Myc. Moreover, CP-07 exhibited significant tumor growth inhibition with a TGI of 75.1% when administered at a dose of 20 mg/kg in the 22RV1 xenograft tumor model. These findings demonstrated the potential of CP-07 as a powerful flavonoid-based CDK9 degrader for prostate cancer therapy.
Collapse
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiming Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Guangyue Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zekun Du
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yifan Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Sixian Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Feihai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuxiao Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Haoming Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shiqi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xi Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhixia Qiu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hongxi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
30
|
Wu T, Yu B, Gong W, Zhang J, Yu S, Tian Y, Zhao T, Li Z, Wang J, Bian J. Design and optimization of selective and potent CDK9 inhibitors with flavonoid scaffold for the treatment of acute myeloid leukemia. Eur J Med Chem 2023; 259:115711. [PMID: 37572539 DOI: 10.1016/j.ejmech.2023.115711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Acute myeloid leukemia (AML) is a prevalent hematological tumor associated with a high morbidity and mortality rate. CDK9, functioning as a pivotal transcriptional regulator, facilitates transcriptional elongation through phosphorylation of RNA polymerase II, which further governs the protein levels of Mcl-1 and c-Myc. Therefore, CDK9 has been considered as a promising therapeutic target for AML treatment. Here, we present the design, synthesis, and evaluation of CDK9 inhibitors bearing a flavonoid scaffold. Among them, compound 21a emerged as a highly selective CDK9 inhibitor (IC50 = 6.7 nM), exhibiting over 80-fold selectivity towards most other CDK family members and high kinase selectivity. In Mv4-11 cells, 21a effectively hindered cell proliferation (IC50 = 60 nM) and induced apoptosis by down-regulating Mcl-1 and c-Myc. Notably, 21a demonstrated significant inhibition of tumor growth in the Mv4-11 xenograft tumor model. These findings indicate that compound 21a holds promise as a potential candidate for treating AML.
Collapse
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Bin Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Weihong Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jing Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Sixian Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Tengteng Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
31
|
Li Y, Lee HH, Jiang VC, Che Y, McIntosh J, Jordan A, Vargas J, Zhang T, Yan F, Simmons ME, Wang W, Nie L, Yao Y, Jain P, Wang M, Liu Y. Potentiation of apoptosis in drug-resistant mantle cell lymphoma cells by MCL-1 inhibitor involves downregulation of inhibitor of apoptosis proteins. Cell Death Dis 2023; 14:714. [PMID: 37919300 PMCID: PMC10622549 DOI: 10.1038/s41419-023-06233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) and CAR T-cell therapy have demonstrated tremendous clinical benefits in mantle cell lymphoma (MCL) patients, but intrinsic or acquired resistance inevitably develops. In this study, we assessed the efficacy of the highly potent and selective MCL-1 inhibitor AZD5991 in various therapy-resistant MCL cell models. AZD5991 markedly induced apoptosis in these cells. In addition to liberating BAK from the antiapoptotic MCL-1/BAK complex for the subsequent apoptosis cascade, AZD5991 downregulated inhibitor of apoptosis proteins (IAPs) through a BAK-dependent mechanism to amplify the apoptotic signal. The combination of AZD5991 with venetoclax enhanced apoptosis and reduced mitochondrial oxygen consumption capacity in MCL cell lines irrespective of their BTKi or venetoclax sensitivity. This combination also dramatically inhibited tumor growth and prolonged mouse survival in two aggressive MCL patient-derived xenograft models. Mechanistically, the augmented cell lethality was accompanied by the synergistic suppression of IAPs. Supporting this notion, the IAP antagonist BV6 induced dramatic apoptosis in resistant MCL cells and sensitized the resistant MCL cells to venetoclax. Our study uncovered another unique route for MCL-1 inhibitor to trigger apoptosis, implying that the pro-apoptotic combination of IAP antagonists and apoptosis inducers could be further exploited for MCL patients with multiple therapeutic resistance.
