1
|
Calcagno DQ, Takeno SS, Gigek CO, Leal MF, Wisnieski F, Chen ES, Araújo TMT, Lima EM, Melaragno MI, Demachki S, Assumpção PP, Burbano RR, Smith MC. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines. World J Gastroenterol 2016; 22:9506-9514. [PMID: 27920471 PMCID: PMC5116594 DOI: 10.3748/wjg.v22.i43.9506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/10/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To identify common copy number alterations on gastric cancer cell lines.
METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis.
RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively.
CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer.
Collapse
|
2
|
Araújo TM, Seabra AD, Lima EM, Assumpção PP, Montenegro RC, Demachki S, Burbano RM, Khayat AS. Recurrent amplification of RTEL1 and ABCA13 and its synergistic effect associated with clinicopathological data of gastric adenocarcinoma. Mol Cytogenet 2016; 9:52. [PMID: 27366209 PMCID: PMC4928298 DOI: 10.1186/s13039-016-0260-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite progression in treatment of gastric cancer, prognosis of patients remains poor, in part due to the low rate of diagnosis during its early stages. This paradigm implies the necessity to identify molecular biomarkers for early gastric cancer diagnosis, as well as for disease monitoring, thus contributing to the development of new therapeutic approaches. In a previous study, performed by array-Comparative Genomic Hybridization, we described for the first time in literature recurrent amplification of RTEL1 and ABCA13 genes in gastric cancer. Thus, the aim of the present study was to validate recurrent amplification of RTEL1 and ABCA13 genes and associate CNV status with clinicopathological data. FINDINGS Results showed RTEL1 and ABCA13 amplification in 38 % of samples. Statistical analysis demonstrated that RTEL amplification is more common in older patients and more associated with intestinal type and ABCA13 amplification increases the risk of lymph node metastasis and is more common in men. Co-amplification of these genes showed a significant association with advanced staging. CONCLUSIONS aCGH is a very useful tool for investigating novel genes associated with carcinogenesis and RTEL1 amplification may be important for the development of gastric cancer in older patients, besides being a probable event contributing for chromosomal instability in intestinal gastric carcinogenesis. ABCA13 amplification may have age-specific function and could be considered a useful marker for predicting lymph node metastasis in resected gastric cancer patients in early stage. Lastly, RTEL1 and ABCA13 synergistic effect may be considered as a putative marker for advanced staging in gastric cancer patients.
Collapse
Affiliation(s)
- T. M. Araújo
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - A. D. Seabra
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - E. M. Lima
- />Molecular Biology Department, Federal University of Paraíba, João Pessoa, 58051-900 Paraíba Brazil
| | - P. P. Assumpção
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - R. C. Montenegro
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - S. Demachki
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - R. M. Burbano
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| | - A. S. Khayat
- />Human Cytogenetics Laboratory, Federal University of Pará, Belém, 66075-110 Pará Brazil
- />Oncology Research Center, Federal University of Pará, Belém, 66073-000 Pará Brazil
| |
Collapse
|
3
|
Figura N, Marano L, Moretti E, Ponzetto A. Helicobacter pylori infection and gastric carcinoma: Not all the strains and patients are alike. World J Gastrointest Oncol 2016; 8:40-54. [PMID: 26798436 PMCID: PMC4714145 DOI: 10.4251/wjgo.v8.i1.40] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/06/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
Gastric carcinoma (GC) develops in only 1%-3% of Helicobacter pylori (H. pylori) infected people. The role in GC formation of the bacterial genotypes, gene polymorphisms and host's factors may therefore be important. The risk of GC is enhanced when individuals are infected by strains expressing the oncoprotein CagA, in particular if CagA has a high number of repeats containing the EPIYA sequence in its C'-terminal variable region or particular amino acid sequences flank the EPIYA motifs. H. pylori infection triggers an inflammatory response characterised by an increased secretion of some chemokines by immunocytes and colonised gastric epithelial cells; these molecules are especially constituted by proteins composing the interleukin-1beta (IL-1β) group and tumour necrosis factor-alpha (TNF-α). Polymorphisms in the promoter regions of genes encoding these molecules, could account for high concentrations of IL-1β and TNF-α in the gastric mucosa, which may cause hypochlorhydria and eventually GC. Inconsistent results have been attained with other haplotypes of inflammatory and anti-inflammatory cytokines. Genomic mechanisms of GC development are mainly based on chromosomal or microsatellite instability (MSI) and deregulation of signalling transduction pathways. H. pylori infection may induce DNA instability and breaks of double-strand DNA in gastric mucocytes. Different H. pylori strains seem to differently increase the risk of cancer development run by the host. Certain H. pylori genotypes (such as the cagA positive) induce high degrees of chronic inflammation and determine an increase of mutagenesis rate, oxidative-stress, mismatch repair mechanisms, down-regulation of base excision and genetic instability, as well as generation of reactive oxygen species that modulate apoptosis; these phenomena may end to trigger or concur to GC development.
