1
|
Manganas K, Bemplidakis T, Papachristou K, Angelara M, Karamanakos G. Multiple Aneurysms and Thrombotic Events as Initial Manifestations of Primary Myelofibrosis: A Case Report. Cureus 2025; 17:e79519. [PMID: 40135024 PMCID: PMC11936429 DOI: 10.7759/cureus.79519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
This case report presents a 66-year-old male who developed deep venous thrombosis (DVT), pulmonary embolism (PE), and a ruptured iliac aneurysm as initial manifestations of primary myelofibrosis (PMF). Due to the presence of pre-existing aneurysms in combination with anticoagulation therapy, the patient experienced a retroperitoneal hematoma, necessitating temporary cessation of treatment. Genetic testing revealed a JAK2 V617F mutation and bone marrow biopsy confirmed PMF. The patient's recovery was uneventful, with hematological parameters stabilized upon discharge. The case emphasizes the importance of considering myeloproliferative neoplasms (MPNs) in the differential diagnosis of unexplained thrombotic events. JAK2 mutations are linked to thrombotic complications and aneurysm formation, highlighting the need for vigilant monitoring. It is also important that MPNs may not initially be evident in a complete blood count, while coexisting conditions, such as β-thalassemia trait in this patient's case, can alter the blood count findings.
Collapse
Affiliation(s)
- Konstantinos Manganas
- First Department of Propaedeutic and Internal Medicine, Laiko General Hospital, Athens, GRC
| | | | - Klairi Papachristou
- First Department of Propaedeutic and Internal Medicine, Laiko General Hospital, Athens, GRC
| | - Maria Angelara
- First Department of Propaedeutic and Internal Medicine, Laiko General Hospital, Athens, GRC
| | - George Karamanakos
- First Department of Propaedeutic and Internal Medicine, Laiko General Hospital, Athens, GRC
| |
Collapse
|
2
|
Zhang Y, Zhao Y, Liu Y, Zhang M, Zhang J. New advances in the role of JAK2 V617F mutation in myeloproliferative neoplasms. Cancer 2024; 130:4229-4240. [PMID: 39277798 DOI: 10.1002/cncr.35559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
The JAK2 V617F mutation is the most common driver gene in myeloproliferative neoplasm (MPN), which means that the JAK/STAT signaling pathway is persistently activated independent of cytokines, and plays an important part in the onset and development of MPN. The JAK inhibitors, although widely used in the clinical practice, are unable to eradicate MPN. Therefore, the unavoidable long-term treatment poses a serious burden for patients with MPN. It is established that the JAK2 V617F mutation, in addition its role in the JAK/STAT pathway, can promote cell proliferation, differentiation, anti-apoptosis, DNA damage accumulation, and other key biologic processes through multiple pathways. Other than that, the JAK2 V617F mutation affects the cardiovascular system through multiple mechanisms. Although JAK inhibitors cannot eradicate MPN cells, the combined use of JAK inhibitors and other drugs may have surprising effects. This requires an in-depth understanding of the mechanism of action of the JAK2 V617F mutation. In this review, the authors explored the role of the JAK2 V617F mutation in MPN from multiple aspects, including the mechanisms of non-JAK/STAT pathways, the regulation of cellular methylation, the induction of cellular DNA damage accumulation, and effects on the cardiovascular system, with the objective of providing valuable insights into multidrug combination therapy for MPN.
Collapse
Affiliation(s)
- Yongchao Zhang
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yusi Liu
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minyu Zhang
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jihong Zhang
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Liu W, Hardaway BD, Kim E, Pauli J, Wettich JL, Yalcinkaya M, Hsu CC, Xiao T, Reilly MP, Tabas I, Maegdefessel L, Schlepckow K, Haass C, Wang N, Tall AR. Inflammatory crosstalk impairs phagocytic receptors and aggravates atherosclerosis in clonal hematopoiesis in mice. J Clin Invest 2024; 135:e182939. [PMID: 39531316 PMCID: PMC11684819 DOI: 10.1172/jci182939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Clonal hematopoiesis (CH) increases inflammasome-linked atherosclerosis, but the mechanisms by which CH mutant cells transmit inflammatory signals to nonmutant cells are largely unknown. To address this question, we transplanted 1.5% Jak2V617F (Jak2VF) bone marrow (BM) cells with 98.5% WT BM cells into hyperlipidemic Ldlr-/- mice. Low-allele-burden (LAB) mice showed accelerated atherosclerosis with increased features of plaque instability, decreased levels of the macrophage phagocytic receptors c-Mer tyrosine kinase (MERTK) and triggering receptor expressed on myeloid cells 2 (TREM2), and increased neutrophil extracellular traps (NETs). These changes were reversed when Jak2VF BM was transplanted with Il1r1-/- BM. LAB mice with noncleavable MERTK in WT BM showed improvements in necrotic core and fibrous cap formation and reduced NETs. An agonistic TREM2 antibody (4D9) markedly increased fibrous caps in both control and LAB mice, eliminating the difference between the groups. Mechanistically, 4D9 increased TREM2+PDGFB+ macrophages and PDGF receptor-α+ fibroblast-like cells in the cap region. TREM2 and PDGFB mRNA levels were positively correlated in human carotid plaques and coexpressed in macrophages. In summary, low frequencies of Jak2VF mutations promoted atherosclerosis via IL-1 signaling from Jak2VF to WT macrophages and neutrophils, promoting cleavage of phagocytic receptors and features of plaque instability. Therapeutic approaches that stabilize MERTK or TREM2 could promote plaque stabilization, especially in CH- and inflammasome-driven atherosclerosis.