Collapse
Affiliation(s)
- Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vivian Changying Jiang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph McIntosh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexa Jordan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jovanny Vargas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianci Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fangfang Yan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Margaret Elizabeth Simmons
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Nie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
33
|
Jia Y, Han L, Ramage CL, Wang Z, Weng CC, Yang L, Colla S, Ma H, Zhang W, Andreeff M, Daver N, Jain N, Pemmaraju N, Bhalla K, Mustjoki S, Zhang P, Zheng G, Zhou D, Zhang Q, Konopleva M. Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells. Haematologica 2023; 108:2626-2638. [PMID: 37078252 PMCID: PMC10542840 DOI: 10.3324/haematol.2022.281915] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BCL-XL and BCL-2 are key anti-apoptotic proteins and validated cancer targets. 753B is a novel BCL-XL/BCL-2 proteolysis targeting chimera (PROTAC) that targets both BCL-XL and BCL-2 to the von Hippel-Lindau (VHL) E3 ligase, leading to BCLX L/BCL-2 ubiquitination and degradation selectively in cells expressing VHL. Because platelets lack VHL expression, 753B spares on-target platelet toxicity caused by the first-generation dual BCL-XL/BCL-2 inhibitor navitoclax (ABT-263). Here, we report pre-clinical single-agent activity of 753B against different leukemia subsets. 753B effectively reduced cell viability and induced dose-dependent degradation of BCL-XL and BCL-2 in a subset of hematopoietic cell lines, acute myeloid leukemia (AML) primary samples, and in vivo patient-derived xenograft AML models. We further demonstrated the senolytic activity of 753B, which enhanced the efficacy of chemotherapy by targeting chemotherapy-induced cellular senescence. These results provide a pre-clinical rationale for the utility of 753B in AML therapy, and suggest that 753B could produce an added therapeutic benefit by overcoming cellular senescence-induced chemoresistance when combined with chemotherapy.
Collapse
Affiliation(s)
- Yannan Jia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cassandra L Ramage
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhe Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Connie C Weng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lei Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Helen Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weiguo Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Qi Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
34
|
Carter JL, Su Y, Qiao X, Zhao J, Wang G, Howard M, Edwards H, Bao X, Li J, Hüttemann M, Yang J, Taub JW, Ge Y. Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms. Biochem Pharmacol 2023; 216:115759. [PMID: 37604291 DOI: 10.1016/j.bcp.2023.115759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The combination of venetoclax (VEN) and azacitidine (AZA) has become the standard of care for acute myeloid leukemia (AML) patients who are ≥ 75 years or unfit for intensive chemotherapy. Though initially promising, resistance to the combination therapy is an issue and VEN + AZA-relapsed/refractory patients have dismal outcomes. To better understand the mechanisms of resistance, we developed VEN + AZA-resistant AML cell lines, MV4-11/VEN + AZA-R and ML-2/VEN + AZA-R, which show > 300-fold persistent resistance compared to the parental lines. We demonstrate that these cells have unique metabolic profiles, including significantly increased levels of cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP), changes in fatty acid and amino acid metabolism and increased utilization and reliance on glycolysis. Furthermore, fatty acid transporter CD36 is increased in the resistant cells compared to the parental cells. Inhibition of glycolysis with 2-Deoxy-D-glucose re-sensitized the resistant cells to VEN + AZA. In addition, the VEN + AZA-R cells have increased levels of the antiapoptotic protein Mcl-1 and decreased levels of the pro-apoptotic protein Bax. Overexpression of Mcl-1 or knockdown of Bax result in resistance to VEN + AZA. Our results provide insight into the molecular mechanisms contributing to VEN + AZA resistance and assist in the development of novel therapeutics to overcome this resistance in AML patients.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Mackenzie Howard
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jing Li
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
35
|
Carter BZ, Mak PY, Muftuoglu M, Tao W, Ke B, Pei J, Bedoy AD, Ostermann LB, Nishida Y, Isgandarova S, Sobieski M, Nguyen N, Powell RT, Martinez-Moczygemba M, Stephan C, Basyal M, Pemmaraju N, Boettcher S, Ebert BL, Shpall EJ, Wallner B, Morgan RA, Karras GI, Moll UM, Andreeff M. Epichaperome inhibition targets TP53-mutant AML and AML stem/progenitor cells. Blood 2023; 142:1056-1070. [PMID: 37339579 PMCID: PMC10656725 DOI: 10.1182/blood.2022019047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
TP 53-mutant acute myeloid leukemia (AML) remains the ultimate therapeutic challenge. Epichaperomes, formed in malignant cells, consist of heat shock protein 90 (HSP90) and associated proteins that support the maturation, activity, and stability of oncogenic kinases and transcription factors including mutant p53. High-throughput drug screening identified HSP90 inhibitors as top hits in isogenic TP53-wild-type (WT) and -mutant AML cells. We detected epichaperomes in AML cells and stem/progenitor cells with TP53 mutations but not in healthy bone marrow (BM) cells. Hence, we investigated the therapeutic potential of specifically targeting epichaperomes with PU-H71 in TP53-mutant AML based on its preferred binding to HSP90 within epichaperomes. PU-H71 effectively suppressed cell intrinsic stress responses and killed AML cells, primarily by inducing apoptosis; targeted TP53-mutant stem/progenitor cells; and prolonged survival of TP53-mutant AML xenograft and patient-derived xenograft models, but it had minimal effects on healthy human BM CD34+ cells or on murine hematopoiesis. PU-H71 decreased MCL-1 and multiple signal proteins, increased proapoptotic Bcl-2-like protein 11 levels, and synergized with BCL-2 inhibitor venetoclax in TP53-mutant AML. Notably, PU-H71 effectively killed TP53-WT and -mutant cells in isogenic TP53-WT/TP53-R248W Molm13 cell mixtures, whereas MDM2 or BCL-2 inhibition only reduced TP53-WT but favored the outgrowth of TP53-mutant cells. Venetoclax enhanced the killing of both TP53-WT and -mutant cells by PU-H71 in a xenograft model. Our data suggest that epichaperome function is essential for TP53-mutant AML growth and survival and that its inhibition targets mutant AML and stem/progenitor cells, enhances venetoclax activity, and prevents the outgrowth of venetoclax-resistant TP53-mutant AML clones. These concepts warrant clinical evaluation.