Collapse
|
4
|
Recurrent amplification of MYC and TNFRSF11B in 8q24 is associated with poor survival in patients with gastric cancer. Gastric Cancer 2016; 19:116-27. [PMID: 25618371 DOI: 10.1007/s10120-015-0467-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is an aggressive malignancy whose mechanisms of development and progression are poorly understood. The identification of prognosis-related genomic loci and genes may suffer from the relatively small case numbers and a lack of systematic validation in previous studies. METHODS Array-based comparative genomic hybridization (aCGH) coupled with patient clinical information was applied to identify prognosis-related loci and genes with high-frequency recurrent gains in 129 GC patients. The candidate loci and genes were then validated using an independent cohort of 384 patients through branched DNA signal amplification analysis (QuantiGene assays). RESULTS In the 129 patients, a copy number gain of three chromosome regions-namely, 8q22 (including ESRP1 and CCNE2), 8q24 (including MYC and TNFRSF11B), and 20q11-q13 (including SRC, MMP9, and CSE1L)--conferred poor survival for patients. In addition, the correlation between the branched DNA signal amplification analysis results and the aCGH results was analyzed in 73 of these 129 patients, and MYC, TNFRSF11B, ESRP1, CSE1L, and MMP9 were found to be well correlated. Further validation using an independent cohort (n = 384) verified that only MYC and TNFRSF11B within 8q24 are related to survival. Patients with gains in both MYC and TNFRSF11B had poorer survival than those with no gains, particularly those with noncardia GC. Gains in both of these genes were also a significant independent prognostic indicator. CONCLUSIONS Our results revealed that copy number gains in MYC and TNFRSF11B located at 8q24 are associated with survival in GC, particularly noncardia GC.
Collapse
|
5
|
Wang D, Zhu ZZ, Jiang H, Zhu J, Cong WM, Wen BJ, He SQ, Liu SF. Multiple genes identified as targets for 20q13.12-13.33 gain contributing to unfavorable clinical outcomes in patients with hepatocellular carcinoma. Hepatol Int 2015; 9:438-46. [PMID: 26067772 DOI: 10.1007/s12072-015-9642-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/19/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Recurrent chromosome 20q gain is implicated in progressive cancer behaviors and has been associated with clinical outcomes in multiple types of cancer; however, its prognostic significance in hepatocellular carcinoma (HCC) and the involved genes remain unclear. METHODS Array comparative genomic hybridization and expression arrays were used to detect copy number alterations (CNAs) and expression levels, respectively. The associations between CNAs in 20q and outcomes were analyzed on 66 patients, for which the follow-up period was 2.6-73.3 months. One hundred seventeen tumors were further investigated to identify target genes in the potentially outcome-related CNAs. RESULTS Regional or whole 20q gain was detected in 24 (36.4%) of the 66 HCC cases. The most recurrent gains were 20q11.21-12, 20q12-13.12, 20q13.12-13.33 and 20q13.33. Of the CNAs, 20q13.12-13.33 gain was significantly associated with reduced extrohepatic metastasis-free and overall survival, as well as with elevated postoperative AFP level, tumor vascular invasion and advanced tumor stage. Multivariate Cox analysis identified 20q13.12-13.33 gain as an independent prognostic marker for metastasis (HR 3.73, 95% CI 1.08-12.87) and death (HR 3.00, 95% CI 1.26-7.13). A panel of 19 genes in 20q13.12-13.33 was significantly overexpressed in HCCs with gain compared to HCCs without. High expression (greater than median) for 5 of the 19 genes, DDX27, B4GALT5, RNF114, ZFP64 and PFDN4, correlated significantly with vascular invasion, and high RNF114 expression also with advanced tumor stage. CONCLUSIONS Gain at 20q13.12-13.33 is a prognostic marker of metastasis and death, and DDX27, B4GALT5, RNF114, ZFP64, and PFDN4 are probable target genes which may be involved together in the unfavorable outcomes of HCC patients.