Collapse
Affiliation(s)
- Wenli Liu
- Division of Molecular Medicine, Department of Medicine, and
| | | | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Jessica Pauli
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | - Justus Leonard Wettich
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | | | | | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, and
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University, New York, New York, USA
| | - Ira Tabas
- Division of Molecular Medicine, Department of Medicine, and
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, and
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, and
| |
Collapse
|
4
|
Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (Beijing) 2024; 5:e703. [PMID: 39247619 PMCID: PMC11380051 DOI: 10.1002/mco2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Institute of Translational Medicine Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Life Sciences Yuncheng University Yuncheng China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Abbas Khan
- Department of Nutrition and Health Promotion University of Home Economics Lahore Pakistan Lahore Pakistan
| | - Wei Liang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Zibo Xiong
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Johannes Stegbauer
- Department of Nephrology Medical Faculty University Hospital Düsseldorf Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
5
|
Wang Z, Zou J. Potential biomarkers and immune characteristics for polycythemia vera-related atherosclerosis using bulk RNA and single-cell RNA datasets: a combined comprehensive bioinformatics and machine learning analysis. Front Cardiovasc Med 2024; 11:1426278. [PMID: 39188323 PMCID: PMC11345232 DOI: 10.3389/fcvm.2024.1426278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Background Polycythemia vera (PV) is a myeloproliferative disease characterized by significantly higher hemoglobin levels and positivity for JAK2 mutation. Thrombosis is the main risk event of this disease. Atherosclerosis (AS) can markedly increase the risk of arterial thrombosis in patients with PV. The objectives of our study were to identify potential biomarkers for PV-related AS and to explore the molecular biological association between PV and AS. Methods We extracted microarray datasets from the Gene Expression Omnibus (GEO) dataset for PV and AS. Common differentially expressed genes (CGs) were identified by differential expression analysis. Functional enrichment and protein-protein interaction (PPI) networks were constructed from the CG by random forest models using LASSO regression to identify pathogenic genes and their underlying processes in PV-related AS. The expression of potential biomarkers was validated using an external dataset. A diagnostic nomogram was constructed based on potential biomarkers to predict PV-related AS, and its diagnostic performance was assessed using ROC, calibration, and decision curve analyses. Subsequently, we used single-cell gene set enrichment analysis (GSEA) to analyze the immune signaling pathways associated with potential biomarkers. We also performed immune infiltration analysis of AS with "CIBERSORT" and calculated Pearson's correlation coefficients for potential biomarkers and infiltrating immune cells. Finally, we observed the expression of potential biomarkers in immune cells based on the single-cell RNA dataset. Results Fifty-two CGs were identified based on the intersection between up-regulated and down-regulated genes in PV and AS. Most biological processes associated with CGs were cytokines and factors associated with chemotaxis of immune cells. The PPI analysis identified ten hub genes, and of these, CCR1 and MMP9 were selected as potential biomarkers with which to construct a diagnostic model using machine learning methods and external dataset validation. These biomarkers could regulate Toll-like signaling, NOD-like signaling, and chemokine signaling pathways associated with AS. Finally, we determined that these potential biomarkers had a strong correlation with macrophage M0 infiltration. Further, the potential biomarkers were highly expressed in macrophages from patients with AS. Conclusion We identified two CGs (CCR1 and MMP9) as potential biomarkers for PV-related AS and established a diagnostic model based on them. These results may provide insight for future experimental studies for the diagnosis and treatment of PV-related AS.