Collapse
Affiliation(s)
- Bing Z. Carter
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Po Yee Mak
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muharrem Muftuoglu
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenjing Tao
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Baozhen Ke
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingqi Pei
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrea D. Bedoy
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren B. Ostermann
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sevinj Isgandarova
- Center for Infectious and Inflammatory Disease, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Mary Sobieski
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Nghi Nguyen
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Reid T. Powell
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Margarita Martinez-Moczygemba
- Center for Infectious and Inflammatory Disease, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Mahesh Basyal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Georgios I. Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX
| | - Ute M. Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
36
|
Ebner J, Schmoellerl J, Piontek M, Manhart G, Troester S, Carter BZ, Neubauer H, Moriggl R, Szakács G, Zuber J, Köcher T, Andreeff M, Sperr WR, Valent P, Grebien F. ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia. Nat Commun 2023; 14:5709. [PMID: 37726279 PMCID: PMC10509209 DOI: 10.1038/s41467-023-41229-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
The BCL-2 inhibitor Venetoclax is a promising agent for the treatment of acute myeloid leukemia (AML). However, many patients are refractory to Venetoclax, and resistance develops quickly. ATP-binding cassette (ABC) transporters mediate chemotherapy resistance but their role in modulating the activity of targeted small-molecule inhibitors is unclear. Using CRISPR/Cas9 screening, we find that loss of ABCC1 strongly increases the sensitivity of AML cells to Venetoclax. Genetic and pharmacologic ABCC1 inactivation potentiates the anti-leukemic effects of BCL-2 inhibitors and efficiently re-sensitizes Venetoclax-resistant leukemia cells. Conversely, ABCC1 overexpression induces resistance to BCL-2 inhibitors by reducing intracellular drug levels, and high ABCC1 levels predicts poor response to Venetoclax therapy in patients. Consistent with ABCC1-specific export of glutathionylated substrates, inhibition of glutathione metabolism increases the potency of BCL-2 inhibitors. These results identify ABCC1 and glutathione metabolism as mechanisms limiting efficacy of BCL-2 inhibitors, which may pave the way to development of more effective therapies.
Collapse
Affiliation(s)
- Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johannes Schmoellerl
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Piontek
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Neubauer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gergely Szakács
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
- Institute of Enzymology, Research Centre of Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
37
|
Asai-Nishishita A, Kawahara M, Tatsumi G, Iwasa M, Fujishiro A, Nishimura R, Minamiguchi H, Kito K, Murata M, Andoh A. FUS-ERG induces late-onset azacitidine resistance in acute myeloid leukaemia cells. Sci Rep 2023; 13:14454. [PMID: 37660196 PMCID: PMC10475016 DOI: 10.1038/s41598-023-41230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
FUS-ERG is a chimeric gene with a poor prognosis, found in myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). It remains unclear whether DNA hypomethylating agents, including azacitidine (Aza), are effective in FUS-ERG-harbouring AML and how FUS-ERG induces chemoresistance. Stable Ba/F3 transfectants with FUS-ERG were repeatedly exposed to Aza for 7 days of treatment and at 21-day intervals to investigate Aza sensitivity. Stable FUS-ERG transfectants acquired resistance acquired resistance after three courses of Aza exposure. RNA sequencing (RNA-seq) was performed when Aza susceptibility began to change; genes with altered expression or transcript variants were identified. Molecular signatures of these genes were analysed using gene ontology. RNA-seq analyses identified 74 upregulated and 320 downregulated genes involved in cell motility, cytokine production, and kinase activity. Additionally, 1321 genes with altered transcript variants were identified, revealing their involvement in chromatin organisation. In a clinical case of AML with FUS-ERG, we compared whole-genome alterations between the initial MDS diagnosis and AML recurrence after Aza treatment. Genes with non-synonymous or near mutations in transcription regulatory areas (TRAs), additionally detected in AML recurrence, were collated with the gene list from RNA-seq to identify genes involved in acquiring Aza resistance in the presence of FUS-ERG. Whole-genome sequencing of clinical specimens identified 29 genes with non-synonymous mutations, including BCOR, and 48 genes located within 20 kb of 54 TRA mutations in AML recurrence. These genes were involved in chromatin organisation and included NCOR2 as an overlapping gene with RNA-seq data. Transcription regulators involved in mutated TRAs were skewed and included RCOR1 in AML recurrence. We tested the efficacy of BH3 mimetics, including venetoclax and S63845, in primary Aza-resistant AML cells treated with FUS-ERG. Primary FUS-ERG-harbouring AML cells acquiring Aza resistance affected the myeloid cell leukaemia-1 (MCL1) inhibitor S63845 but not while using venetoclax, despite no mutations in BCL2. FUS-ERG promoted Aza resistance after several treatments. The disturbance of chromatin organisation might induce this by co-repressors, including BCOR, NCOR2, and RCOR1. MCL1 inhibition could partially overcome Aza resistance in FUS-ERG-harbouring AML cells.