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China,
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bergmann F, Aulmann S, Sipos B, Kloor M, von Heydebreck A, Schweipert J, Harjung A, Mayer P, Hartwig W, Moldenhauer G, Capper D, Dyckhoff G, Freier K, Herpel E, Schleider A, Schirmacher P, Mechtersheimer G, Klöppel G, Bläker H. Acinar cell carcinomas of the pancreas: a molecular analysis in a series of 57 cases. Virchows Arch 2014; 465:661-72. [PMID: 25298229 DOI: 10.1007/s00428-014-1657-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/15/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic acinar cell carcinomas (PACs) are rare but are distinct aggressive neoplasms that phenotypically differ from pancreatic ductal adenocarcinomas (PDACs) and pancreatic neuroendocrine neoplasms (PNENs). Despite recent work on the genetic changes of PACs, their molecular pathogenesis is still poorly understood. In this study, we focus on a comparative genomic hybridization analysis. Based on frequent chromosomal imbalances, the involvement of DCC and c-MYC in the pathogenesis of PACs is further investigated. Moreover, we examine markers harboring potential therapeutic relevance (K-RAS, BRAF, EGFR, MGMT, HSP90, L1CAM, Her2). PACs revealed a microsatellite stable, chromosomal unstable genotype, defined by recurrent chromosomal losses of 1p, 3p, 4q, 5q, 6q, 8p, 9p, 11q, 13q, 16q, and 18, as well as gains of 1q, 7, 8q, 12, 17q, and 20q. Subsets of PAC displayed reduction/loss of DCC (79 %) and c-MYC-amplification (17 %). Significant EGFR expression occurred in 42 %, HSP90 expression in 98 %, L1CAM expression in 72 %, and loss of MGMT in 26 %. Two cases carried a K-RAS mutation. Mutations of EGFR or BRAF were not detected. All cases were Her2/neu-negative. PACs display characteristic chromosomal imbalances which are distinctly different from those in pancreatic ductal adenocarcinomas and pancreatic neuroendocrine neoplasms. Our findings suggest that DCC and c-MYC alterations may play an important role in the pathogenesis of PACs. Furthermore, EGFR, MGMT, HSP90, and L1CAM may be useful as therapeutic markers and predictors of response to therapy in a subset of PACs.
Collapse
Affiliation(s)
- Frank Bergmann
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, D-69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The development of gastric adenocarcinoma is a complex multistep process involving multiple genetic alterations. Based on pathology, four different macroscopic types and at least two major histological types, intestinal and diffuse, have been described. Most gastric cancer (GC) show genetic instability, either microsatellite instability or chromosomal instability, which is considered an early event in gastric carcinogenesis. Molecular studies of alterations of single genes have provided evidence that intestinal and diffuse type GC evolve via different genetic pathways. Recent results from high-throughput whole-genome expression or copy number studies have demonstrated extensive genetic diversity between cases and within individual GC. Sets of commonly up- or downregulated microRNAs have been identified in GC and might be useful in the near future to identify pathways of GC progression. Results from detailed molecular and/or pathological GC studies, although promising, still have limited clinical utility in predicting survival and stratifying GC patients for appropriate treatment.