Collapse
Affiliation(s)
- Ziqing Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jixuan Zou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Waldron C, Zafar MA, Ma D, Zhang H, Dykas D, Ziganshin BA, Popa A, Jha A, Kwan JM, Elefteriades JA. Somatic Variants Acquired Later in Life Associated with Thoracic Aortic Aneurysms: JAK2 V617F. Genes (Basel) 2024; 15:883. [PMID: 39062663 PMCID: PMC11276600 DOI: 10.3390/genes15070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The JAK2 V617F somatic variant is a well-known driver of myeloproliferative neoplasms (MPN) associated with an increased risk for athero-thrombotic cardiovascular disease. Recent studies have demonstrated its role in the development of thoracic aortic aneurysm (TAA). However, limited clinical information and level of JAK2 V617F burden have been provided for a comprehensive evaluation of potential confounders. A retrospective genotype-first study was conducted to identify carriers of the JAK2 V617F variant from an internal exome sequencing database in Yale DNA Diagnostics Lab. Additionally, the overall incidence of somatic variants in the JAK2 gene across various tissue types in the healthy population was carried out based on reanalysis of SomaMutDB and data from the UK Biobank (UKBB) cohort to compare our dataset to the population prevalence of the variant. In our database of 12,439 exomes, 594 (4.8%) were found to have a thoracic aortic aneurysm (TAA), and 12 (0.049%) were found to have a JAK2 V617F variant. Among the 12 JAK2 V617F variant carriers, five had a TAA (42%), among whom four had an ascending TAA and one had a descending TAA, with a variant allele fraction ranging from 11.2% to 20%. Among these five patients, 60% were female, and average age at diagnosis was 70 (49-79). The mean ascending aneurysm size was 5.05 cm (range 4.6-5.5 cm), and four patients had undergone surgical aortic replacement or repair. UKBB data revealed a positive correlation between the JAK2 V617F somatic variant and aortic valve disease (effect size 0.0086, p = 0.85) and TAA (effect size = 0.004, p = 0.92), although not statistically significant. An unexpectedly high prevalence of TAA in our dataset (5/594, 0.84%) is greater than the prevalence reported before for the general population, supporting its association with TAA. JAK2 V617F may contribute a meaningful proportion of otherwise unexplained aneurysm patients. Additionally, it may imply a potential JAK2-specific disease mechanism in the developmental of TAA, which suggests a possible target of therapy that warrants further investigation.
Collapse
Affiliation(s)
- Christina Waldron
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Deqiong Ma
- DNA Diagnostics Lab, Yale University School of Medicine, New Haven, CT 06510, USA; (D.M.); (H.Z.); (D.D.)
| | - Hui Zhang
- DNA Diagnostics Lab, Yale University School of Medicine, New Haven, CT 06510, USA; (D.M.); (H.Z.); (D.D.)
| | - Daniel Dykas
- DNA Diagnostics Lab, Yale University School of Medicine, New Haven, CT 06510, USA; (D.M.); (H.Z.); (D.D.)
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Andreea Popa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Alokkumar Jha
- Centre for Neurogenetics, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jennifer M. Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| |
Collapse
|
7
|
Barkhordarian M, Tran HHV, Menon A, Pulipaka SP, Aguilar IK, Fuertes A, Dey S, Chacko AA, Sethi T, Bangolo A, Weissman S. Innovation in pathogenesis and management of aortic aneurysm. World J Exp Med 2024; 14:91408. [PMID: 38948412 PMCID: PMC11212750 DOI: 10.5493/wjem.v14.i2.91408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 06/19/2024] Open
Abstract
Aortic aneurysm (AA) refers to the persistent dilatation of the aorta, exceeding three centimeters. Investigating the pathophysiology of this condition is important for its prevention and management, given its responsibility for more than 25000 deaths in the United States. AAs are classified based on their location or morphology. various pathophysiologic pathways including inflammation, the immune system and atherosclerosis have been implicated in its development. Inflammatory markers such as transforming growth factor β, interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase-2 and many more may contribute to this phenomenon. Several genetic disorders such as Marfan syndrome, Ehler-Danlos syndrome and Loeys-Dietz syndrome have also been associated with this disease. Recent years has seen the investigation of novel management of AA, exploring the implication of different immune suppressors, the role of radiation in shrinkage and prevention, as well as minimally invasive and newly hypothesized surgical methods. In this narrative review, we aim to present the new contributing factors involved in pathophysiology of AA. We also highlighted the novel management methods that have demonstrated promising benefits in clinical outcomes of the AA.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Axel Fuertes
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Angel Ann Chacko
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tanni Sethi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
8
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Skov V, Thomassen M, Kjaer L, Larsen MK, Knudsen TA, Ellervik C, Kruse TA, Hasselbalch HC. Whole blood transcriptional profiling reveals highly deregulated atherosclerosis genes in Philadelphia-chromosome negative myeloproliferative neoplasms. Eur J Haematol 2023; 111:805-814. [PMID: 37640394 DOI: 10.1111/ejh.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are associated with a huge comorbidity burden, including an increased risk of cardiovascular diseases. Recently, chronic inflammation has been suggested to be the driving force for clonal evolution and disease progression in MPN but also potentially having an impact upon the development of accelerated (premature) atherosclerosis. OBJECTIVES Since chronic inflammation, atherosclerosis, and atherothrombosis are prevalent in MPNs and we have previously shown oxidative stress genes to be markedly upregulated in MPNs, we hypothesized that genes linked to development of atherosclerosis might be highly deregulated as well. METHODS Using whole blood gene expression profiling in patients with essential thrombocythemia (ET; n = 19), polycythemia vera (PV; n = 41), or primary myelofibrosis (PMF; n = 9), we herein for the first time report aberrant expression of several atherosclerosis genes. RESULTS Of 84 atherosclerosis genes, 45, 56, and 46 genes were deregulated in patients with ET, PV, or PMF, respectively. Furthermore, BCL2L1, MMP1, PDGFA, PTGS1, and THBS4 were progressively significantly upregulated and BCL2 progressively significantly downregulated from ET over PV to PMF (all FDR <0.05). CONCLUSIONS We have for the first time shown massive deregulation of atherosclerosis genes in MPNs, likely reflecting the inflammatory state in MPNs in association with in vivo activation of leukocytes, platelets, and endothelial cells being deeply involved in the atherosclerotic process.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lasse Kjaer