Collapse
Affiliation(s)
- Ai Asai-Nishishita
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Masahiro Kawahara
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Goichi Tatsumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Masaki Iwasa
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Aya Fujishiro
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Rie Nishimura
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Hitoshi Minamiguchi
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Katsuyuki Kito
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Makoto Murata
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Akira Andoh
- Division of Gastroenterology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
38
|
Carter BZ, Mak PY, Tao W, Ostermann LB, Mak DH, Ke B, Ordentlich P, McGeehan GM, Andreeff M. Inhibition of menin, BCL-2, and FLT3 combined with a hypomethylating agent cures NPM1/FLT3-ITD/-TKD mutant acute myeloid leukemia in a patient-derived xenograft model. Haematologica 2023; 108:2513-2519. [PMID: 36727398 PMCID: PMC10483344 DOI: 10.3324/haematol.2022.281927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren B Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Baozhen Ke
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
39
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
40
|
Oyogoa E, Traer E, Tyner J, Lachowiez C. Building on Foundations: Venetoclax-Based Combinations in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3589. [PMID: 37509251 PMCID: PMC10377106 DOI: 10.3390/cancers15143589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Frontline acute myeloid leukemia (AML) treatment is determined by a combination of patient and genetic factors. This includes patient fitness (i.e., comorbidities that increase the risk of treatment-related mortality) and genetic characteristics, including cytogenetic events and gene mutations. In older unfit patients, the standard of care treatment is typically venetoclax (VEN) combined with hypomethylating agents (HMA). Recently, several drugs have been developed targeting specific genomic subgroups of AML patients, enabling individualized therapy. This has resulted in investigations of doublet and triplet combinations incorporating VEN aimed at overcoming known resistance mechanisms and improving outcomes in older patients with AML. These combinations include isocitrate dehydrogenase-1/2 (IDH1/2) inhibitors (i.e., ivosidenib and enasidenib), fms-like tyrosine kinase 3 (FLT3) inhibitors (i.e., gilteritinib), anti-CD47 antibodies (i.e., magrolimab), mouse double minute-2 (MDM2) inhibitors, and p53 reactivators (i.e., eprenetapopt). This review summarizes ongoing trials aimed at overcoming known VEN resistance mechanisms and improving outcomes beyond that observed with HMA + VEN combinations in the treatment of AML.
Collapse
Affiliation(s)
- Emmanuella Oyogoa
- Department of Internal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey Tyner
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Curtis Lachowiez
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
41
|
Glytsou C, Chen X, Zacharioudakis E, Al-Santli W, Zhou H, Nadorp B, Lee S, Lasry A, Sun Z, Papaioannou D, Cammer M, Wang K, Zal T, Zal MA, Carter BZ, Ishizawa J, Tibes R, Tsirigos A, Andreeff M, Gavathiotis E, Aifantis I. Mitophagy Promotes Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Discov 2023; 13:1656-1677. [PMID: 37088914 PMCID: PMC10330144 DOI: 10.1158/2159-8290.cd-22-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023]
Abstract
BH3 mimetics are used as an efficient strategy to induce cell death in several blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL-2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML. Moreover, MCL1 or dual BCL-2/BCL-xL antagonists are under investigation. Yet, resistance to single or combinatorial BH3-mimetic therapies eventually ensues. Integration of multiple genome-wide CRISPR/Cas9 screens revealed that loss of mitophagy modulators sensitizes AML cells to various BH3 mimetics targeting different BCL-2 family members. One such regulator is MFN2, whose protein levels positively correlate with drug resistance in patients with AML. MFN2 overexpression is sufficient to drive resistance to BH3 mimetics in AML. Insensitivity to BH3 mimetics is accompanied by enhanced mitochondria-endoplasmic reticulum interactions and augmented mitophagy flux, which acts as a prosurvival mechanism to eliminate mitochondrial damage. Genetic or pharmacologic MFN2 targeting synergizes with BH3 mimetics by impairing mitochondrial clearance and enhancing apoptosis in AML. SIGNIFICANCE AML remains one of the most difficult-to-treat blood cancers. BH3 mimetics represent a promising therapeutic approach to eliminate AML blasts by activating the apoptotic pathway. Enhanced mitochondrial clearance drives resistance to BH3 mimetics and predicts poor prognosis. Reverting excessive mitophagy can halt BH3-mimetic resistance in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Christina Glytsou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xufeng Chen