Collapse
Affiliation(s)
- Heike I Grabsch
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| | | |
Collapse
|
8
|
Hudler P. Genetic aspects of gastric cancer instability. ScientificWorldJournal 2012; 2012:761909. [PMID: 22606061 PMCID: PMC3353315 DOI: 10.1100/2012/761909] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/30/2011] [Indexed: 12/13/2022] Open
Abstract
Unravelling the molecular mechanisms underlying gastric carcinogenesis is one of the major challenges in cancer genomics. Gastric cancer is a very complex and heterogeneous disease, and although much has been learned about the different genetic changes that eventually lead to its development, the detailed mechanisms still remain unclear. Malignant transformation of gastric cells is the consequence of a multistep process involving different genetic and epigenetic changes in numerous genes in combination with host genetic background and environmental factors. The majority of gastric adenocarcinomas are characterized by genetic instability, either microsatellite instability (MSI) or chromosomal instability (CIN). It is believed that chromosome destabilizations occur early in tumour progression. This review summarizes the most common genetic alterations leading to instability in sporadic gastric cancers and its consequences.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Hirose H, Ishii H, Mimori K, Tanaka F, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M. The significance of PITX2 overexpression in human colorectal cancer. Ann Surg Oncol 2011; 18:3005-12. [PMID: 21479692 DOI: 10.1245/s10434-011-1653-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Indexed: 01/27/2023]
Abstract
PURPOSE The paired-like homeodomain transcription factor 2 (PITX2) gene encodes a transcription factor controlled by the WNT/Dvl/CTNNB1 and Hedgehog/TGFB pathways in the pathogenesis of colorectal cancer (CRC). Although PITX2 is reportedly involved in various functions, including tissue development by controlling cell growth, its significance in CRC remains unclear. We report our findings regarding abnormal PITX2 expression in human CRC. METHODS PITX2 expression was evaluated in 5 human CRC cell lines and 92 primary CRC samples. Cell growth was evaluated after inhibition of PITX2 expression or after exogenous introduction of PITX2. RESULTS PITX2 expression was seen in all the five CRC cell lines. The study of tissue samples indicated that PITX2 expression was significantly higher in cancerous tissue than in paired control tissue (P = 0.0471). Patients with lower PITX2 expression showed a poorer overall survival rate than those with higher PITX2 expression (P = 0.0481). Multivariate analysis demonstrated that PITX2 expression was an independent prognostic factor. Experimental knockdown and introduction of PITX2 also demonstrated that the level of PITX2 expression is inversely associated with cell growth and invasion in vitro. CONCLUSIONS PITX2 expression is significantly related to the biological behavior of CRC cells and appears to be correlated with clinical survival. Thus, this study revealed a previously uncharacterized unique role and significance of PITX2 expression in CRC.
Collapse
Affiliation(s)
- Hajime Hirose
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim J, Kim MA, Min SY, Jee CD, Lee HE, Kim WH. Downregulation of methylthioadenosin phosphorylase by homozygous deletion in gastric carcinoma. Genes Chromosomes Cancer 2011; 50:421-33. [PMID: 21412930 DOI: 10.1002/gcc.20867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/09/2011] [Indexed: 12/27/2022] Open
Abstract
The methylthioadenosine phosphorylase (MTAP) gene is located on 9p21 telomeric to the CDKN2A tumor suppressor gene. Loss of MTAP gene is frequently associated with CDKN2A homozygous deletion. Although the homozygous deletion of MTAP has been reported in various human cancers, its function in gastric carcinogenesis is unknown. Here, we determined the status of the MTAP gene by using a combination of array-based comparative genomic hybridization and oligonucleotide microarray. It was found that MTAP was deleted and downregulated in 2 of 10 gastric cancer cell lines. Of the 494 primary gastric carcinomas examined, MTAP expression at the protein level was reduced in 59 (11.9%). Furthermore, a lack of MTAP expression was found to be associated with poor survival (P = 0.038). The genomic loss of MTAP and CDKN2A in gastric carcinomas was investigated by quantitative real-time PCR. Among 20 gastric carcinomas, two cases showed deletion of both MTAP and CDKN2A, and three samples showed homozygous deletion of MTAP, but not of CDKN2A. An analysis of gastric carcinomas revealed that reduced MTAP expression correlated significantly with a genomic deletion. Furthermore, functional assays by transfecting the siRNA or the expressional cDNA into gastric cancer cell lines demonstrated that MTAP regulates cell growth and invasion. The present study suggests that MTAP plays an important role in the regulation of gastric carcinogenesis and, in particular, that MTAP loss is implicated in some way with tumor growth via the modulation of cellular properties, which, in turn, suggests that MTAP has therapeutic applications.