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine A Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
10
|
Abstract
The CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) and colchicine trials suggest an important role of inflammasomes and their major product IL-1β (interleukin 1β) in human atherosclerotic cardiovascular disease. Moreover, studies in mouse models indicate a causal role of inflammasomes and IL-1β in atherosclerosis. However, recent studies have led to a more granular view of the role of inflammasomes in atherosclerosis. Studies in hyperlipidemic mouse models suggest that prominent activation of the NLRP3 inflammasome requires a second hit such as defective cholesterol efflux, defective DNA repair, clonal hematopoiesis or diabetes. Similarly in humans some mutations promoting clonal hematopoiesis increase coronary artery disease risk in part by promoting inflammasome activation. Recent studies in mice and humans point to a wider role of the AIM2 (absent in melanoma 2) inflammasome in promoting cardiovascular disease including in some forms of clonal hematopoiesis and diabetes. These developments suggest a precision medicine approach in which treatments targeting inflammasomes or IL-1β might be best employed in clinical settings involving increased inflammasome activation.
Collapse
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York (A.R.T.)
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle (K.E.B.)
| |
Collapse
|
11
|
Jensen JL, Easaw S, Anderson T, Varma Y, Zhang J, Jensen BC, Coombs CC. Clonal Hematopoiesis and the Heart: a Toxic Relationship. Curr Oncol Rep 2023; 25:455-463. [PMID: 36920637 PMCID: PMC10015145 DOI: 10.1007/s11912-023-01398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis (CH) refers to the expansion of hematopoietic stem cell clones and their cellular progeny due to somatic mutations, mosaic chromosomal alterations (mCAs), or copy number variants which naturally accumulate with age. CH has been linked to increased risk of blood cancers, but CH has also been linked to adverse cardiovascular outcomes. RECENT FINDINGS A combination of clinical outcome studies and mouse models have offered strong evidence that CH mutations either correlate with or cause atherosclerosis, diabetes mellitus, chronic kidney disease, heart failure, pulmonary hypertension, aortic aneurysm, myocardial infarction, stroke, aortic stenosis, poor outcomes following transcatheter aortic valve replacement (TAVR) or orthotopic heart transplant, death or need of renal replacement therapy secondary to cardiogenic shock, death from cardiovascular causes at large, and enhance anthracycline cardiac toxicity. Mechanistically, some adverse outcomes are caused by macrophage secretion of IL-1β and IL-6, neutrophil invasion of injured myocardium, and T-cell skewing towards inflammatory phenotypes. CH mutations lead to harmful inflammation and arterial wall invasion by bone marrow-derived cells resulting in poor cardiovascular health and outcomes. Blockade of IL-1β or JAK2 signaling are potential avenues for preventing CH-caused cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Jeffrey L Jensen
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saumya Easaw
- Carolinas Hospitalist Group, Atrium Health, Charlotte, NC, USA
| | - Travis Anderson
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yash Varma
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jiandong Zhang
- Department of Medicine, Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian C Jensen
- Department of Medicine, Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine C Coombs
- Department of Medicine, Division of Hematology and Oncology, University of California, 101 The City Dr S, Irvine, Orange, CA, 92868-3201, USA.
| |
Collapse
|
12
|
Tajiri K, Suehara Y, Suzuki T, Sekine I. Clonal heamatopoiesis and associated cardiovascular diseases. Jpn J Clin Oncol 2023; 53:187-194. [PMID: 36629281 DOI: 10.1093/jjco/hyac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Cancer and cardiovascular disease share several risk factors. Clonal heamatopoiesis, a novel risk factor associated with both diseases, has received increasing attention in the fields of cardiology, heamatology and oncology. Clonal heamatopoiesis of indeterminate potential refers to the presence of at least one driver mutation in the heamatopoietic cells of peripheral blood without heamatological malignancy. Clonal heamatopoiesis of indeterminate potential is a common age-related condition that affects up to 60% of individuals aged > 80 years. Importantly, clonal heamatopoiesis of indeterminate potential carriers have a 2- to 4-fold higher risk of developing cardiovascular disease than non-carriers. Therefore, we performed an up-to-date review of clonal heamatopoiesis and its association with various forms of cardiovascular disease, including atherosclerotic disease, heart failure, aortic stenosis and pulmonary hypertension. In addition, we reviewed experimental studies that examined the causality and directionality between clonal heamatopoiesis and cardiovascular disease. Lastly, we discussed future research directions that will aid in the design of personalized therapies and preventive strategies for individuals with clonal heamatopoiesis. This review showed that clonal heamatopoiesis of indeterminate potential is a common condition, especially in older patients, and is associated with an increased risk of cardiovascular disease and worse prognosis. However, further research is needed to determine whether anti-inflammatory therapies or therapies that can reduce or eliminate clone size are effective in preventing cardiovascular disease in patients with clonal heamatopoiesis of indeterminate potential.