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wafa Al-Santli
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Soobeom Lee
- Department of Biology, New York University, New York, NY 10003, USA
| | - Audrey Lasry
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrios Papaioannou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tomasz Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Malgorzata Anna Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z. Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
42
|
Torka P, Russell T, Mavis C, Gu J, Ghione P, Barth M, Hernandez-Ilizaliturri FJ. AMG176, an MCL-1 inhibitor, is active in pre-clinical models of aggressive B-cell lymphomas. Leuk Lymphoma 2023; 64:1175-1185. [PMID: 37074033 PMCID: PMC10860744 DOI: 10.1080/10428194.2023.2200876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/20/2023]
Abstract
Upregulation of the anti-apoptotic protein MCL-1 has been implicated in chemotherapy resistance and poor clinical outcomes in B-cell lymphoma (BCL). We report the activity of AMG176, a direct, selective MCL-1 inhibitor, in preclinical models of BCL. A panel of cell lines representing diffuse large B-cell lymphoma (DLBCL), double-hit lymphoma (DHL) and Burkitt's lymphoma (BL) was selected. AMG176 induced apoptotic cell death in a dose- and time-dependent manner in all BCL cell lines. Baseline MCL-1 expression was not predictive of response. AMG176 exhibited impressive synergy with venetoclax and chemotherapeutic agents, less so with proteasomal inhibitors, and antagonism with anti-CD20 monoclonal antibodies. The activity of AMG176 could not be confirmed in murine models of BCL. Combination therapy targeting MCL-1 and BCL-2 may provide an alternative therapeutic approach in BCL, however optimal patient selection will remain the key to obtaining high response rates and tolerability.
Collapse
Affiliation(s)
- Pallawi Torka
- Departments of Medicine, Immunology, and Pediatrics, Roswell Park Comprehensive Cancer Center, State University of New York, Buffalo, NY, USA
| | - Tara Russell
- Departments of Medicine, Immunology, and Pediatrics, Roswell Park Comprehensive Cancer Center, State University of New York, Buffalo, NY, USA
| | - Cory Mavis
- Departments of Medicine, Immunology, and Pediatrics, Roswell Park Comprehensive Cancer Center, State University of New York, Buffalo, NY, USA
| | - Juan Gu
- Departments of Medicine, Immunology, and Pediatrics, Roswell Park Comprehensive Cancer Center, State University of New York, Buffalo, NY, USA
| | - Paola Ghione
- Departments of Medicine, Immunology, and Pediatrics, Roswell Park Comprehensive Cancer Center, State University of New York, Buffalo, NY, USA
| | - Matthew Barth
- Departments of Medicine, Immunology, and Pediatrics, Roswell Park Comprehensive Cancer Center, State University of New York, Buffalo, NY, USA
| | - Francisco J Hernandez-Ilizaliturri
- Departments of Medicine, Immunology, and Pediatrics, Roswell Park Comprehensive Cancer Center, State University of New York, Buffalo, NY, USA
| |
Collapse
|
43
|
Hargreaves D, Carbajo RJ, Bodnarchuk MS, Embrey K, Rawlins PB, Packer M, Degorce SL, Hird AW, Johannes JW, Chiarparin E, Schade M. Design of rigid protein-protein interaction inhibitors enables targeting of undruggable Mcl-1. Proc Natl Acad Sci U S A 2023; 120:e2221967120. [PMID: 37186857 PMCID: PMC10214187 DOI: 10.1073/pnas.2221967120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The structure-based design of small-molecule inhibitors targeting protein-protein interactions (PPIs) remains a huge challenge as the drug must bind typically wide and shallow protein sites. A PPI target of high interest for hematological cancer therapy is myeloid cell leukemia 1 (Mcl-1), a prosurvival guardian protein from the Bcl-2 family. Despite being previously considered undruggable, seven small-molecule Mcl-1 inhibitors have recently entered clinical trials. Here, we report the crystal structure of the clinical-stage inhibitor AMG-176 bound to Mcl-1 and analyze its interaction along with clinical inhibitors AZD5991 and S64315. Our X-ray data reveal high plasticity of Mcl-1 and a remarkable ligand-induced pocket deepening. Nuclear Magnetic Resonance (NMR)-based free ligand conformer analysis demonstrates that such unprecedented induced fit is uniquely achieved by designing highly rigid inhibitors, preorganized in their bioactive conformation. By elucidating key chemistry design principles, this work provides a roadmap for targeting the largely untapped PPI class more successfully.