Collapse
Affiliation(s)
- Jin Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Tomioka N, Morita K, Kobayashi N, Tada M, Itoh T, Saitoh S, Kondo M, Takahashi N, Kataoka A, Nakanishi K, Takahashi M, Kamiyama T, Ozaki M, Hirano T, Todo S. Array comparative genomic hybridization analysis revealed four genomic prognostic biomarkers for primary gastric cancers. ACTA ACUST UNITED AC 2010; 201:6-14. [PMID: 20633762 DOI: 10.1016/j.cancergencyto.2010.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 03/29/2010] [Accepted: 04/21/2010] [Indexed: 12/14/2022]
Abstract
Unlike the case with some other solid tumors, whole genome array screening has not revealed prognostic genetic aberrations in primary gastric cancer. Comparative genomic hybridization (CGH) using bacterial artificial chromosome (BAC) arrays for 56 primary gastric cancers resulted in identification of four prognostic loci in this study: 6q21 (harboring FOXO3A; previously FKHRL1), 9q32 (UGCG), 17q21.1 approximately q21.2 (CASC3), and 17q21.32 (HOXB3 through HOXB9). If any one of these four loci was deleted, the prognosis of the patient was significantly worse (P = 0.0019). This was true even for advanced tumors (stage IIIA, IIB, or IV, n = 39) (P = 0.0113), whereas only 1 of the 17 patients with less advanced tumors (stage IA, IB, or II; n = 17) died of disease after surgery. Multivariate analysis according to the status of four BACs or pathological stage based on the Japanese Classification of Gastric Carcinoma (stages IA, IB, and II vs. stages IIIA, IIIB, and IV) demonstrated that the BAC clone status was also an independent prognostic factor (P = 0.006). These findings may help predict which patients with malignant potential need more intensive therapy, or may point to new therapeutic approaches especially for advanced tumors. The parameter here termed the integrated genomic prognostic biomarker may therefore be of clinical utility as a prognostic biomarker.
Collapse
Affiliation(s)
- Nobumoto Tomioka
- Department of General Surgery, Hokkaido University Graduate School of Medicine, N-15 W-7 Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xie HL, Li ZY, Gan RL, Li XJ, Zhang QL, Hui M, Zhou XT. Differential gene and protein expression in primary gastric carcinomas and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. J Dig Dis 2010; 11:167-75. [PMID: 20579220 DOI: 10.1111/j.1751-2980.2010.00432.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To gain insight into the molecular events of lymph node metastasis of human gastric carcinoma. METHODS The gene expression profile of five matched primary gastric carcinomas and their lymph node metastases was analyzed by complementary DNA (cDNA) microarray. Differential genes were identified in the metastatic and corresponding primary tumor pairs. Among the differentially expressed genes, carbonic anhydrase II (CAII) and insulin-like growth factor binding protein 4 (IGFBP 4) genes were detected by RT-PCR. CTTN protein expression was examined by tissue microarray. RESULTS There was a high expression (over twofold) of 44 genes and a low expression (under twofold) of 32 genes in lymph node metastasis compared with primary gastric carcinoma, respectively. CAII mRNA was downregulated and IGFBP 4 mRNA was upregulated in paired lymph node metastases of gastric carcinomas. The overexpression of CTTN protein was related to the lymph node metastasis and the clinical stage of gastric carcinomas. CONCLUSION This study showed that there is a low expression of genes relative to growth signal and immune response in lymph node metastases, and a high expression of genes relative to growth factor, cell cycle, cell motility and adhesion in lymph node metastases compared with primary gastric carcinomas. The expression of CTTN was related to the invasion and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Hai Long Xie