Collapse
Affiliation(s)
- Kazuko Tajiri
- Department of Cardiology, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Toshio Suzuki
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Găman MA, Kipkorir V, Srichawla BS, Dhali A, Găman AM, Diaconu CC. Primary Arterial Hypertension and Drug-Induced Hypertension in Philadelphia-Negative Classical Myeloproliferative Neoplasms: A Systematic Review. Biomedicines 2023; 11:388. [PMID: 36830925 PMCID: PMC9952891 DOI: 10.3390/biomedicines11020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The impact of primary arterial hypertension (HTN) in myeloproliferative neoplasms (MPNs) remains unclear, with scant literature available, mostly focusing on cardiovascular risk factors as a singular entity or on organ-specific HTN. Furthermore, available studies reporting findings on drug-induced HTN in MPNs report varying and contradictory findings. In consideration of the above, this study set out to systematically review the available literature and shed light on the occurrence of HTN in MPNs, its association with thrombosis, as well as the drugs used in MPN management that could increase blood pressure. The literature search yielded 598 potentially relevant records of which 315 remained after the duplicates (n = 283) were removed. After we screened the titles and the abstracts of these publications, we removed irrelevant papers (n = 228) and evaluated the full texts of 87 papers. Furthermore, 13 records did not meet the inclusion criteria and were excluded from the systematic review. Finally, a total of 74 manuscripts were entered into the qualitative synthesis and included in the present systematic review. Our systematic review highlights that HTN is the most common comorbidity encountered in MPNs, with an impact on both the occurrence of thrombosis and survival. Moreover, drug-induced HTN remains a challenge in the management of MPNs. Further research should investigate the characteristics of patients with MPNs and HTN, as well as clarify the contribution of HTN to the development of thrombotic complications, survival and management in MPNs. In addition, the relationship between clonal hematopoiesis of indeterminate potential, HTN, cardiovascular disease and MPNs requires examination in upcoming assessments.
Collapse
Affiliation(s)
- Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi 30197, Kenya
| | | | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Amelia Maria Găman
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Clinic of Hematology, Filantropia City Hospital, 200143 Craiova, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
14
|
Misaka T, Kimishima Y, Yokokawa T, Ikeda K, Takeishi Y. Clonal hematopoiesis and cardiovascular diseases: role of JAK2V617F. J Cardiol 2023; 81:3-9. [PMID: 35165011 DOI: 10.1016/j.jjcc.2022.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Bone marrow-derived hematopoietic and immune cells play important roles in the onset and progression of cardiovascular diseases. Recent genetic analyses have discovered that clonal expansion of bone marrow hematopoietic stem/progenitor cells carrying somatic gene mutations is common and is increasing with age in healthy individuals who do not show any hematologic disorders, termed as clonal hematopoiesis. It is emergingly recognized that clonal hematopoiesis is a significant risk factor for cardiovascular diseases rather than a cumulative incidence risk of blood cancers. JAK2V617F, a gain-of-function mutation, has been identified as one of the most important mutations in clonal hematopoiesis as well as the most frequent driver mutation in myeloproliferative neoplasms. Hematopoietic cell clones harboring JAK2V617F are causally associated with the pathogenesis of cardiovascular diseases. Here, we will review the key of JAK2V617F-mediated clonal hematopoiesis including identification, prevalence, and biological impacts, linking to cardiovascular diseases and the related mechanisms. Clonal hematopoiesis with JAK2V617F may be a novel therapeutic target for cardiovascular diseases, connected to precision medicines by detecting its presence.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Yusuke Kimishima
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
15
|
Al-Rifai R, Vandestienne M, Lavillegrand JR, Mirault T, Cornebise J, Poisson J, Laurans L, Esposito B, James C, Mansier O, Hirsch P, Favale F, Braik R, Knosp C, Vilar J, Rizzo G, Zernecke A, Saliba AE, Tedgui A, Lacroix M, Arrive L, Mallat Z, Taleb S, Diedisheim M, Cochain C, Rautou PE, Ait-Oufella H. JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm. Nat Commun 2022; 13:6592. [PMID: 36329047 PMCID: PMC9633755 DOI: 10.1038/s41467-022-34469-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.