Collapse
Affiliation(s)
- David Hargreaves
- Discovery Sciences, AstraZeneca, CambridgeCB4 0WG, United Kingdom
| | | | | | - Kevin Embrey
- Discovery Sciences, AstraZeneca, CambridgeCB4 0WG, United Kingdom
| | | | - Martin Packer
- Chemistry, Oncology R&D, AstraZeneca, CambridgeCB4 0WG, United Kingdom
| | | | | | | | | | - Markus Schade
- Chemistry, Oncology R&D, AstraZeneca, CambridgeCB4 0WG, United Kingdom
| |
Collapse
|
44
|
Xie D, Jin X, Sun R, Zhang M, Lu W, Cao X, Guo R, Zhang Y, Zhao M. Bicistronic CAR-T cells targeting CD123 and CLL1 for AML to reduce the risk of antigen escape. Transl Oncol 2023; 34:101695. [PMID: 37224766 DOI: 10.1016/j.tranon.2023.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE Acute myeloid leukemia (AML) is a highly heterogeneous neoplastic disease with a poor prognosis that relapses even after its treatment with chimeric antigen receptor (CAR)-T cells targeting a single antigen. CD123 and CLL1 are expressed in most AML blasts and leukemia stem cells, and their low expression in normal hematopoietic stem cells makes them ideal targets for CAR-T. In this study, we tested the hypothesis that a new bicistronic CAR targeting CD123 and CLL1 can enhance antigenic coverage and prevent antigen escape and subsequent recurrence of AML. METHODS CD123 and CLL1 expressions were evaluated on AML cell lines and blasts. Then, in addition to concentrating on CD123 and CLL1, we introduced the marker/suicide gene RQR8 with a bicistronic CAR. Xenograft models of disseminated AML and in vitro coculture models were used to assess the anti-leukemia efficacy of CAR-T cells. The hematopoietic toxicity of CAR-T cells was evaluated in vitro by colony cell formation assays. It was demonstrated in vitro that the combination of rituximab and NK cells caused RQR8-mediated clearance of 123CL CAR-T cells. RESULTS We have successfully established bicistronic 123CL CAR-T cells that can target CD123 and CLL1. 123CL CAR-T cells effectively cleared AML cell lines and blasts. They also demonstrated appreciable anti-AML activity in animal transplant models. Moreover, 123CL CAR-T cells can be eliminated in an emergency by a natural safety switch and don't target hematopoietic stem cells. CONCLUSIONS The bicistronic CAR-T cells targeting CD123 and CLL1 may be a useful and secure method for treating AML.
Collapse
Affiliation(s)
- Danni Xie
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, China
| | - Meng Zhang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, No. 24, Fukang Road, Nankai District, Tianjin 300190, China
| | - Xinping Cao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ruiting Guo
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Mingfeng Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China; Nankai University School of Medicine, Tianjin, China; Department of Hematology, Tianjin First Central Hospital, No. 24, Fukang Road, Nankai District, Tianjin 300190, China.
| |
Collapse
|
45
|
Xie X, Zhang W, Zhou X, Ye Z, Wang H, Qiu Y, Pan Y, Hu Y, Li L, Chen Z, Yang W, Lu Y, Zou S, Li Y, Bai X. Abemaciclib drives the therapeutic differentiation of acute myeloid leukaemia stem cells. Br J Haematol 2023; 201:940-953. [PMID: 36916190 DOI: 10.1111/bjh.18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
Self-renewal and differentiation arrest are two features of leukaemia stem cells (LSCs) responsible for the high relapse rate of acute myeloid leukaemia (AML). To screen drugs to overcome differentiation blockade for AML, we conducted screening of 2040 small molecules from a library of United States Food and Drug Administration-approved drugs and found that the cyclin-dependent kinase (CDK)4/6 inhibitor, abemaciclib, exerts high anti-leukaemic activity. Abemaciclib significantly suppressed proliferation and promoted the differentiation of LSCs in vitro. Abemaciclib also efficiently induced differentiation and impaired self-renewal of LSCs, thus reducing the leukaemic cell burden and improving survival in various preclinical animal models, including patient-derived xenografts. Importantly, abemaciclib strongly enhanced anti-tumour effects in combination with venetoclax, a B-cell lymphoma 2 (Bcl-2) inhibitor. This treatment combination led to a marked decrease in LSC-enriched populations and resulted in a synergistic anti-leukaemic effect. Target screening revealed that in addition to CDK4/6, abemaciclib bound to and inhibited CDK9, consequently attenuating the protein levels of global p-Ser2 RNA Polymerase II (Pol II) carboxy terminal domain (CTD), Myc, Bcl-2, and myeloid cell leukaemia-1 (Mcl-1), which was important for the anti-AML effect of abemaciclib. Collectively, these data provide a strong rationale for the clinical evaluation of abemaciclib to induce LSC differentiation and treat highly aggressive AML as well as other advanced haematological malignancies.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- Department of Oncology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixin Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Pan