- Cancer Research Institute, Medical College of University of South China, Hengyang, Hunan Province, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Gümüs-Akay G, Unal AE, Elhan AH, Bayar S, Karadayt K, Sunguroglu A, Kadikiran A, Tükün A. DNA copy number changes in gastric adenocarcinomas: high resolution-comparative genomic hybridization study in Turkey. Arch Med Res 2010; 40:551-60. [PMID: 20082868 DOI: 10.1016/j.arcmed.2009.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 06/25/2009] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Multiple genetic alterations are responsible for development and progression of gastric cancer which is one of the leading causes of cancer-related deaths worldwide. The aim of this study was to identify the genomic imbalances of gains and/or losses in gastric adenocarcinomas from Turkish patients and to investigate their association with development and progression of this type of cancer. METHODS Forty three patients with gastric adenocarcinoma were enrolled in this study and genomic imbalances were analyzed by high-resolution-comparative genomic hybridization (HR-CGH). RESULTS In 36/43 cases (84%) of gastric adenocarcinomas, genomic imbalances have involved all chromosomes in various combinations. The mean number of gains was 3.95+/-4.19 and the most common gains observed were 7q (35%), 8q (35%), 7p (28%), 1q (26%), 13q (26%), and 20q (21%). The calculated mean number of losses was 3.65+/-3.55 and the most common losses were found on arms 18q (26%), 5q (21%), and 14q (21%). High-level amplifications involved chromosomes 1, 7, 8, 9, 13, and 16. No significant differences in chromosomal imbalances were observed in different tumor stages, tumor grades, and Helicobacter pylori infection status groups. The most striking result in this study was the involvement of the 13q gains with increased lymph node metastasis (p=0.046). Late-stage tumors displayed a somewhat significantly higher number of losses than early-stage tumors (p=0.053). CONCLUSIONS A series of gains, losses and amplifications concerned with gastric adenocarcinoma identified in this study are presented in detail. In particular, 13q21-q32 was prominent because it has been linked to increased lymph node metastasis.
Collapse
Affiliation(s)
- Güvem Gümüs-Akay
- Department of Medical Biology, Ankara University, Sihhiye, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Gastric cancer is one of the world's leading causes of cancer mortality. A small percentage of cases can be attributed to heritable mutations in highly penetrant cancer susceptibility genes. In this chapter we will focus on the genetic cause of hereditary diffuse gastric cancer (HDGC). Until 10 years ago, individuals from these families lived with the uncertainty of developing lethal gastric cancer. Today, HDGC families can be identified, tested for causative mutations in CDH1, and for those families where a pathogenic mutation can be identified, prophylactic total gastrectomy can be implemented in asymptomatic mutation carriers who elect to virtually eliminate their risk of developing this lethal disease.
Collapse
Affiliation(s)
- Kasmintan Schrader
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, BC, Canada, V5Z 4E6.