Collapse
Affiliation(s)
- Rida Al-Rifai
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Marie Vandestienne
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Jean-Rémi Lavillegrand
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Tristan Mirault
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France ,Service de médecine vasculaire, Hopital Européen G. Pompidou, Paris, France
| | - Julie Cornebise
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Johanne Poisson
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France ,Service de gériatrie, Hopital Européen G. Pompidou, Paris, France ,grid.462374.00000 0004 0620 6317Centre de recherche sur l’inflammation, Inserm, Paris, France
| | - Ludivine Laurans
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Bruno Esposito
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Chloé James
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, CHU de Bordeaux, Laboratoire d’Hématologie, Pessac, France
| | - Olivier Mansier
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, CHU de Bordeaux, Laboratoire d’Hématologie, Pessac, France
| | - Pierre Hirsch
- grid.412370.30000 0004 1937 1100Laboratoire d’Hématologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Fabrizia Favale
- grid.412370.30000 0004 1937 1100Laboratoire d’Hématologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Rayan Braik
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Camille Knosp
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Jose Vilar
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Giuseppe Rizzo
- grid.411760.50000 0001 1378 7891Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Alma Zernecke
- grid.411760.50000 0001 1378 7891Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Alain Tedgui
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Maxime Lacroix
- grid.412370.30000 0004 1937 1100Service de radiologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Lionel Arrive
- grid.412370.30000 0004 1937 1100Service de radiologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Ziad Mallat
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Soraya Taleb
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Marc Diedisheim
- grid.411784.f0000 0001 0274 3893GlandOmics, 41700 Cheverny, & Department of Diabetology, AP-HP, Hôpital Cochin, Paris, France
| | - Clément Cochain
- grid.411760.50000 0001 1378 7891Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Pierre-Emmanuel Rautou
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015, Paris, France ,grid.462374.00000 0004 0620 6317Centre de recherche sur l’inflammation, Inserm, Paris, France ,grid.411599.10000 0000 8595 4540AP-HP, Hôpital Beaujon, Service d’Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Hafid Ait-Oufella
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France. .,Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|
16
|
Saadatagah S, Ballantyne CM. Clonal hematopoiesis of indeterminate potential and cardiovascular disease. Transl Res 2022; 255:152-158. [PMID: 36067904 DOI: 10.1016/j.trsl.2022.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Age is the most important risk factor for cardiovascular disease and appears to be more than a marker of cumulative exposure to other risk factors such as dyslipidemia and hypertension. With aging, genetic mutations occur that are not present in our germline DNA, observed as somatic mosaicism. Hematopoietic stem cells have an increased chance of developing mosaicism because they are highly proliferative, and mutations with survival benefits can establish clonal populations. Age-related clonal hematopoiesis resulting from somatic mutations was first described ∼25 years ago. The subset of clonal hematopoiesis in which a driver mutation with variant allele frequency of at least 2% occurs in a gene implicated in hematologic malignancies but in the absence of known hematologic malignancy or other clonal disorder is termed clonal hematopoiesis of indeterminate potential (CHIP). Large-scale exome-sequencing projects have recently enabled the study of CHIP frequency, gene-specific analyses, and longitudinal clinical consequences of CHIP, including an observed increased risk for cardiovascular disease. Animal models provide insight into the mechanisms by which CHIP increases cardiovascular disease risk, and combined animal, clinical, and epidemiological data suggest therapeutic implications for CHIP in cardiovascular disease prevention.
Collapse
Affiliation(s)
- Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, Texas; Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
17
|
Florez MA, Tran BT, Wathan TK, DeGregori J, Pietras EM, King KY. Clonal hematopoiesis: Mutation-specific adaptation to environmental change. Cell Stem Cell 2022; 29:882-904. [PMID: 35659875 PMCID: PMC9202417 DOI: 10.1016/j.stem.2022.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes a widespread expansion of genetically variant hematopoietic cells that increases exponentially with age and is associated with increased risks of cancers, cardiovascular disease, and other maladies. Here, we discuss how environmental contexts associated with CHIP, such as old age, infections, chemotherapy, or cigarette smoking, alter tissue microenvironments to facilitate the selection and expansion of specific CHIP mutant clones. Further, we consider major remaining gaps in knowledge, including intrinsic effects, clone size thresholds, and factors affecting clonal competition, that will determine future application of this field in transplant and preventive medicine.