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luyao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuanzhuan Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wanwen Yang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yao Lu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuxin Zou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Fu Y, Jia X, Yuan J, Yang Y, Zhang T, Yu Q, Zhou J, Wang T. Fam72a functions as a cell-cycle-controlled gene during proliferation and antagonizes apoptosis through reprogramming PP2A substrates. Dev Cell 2023; 58:398-415.e7. [PMID: 36868233 DOI: 10.1016/j.devcel.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
The cell cycle is key to life. After decades of research, it is unclear whether any parts of this process have yet to be identified. Fam72a is a poorly characterized gene and is evolutionarily conserved across multicellular organisms. Here, we have found that Fam72a is a cell-cycle-regulated gene that is transcriptionally and post-transcriptionally regulated by FoxM1 and APC/C, respectively. Functionally, Fam72a directly binds to tubulin and both the Aα and B56 subunits of PP2A-B56 to modulate tubulin and Mcl1 phosphorylation, which in turn affects the progression of the cell cycle and signaling of apoptosis. Moreover, Fam72a is involved in early responses to chemotherapy, and it efficiently antagonizes various anticancer compounds such as CDK and Bcl2 inhibitors. Thus, Fam72a switches the tumor-suppressive PP2A to be oncogenic by reprogramming its substrates. These findings identify a regulatory axis of PP2A and a protein member in the cell cycle and tumorigenesis regulatory network in human cells.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaofan Jia
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinwei Yuan
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuting Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Teng Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiujing Yu
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
47
|
Yu G, Zhang W, Zhang H, Ly C, Basyal M, Rice WG, Andreeff M. The multi-kinase inhibitor CG-806 exerts anti-cancer activity against acute myeloid leukemia by co-targeting FLT3, BTK, and Aurora kinases. RESEARCH SQUARE 2023:rs.3.rs-2570204. [PMID: 36865133 PMCID: PMC9980215 DOI: 10.21203/rs.3.rs-2570204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Despite the development of several FLT3 inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemias (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways such as those regulated by BTK, aurora kinases, and potentially others in addition to acquired tyrosine kinase domains (TKD) mutations of FLT3 gene. FLT3may not always be a driver mutation. Objective To evaluate the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, in order to circumvent drug resistance and target FLT3 wild-type (WT) cells. Methods The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing cell cycle with flow cytometry in vitro, and its anti-leukemia. Results CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile of FLT3, BTK, and aurora kinases. InFLT3 mutant cells, CG-806 induced G1 phase blockage, while in FLT3WT cells, it resulted in G2/M arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously resulted in a synergistic pro-apoptotic effect in FLT3mutant leukemia cells. Conclusion The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemia efficacy, regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).
Collapse
Affiliation(s)
- Guopan Yu
- The University of Texas MD Anderson Cancer Center
| | | | | | - Charlie Ly
- The University of Texas MD Anderson Cancer Center
| | | | | | | |
Collapse
|
48
|
Tian C, Chen Z, Wang L, Si J, Kang J, Li Y, Zheng Y, Gao Y, Nuermaimaiti R, You MJ, Zheng G. Over expression of ubiquitin-conjugating enzyme E2O in bone marrow mesenchymal stromal cells partially attenuates acute myeloid leukaemia progression. Br J Haematol 2023; 200:476-488. [PMID: 36345807 DOI: 10.1111/bjh.18541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are implicated in the pathogenesis of acute myeloid leukaemia (AML). However, due to the high heterogeneity of AML the mechanism underlying the cross-talk between MSCs and leukaemia cells is not well understood. We found that mixed-lineage leukaemia-AF9 (MLL-AF9)-induced AML mice-derived MSCs had higher proliferative viability compared to wild-type mice-derived MSCs with ubiquitin-conjugating enzyme E2O (Ube2o) down-regulation. After overexpression of UBE2O in AML-derived MSCs, the growth capacity of MSCs was reduced with nuclear factor kappa B subunit 1 (NF-κB) pathway deactivation. In vitro co-culture assay revealed that UBE2O-overexpression MSCs suppressed the proliferation and promoted apoptosis of AML cells by direct contact. In vivo results revealed that the leukaemia burden was reduced and the overall survival of AML mice was prolonged, with decreased dissemination of leukaemia cells in BM, spleen, liver and peripheral blood. Additionally, subcutaneous tumorigenesis revealed that tumour growth was also suppressed in the UBE2O-overexpression MSCs group. In conclusion, UBE2O was expressed at a low level in MLL-AF9-induced AML mice-derived MSCs. Overexpression of UBE2O in MSCs suppressed their proliferation through NF-κB pathway deactivation, which resulted in AML suppression. Our study provides a theoretical basis for a BM microenvironment-based therapeutic strategy to control disease progression.