| | | |
Collapse
|
15
|
Kim J, Kim MA, Jee CD, Jung EJ, Kim WH. Reduced expression and homozygous deletion of annexin A10 in gastric carcinoma. Int J Cancer 2009; 125:1842-50. [DOI: 10.1002/ijc.24541] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2-q29 in squamous cell carcinoma of the lung. BMC Cancer 2009; 9:237. [PMID: 19607727 PMCID: PMC2716371 DOI: 10.1186/1471-2407-9-237] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 07/16/2009] [Indexed: 11/10/2022] Open
Abstract
Background The underlying genetic alterations for squamous cell carcinoma (SCC) and adenocarcinoma (AC) carcinogenesis are largely unknown. Methods High-resolution array- CGH was performed to identify the differences in the patterns of genomic imbalances between SCC and AC of non-small cell lung cancer (NSCLC). Results On a genome-wide profile, SCCs showed higher frequency of gains than ACs (p = 0.067). More specifically, statistically significant differences were observed across the histologic subtypes for gains at 2q14.2, 3q26.2–q29, 12p13.2–p13.33, and 19p13.3, as well as losses at 3p26.2–p26.3, 16p13.11, and 17p11.2 in SCC, and gains at 7q22.1 and losses at 15q22.2–q25.2 occurred in AC (P < 0.05). The most striking difference between SCC and AC was gains at the 3q26.2–q29, occurring in 86% (19/22) of SCCs, but in only 21% (3/14) of ACs. Many significant genes at the 3q26.2–q29 regions previously linked to a specific histology, such as EVI1,MDS1, PIK3CA and TP73L, were observed in SCC (P < 0.05). In addition, we identified the following possible target genes (> 30% of patients) at 3q26.2–q29: LOC389174 (3q26.2),KCNMB3 (3q26.32),EPHB3 (3q27.1), MASP1 and SST (3q27.3), LPP and FGF12 (3q28), and OPA1,KIAA022,LOC220729, LOC440996,LOC440997, and LOC440998 (3q29), all of which were significantly targeted in SCC (P < 0.05). Among these same genes, high-level amplifications were detected for the gene, EPHB3, at 3q27.1, and MASP1 and SST, at 3q27.3 (18, 18, and 14%, respectively). Quantitative real time PCR demonstrated array CGH detected potential candidate genes that were over expressed in SCCs. Conclusion Using whole-genome array CGH, we have successfully identified significant differences and unique information of chromosomal signatures prevalent between the SCC and AC subtypes of NSCLC. The newly identified candidate target genes may prove to be highly attractive candidate molecular markers for the classification of NSCLC histologic subtypes, and could potentially contribute to the pathogenesis of the squamous cell carcinoma of the lung.
Collapse
Affiliation(s)
- Ji Un Kang
- Department of Pathology, Columbia University Medical Center, New York, NY, USA.
| | | | | | | | | |
Collapse
|
17
|
Feng YB, Lin DC, Shi ZZ, Wang XC, Shen XM, Zhang Y, Du XL, Luo ML, Xu X, Han YL, Cai Y, Zhang ZQ, Zhan QM, Wang MR. Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma. Int J Cancer 2009; 124:578-88. [PMID: 19004025 DOI: 10.1002/ijc.23990] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PLK1 is essential for the maintenance of genomic stability during mitosis. In our study, we found that overexpression of PLK1 was an independent prognostic factor (RR=4.253, p=0.020) and significantly correlated with survivin, an antiapoptotic protein, in esophageal squamous cell carcinoma (ESCC). Reverse transcription-polymerase chain reaction and fluorescence in situ hybridization (FISH) revealed upregulation of PLK1 mRNA and amplification of PLK1 gene, respectively. Depletion of PLK1 activated the intrinsic apoptotic pathway, which was substantiated by loss of mitochondrial membrane potential, reduction of Mcl-1 and Bcl-2 as well as activation of caspase-9. Coimmunoprecipitation and confocal microscopy displayed that PLK1 was associated with survivin and PLK1 depletion led to downregulation of survivin. Cotransfection of survivin constructs could partially reverse PLK1-depletion-induced apoptosis. These data suggest that PLK1 might be a useful prognostic marker and a potential therapeutic target for ESCC. Survivin is probably involved in antiapoptotic function of PLK1.