Collapse
Affiliation(s)
- Marcus A Florez
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Brandon T Tran
- Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Trisha K Wathan
- Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine Y King
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Lobo PB, Guisado-Hernández P, Villaoslada I, de Felipe B, Carreras C, Rodriguez H, Carazo-Gallego B, Méndez-Echevarria A, Lucena JM, Aljaro PO, Castro MJ, Noguera-Uclés JF, Milner JD, McCann K, Zimmerman O, Freeman AF, Lionakis MS, Holland SM, Neth O, Olbrich P. Ex vivo effect of JAK inhibition on JAK-STAT1 pathway hyperactivation in patients with dominant-negative STAT3 mutations. J Clin Immunol 2022; 42:1193-1204. [PMID: 35507130 DOI: 10.1007/s10875-022-01273-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE STAT1 gain-of-function (GOF) and dominant-negative (DN) STAT3 syndromes share clinical manifestations including infectious and inflammatory manifestations. Targeted treatment with Janus-kinase (JAK) inhibitors shows promising results in treating STAT1 GOF-associated symptoms while management of DN STAT3 patients has been largely supportive. We here assessed the impact of ruxolitinib on the JAK-STAT1/3 pathway in DN STAT3 patients' cells. METHODS Using flow cytometry, immunoblot, qPCR, and ELISA techniques, we examined the levels of basal STAT1 and phosphorylated STAT1 (pSTAT1) of cells obtained from DN STAT3, STAT1 GOF patients, and healthy donors following stimulation with type I/II interferons (IFNs) or interleukin (IL)-6. We also describe the impact of ruxolitinib on cytokine-induced STAT1 signaling in these patients. RESULTS DN STAT3 and STAT1 GOF resulted in a similar phenotype characterized by increased STAT1 and pSTAT1 levels in response to IFNα (CD3+ cells) and IFNγ (CD14+ monocytes). STAT1-downstream gene expression and C-X-C motif chemokine 10 secretion were higher in most DN STAT3 patients upon stimulation compared to healthy controls. Ex vivo treatment with the JAK1/2-inhibitor ruxolitinib reduced cytokine responsiveness and normalized STAT1 phosphorylation in DN STAT3 and STAT1 GOF patient' cells. In addition, ex vivo treatment was effective in modulating STAT1 downstream signaling in DN STAT3 patients. CONCLUSION In the absence of effective targeted treatment options for AD-HIES at present, modulation of the JAK/STAT1 pathway with JAK inhibitors may be further explored particularly in those AD-HIES patients with autoimmune and/or autoinflammatory manifestations.
Collapse
Affiliation(s)
- Pilar Blanco Lobo
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Paloma Guisado-Hernández
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Isabel Villaoslada
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Beatriz de Felipe
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Carmen Carreras
- Pediatric Infectious Diseases and Immunodeficiency Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Hector Rodriguez
- Pediatric Infectious Diseases and Immunodeficiency Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Begoña Carazo-Gallego
- Pediatric Infectology and Immunodeficiencies Unit, IBIMA, Department of Pediatrics, Hospital Regional Universitario Málaga, Malaga, Spain
| | - Ana Méndez-Echevarria
- Pediatric Infectious and Tropical Diseases Department, Hospital Universitario La Paz, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | | | | | - María José Castro
- Servicio de Citometría y Separación Celular, Instituto de Biomedicina de Sevilla - IBiS/HUVR/US/CSIC, Seville, Spain
| | | | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katelyn McCann
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ofer Zimmerman
- Department of Medicine, Division of Allergy/Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain.
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| |
Collapse
|
19
|
Tall AR, Fuster JJ. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. NATURE CARDIOVASCULAR RESEARCH 2022; 1:116-124. [PMID: 36337911 PMCID: PMC9631799 DOI: 10.1038/s44161-021-00015-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/21/2021] [Indexed: 05/25/2023]
Abstract
Clonal hematopoiesis arises from somatic mutations that provide a fitness advantage to hematopoietic stem cells and the outgrowth of clones of blood cells. Clonal hematopoiesis commonly involves mutations in genes that are involved in epigenetic modifications, signaling and DNA damage repair. Clonal hematopoiesis has emerged as a major independent risk factor in atherosclerotic cardiovascular disease, thrombosis and heart failure. Studies in mouse models of clonal hematopoiesis have shown an increase in atherosclerosis, thrombosis and heart failure, involving increased myeloid cell inflammatory responses and inflammasome activation. Although increased inflammatory responses have emerged as a common underlying principle, some recent studies indicate mutation-specific effects. The discovery of the association of clonal hematopoiesis with cardiovascular disease and the recent demonstration of benefit of anti-inflammatory treatments in human cardiovascular disease converge to suggest that anti-inflammatory treatments should be directed to individuals with clonal hematopoiesis. Such treatments could target specific inflammasomes, common downstream mediators such as IL-1β and IL-6, or mutations linked to clonal hematopoiesis.