Collapse
Affiliation(s)
- Chen Tian
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Haematology, Hotan District People's Hospital, Hotan, China
| | - Zehui Chen
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junqi Si
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junnan Kang
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yueyang Li
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yaxin Zheng
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Gao
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - M James You
- Department of Haematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guoguang Zheng
- State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
49
|
Yue J, Li Y, Li F, Zhang P, Li Y, Xu J, Zhang Q, Zhang C, He X, Wang Y, Liu Z. Discovery of Mcl-1 inhibitors through virtual screening, molecular dynamics simulations and in vitro experiments. Comput Biol Med 2023; 152:106350. [PMID: 36493735 DOI: 10.1016/j.compbiomed.2022.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
As a member of the B-cell lymphoma 2 (Bcl-2) protein family, the myeloid leukemia cell differentiation protein (Mcl-1) can inhibit apoptosis and plays an active role in the process of tumor escape from apoptosis. Therefore, inhibition of Mcl-1 protein can effectively promote the apoptosis of tumor cells and may also reduce tumor cell resistance to drugs targeting other anti-apoptotic proteins. This research is dedicated to the development of Mcl-1 inhibitors, aiming to provide more references for lead compounds with different scaffolds for the development of targeted anticancer drugs. We obtained a series of small molecules with a common core skeleton through molecular docking from Specs database and searched the core structure in ZINC database for more similar small molecules. Collecting these small molecules for preliminary experimental screening, we found a batch of active compounds, and selected two small molecules with the strongest inhibitory activity on B16F10 cells: compound 7 and compound 1. Their IC50s are 7.86 ± 1.25 and 24.72 ± 1.94 μM, respectively. These two compounds were also put into cell scratch test for B16F10 cells and cell viability assay of other cell lines. Furthermore, through molecular dynamics (MD) simulation analysis, we found that compound 7 formed strong binding with the key P2, P3 pocket and ARG 263 of Mcl-1. Finally, ADME results showed that compound 7 performs well in terms of drug similarity. In conclusion, this study provides hits with co-scaffolds that may aid in the design of effective clinical drugs targeting Mcl-1 and the future drug development.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yimin Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qianqian Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Cheng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
50
|
Yang Y, Yang Y, Liu J, Zeng Y, Guo Q, Guo J, Guo L, Lu H, Liu W. Establishment and validation of a carbohydrate metabolism-related gene signature for prognostic model and immune response in acute myeloid leukemia. Front Immunol 2022; 13:1038570. [PMID: 36544784 PMCID: PMC9761472 DOI: 10.3389/fimmu.2022.1038570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/10/2022] Open
Abstract
Introduction The heterogeneity of treatment response in acute myeloid leukemia (AML) patients poses great challenges for risk scoring and treatment stratification. Carbohydrate metabolism plays a crucial role in response to therapy in AML. In this multicohort study, we investigated whether carbohydrate metabolism related genes (CRGs) could improve prognostic classification and predict response of immunity and treatment in AML patients. Methods Using univariate regression and LASSO-Cox stepwise regression analysis, we developed a CRG prognostic signature that consists of 10 genes. Stratified by the median risk score, patients were divided into high-risk group and low-risk group. Using TCGA and GEO public data cohorts and our cohort (1031 non-M3 patients in total), we demonstrated the consistency and accuracy of the CRG score on the predictive performance of AML survival. Results The overall survival (OS) was significantly shorter in high-risk group. Differentially expressed genes (DEGs) were identified in the high-risk group compared to the low-risk group. GO and GSEA analysis showed that the DEGs were mainly involved in immune response signaling pathways. Analysis of tumor-infiltrating immune cells confirmed that the immune microenvironment was strongly suppressed in high-risk group. The results of potential drugs for risk groups showed that inhibitors of carbohydrate metabolism were effective. Discussion The CRG signature was involved in immune response in AML. A novel risk model based on CRGs proposed in our study is promising prognostic classifications in AML, which may provide novel insights for developing accurate targeted cancer therapies.
Collapse
Affiliation(s)
- You Yang
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Yan Yang
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Jing Liu
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Yan Zeng
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Jing Guo
- The Second Hospital, Center for Reproductive Medicine, Advanced Medical Research Institute, and Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ling Guo
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Haiquan Lu
- Department of Hematology, The Affiliated Hospital of Southwest Medical University. Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| |
Collapse
|