Collapse
Affiliation(s)
- Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA
| | - Jose J. Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
20
|
Laktib N, Mahtat EM, Lahlafi Z, Mouine N, Asfalou I, Aghoutane N, Chaib A, Lakhal Z, Doghmi K, Benyass A. Essential thrombocythemia and aortic dissection,causal or incidental association? JOURNAL DE MEDECINE VASCULAIRE 2022; 47:39-42. [PMID: 35393092 DOI: 10.1016/j.jdmv.2022.01.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Only few cases of vascular dissection and essential thrombocythemia association have been reported. To the best of our knowledge, we reported the second case of aortic dissection and essential thrombocythemia association in a 60-year-old man with positive JAK2V617F mutation who had no history of hypertension or connective tissue disorders. Through this case, we discussed the eventual existence of a causal relationship between the two conditions. We also suggested the use of hydroxyurea as a prevention treatment of thrombosis in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Nabil Laktib
- Department of Cardiology Intensive Care Unit, Cardiology Center of Mohammed V Military Training Hospital, Rabat, Morocco.
| | - El Mehdi Mahtat
- Department of Hematology, Mohammed V Military Training Hospital, Rabat, Morocco
| | - Zakaria Lahlafi
- Catheterization laboratory, Cardiology Center of Mohammed V Military Training Hospital, Rabat, Morocco
| | - Najat Mouine
- Department of Clinical Cardiology, Cardiology Center of Mohammed V Military Training Hospital, Rabat, Morocco
| | - Iliyasse Asfalou
- Department of non-Invasive Cardiac Explorations, Cardiology Center of Mohammed V Military Training Hospital, Rabat, Morocco
| | - Nabil Aghoutane
- Department of Vascular Surgery, Mohammed V Military Training Hospital, Rabat, Morocco
| | - Ali Chaib
- Department of Rhythmology, Cardiology Center of Mohammed V Military Training Hospital, Rabat, Morocco
| | - Zouhair Lakhal
- Department of Cardiology Intensive Care Unit, Cardiology Center of Mohammed V Military Training Hospital, Rabat, Morocco
| | - Kamal Doghmi
- Department of Hematology, Mohammed V Military Training Hospital, Rabat, Morocco
| | - Aatif Benyass
- Cardiology Center of Mohammed V Military Training Hospital, Rabat, Morocco
| |
Collapse
|
21
|
Wada K, Misaka T, Yokokawa T, Kimishima Y, Kaneshiro T, Oikawa M, Yoshihisa A, Takeishi Y. Blood-Based Epigenetic Markers of FKBP5 Gene Methylation in Patients With Dilated Cardiomyopathy. J Am Heart Assoc 2021; 10:e021101. [PMID: 34713710 PMCID: PMC8751844 DOI: 10.1161/jaha.121.021101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Blood‐based DNA methylation patterns are linked to types of diseases. FKBP prolyl isomerase 5 (FKBP5), a protein cochaperone, is known to be associated with the inflammatory response, but the regulatory mechanisms by leukocyte FKBP5 DNA methylation in patients with dilated cardiomyopathy (DCM) remain unclear. Methods and Results The present study enrolled patients with DCM (n=31) and age‐matched and sex‐matched control participants (n=43). We assessed FKBP5 CpG (cytosine‐phosphate‐guanine) methylation of CpG islands at the 5′ side as well as putative promoter regions by methylation‐specific quantitative polymerase chain reaction using leukocyte DNA isolated from the peripheral blood. FKBP5 CpG methylation levels at the CpG island of the gene body and the promoter regions were significantly decreased in patients with DCM. Leukocyte FKBP5 and IL‐1β (interleukin 1β) mRNA expression levels were significantly higher in patients with DCM than in controls. The protein expressions of DNMT1 (DNA methyltransferase 1) and DNMT3A (DNA methyltransferase 3A) in leukocytes were significantly reduced in patients with DCM. In vitro methylation assay revealed that FKBP5 promoter activity was inhibited at the methylated conditions in response to immune stimulation, suggesting that the decreased FKBP5 CpG methylation was functionally associated with elevation of FKBP5 mRNA expressions. Histological analysis using a mouse model with pressure overload showed that FKBP5‐expressing cells were substantially infiltrated in the myocardial interstitium in the failing hearts, indicating a possible role of FKBP5 expressions of immune cells in the cardiac remodeling. Conclusions Our findings demonstrate a link between specific CpG hypomethylation of leukocyte FKBP5 and DCM. Blood‐based epigenetic modification in FKBP5 may be a novel molecular mechanism that contributes to the pathogenesis of DCM.
Collapse
Affiliation(s)
- Kento Wada
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Yusuke Kimishima
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan.,Department of Arrhythmia and Cardiac Pacing Fukushima Medical University Fukushima Japan
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan.,Department of Clinical Laboratory Sciences Fukushima Medical University School of Health Science Fukushima Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| |
Collapse
|
22
|
Elf SE. JAK out of the box: myeloproliferative neoplasms--associated JAK2 V617F mutations contribute to aortic aneurysms. Haematologica 2021; 106:1783-1784. [PMID: 33567815 PMCID: PMC8252949 DOI: 10.3324/haematol.2020.277111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/24/2022] Open
|