Collapse
MESH Headings
- Apoptosis/physiology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Blotting, Western
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Cell Cycle Proteins/biosynthesis
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/pathology
- Female
- Gene Expression
- Humans
- Immunohistochemistry
- Immunoprecipitation
- In Situ Hybridization, Fluorescence
- Inhibitor of Apoptosis Proteins
- Kaplan-Meier Estimate
- Male
- Membrane Potential, Mitochondrial/physiology
- Microscopy, Confocal
- Microtubule-Associated Proteins/metabolism
- Middle Aged
- Neoplasm Proteins/metabolism
- Protein Serine-Threonine Kinases/biosynthesis
- Proto-Oncogene Proteins/biosynthesis
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Survivin
- Tissue Array Analysis
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Yan-Bin Feng
- State Key Laboratory of Molecular Oncology, Cancer Institute Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Comparison of chromosomal aberrations between primary tumors and their synchronous lymph-node metastases in intestinal-type gastric carcinoma. Pathol Res Pract 2008; 205:105-11. [PMID: 19041191 DOI: 10.1016/j.prp.2008.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 09/09/2008] [Accepted: 09/17/2008] [Indexed: 11/23/2022]
Abstract
Lymph-node metastasis is a main factor causing poor prognosis of patients with gastric cancer (GC). In order to determine the genes involved in lymph-node metastasis, we compared primary tumors with their synchronous lymph-node metastases for DNA sequence copy number aberrations (DSCNAs) in 20 patients diagnosed as having intestinal-type GC using comparative genomic hybridization (CGH). The results showed that some DSCNAs (gains at 8q, 13q, 5p, 7 and X, and losses at 1p, 17p, 19, 21q and 22q) were frequently found in both primary tumors and their metastases. However, metastases often contained DSCNAs that were not found in corresponding primary tumors, and gain at 20q12-13 and losses at 21qcen-21, 4q and 14q22-ter were significantly more frequently observed in metastatic lesions than in their primary tumors (10:2, 9:0, 6:0, and 7:0 between metastases and corresponding primary tumors, respectively). Our data indicate that gain at 20q12-13 and losses at 21qcen-21, 4q, and 14q22-ter are involved in lymph-node metastases, and that these chromosomal regions may contain the genes related to lymph-node metastases in intestinal-type GC.
Collapse
|
19
|
Wu JL, Yu YY. Role of chromosome structure variation in carcinogenesis and progression of gastric cancer. Shijie Huaren Xiaohua Zazhi 2008; 16:3642-3647. [DOI: 10.11569/wcjd.v16.i32.3642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The carcinogenesis of gastric cancer is a multifactor process with many steps, of which, both the losing activity of tumor suppressor genes resulting from the abnormal structure of the chromosomes, and the activation of the oncogenes play important roles in these process. Therefore, identification of the tumor suppressor gene and oncogene through researching on the structural chromosomal abnormality has become an important means for the research of gastric cancer and oncology. This paper reviews the researches on current progresses on structural chromosomal abnormality in gastric cancer, especially on the aspect of methodology, and explained the application of various molecular genetics and molecular biology means used in structural chromosomal abnormality research. This paper aimed at providing references for the choice of researching methods for the readers.
Collapse
|
20
|
Tang Y, Zhu J, Chen L, Chen L, Zhang S, Lin J. Associations of matrix metalloproteinase-9 protein polymorphisms with lymph node metastasis but not invasion of gastric cancer. Clin Cancer Res 2008; 14:2870-7. [PMID: 18451255 DOI: 10.1158/1078-0432.ccr-07-4042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Like most cancers, gastric cancer has a complex multistep etiology that involves both environmental and genetic factors. Matrix metalloproteinase-9 (MMP-9) is frequently overexpressed in gastric cancer. We investigated the effect of the genetic differences in MMP-9 coding region on the occurrence and progression of gastric cancer. EXPERIMENTAL DESIGN A case-control study was conducted in a population of 74 patients and 100 healthy people in southeast China. Individuals were genotyped for two single nucleotide polymorphisms (SNP) in MMP-9: R279Q and P574R. Genotypic distributions between patient and control groups were compared for correlations with cancer occurrence. Associations between genotypic distributions and several clinicopathologic features were also analyzed using univariate tests, multivariate logistic regression modeling, and stratified analyses. RESULTS Significant associations were revealed between both SNPs and lymph node metastasis [P = 0.012 and 0.025; odds ratio (OR), 3.4 and 2.8, respectively]. After adjustment using logistic regression for the potential confounding effects of gender, age, and location of the tumors, homozygous MMP-9 279RR and 574PP are more evidently associated with lymph node metastasis with OR(adjusted) of 5.7 [95% confidence interval (95% CI), 1.80-18.34] and 4.2 (95% CI, 1.37-12.69). The homozygous 279R-574P haplotype showed a stronger association by an OR(adjusted) of 6.1 (95% CI, 1.92-12.29) and was also associated with the 1-year postoperative mortality (OR(adjusted), 6.5; 95% CI, 1.18-35.74). Interestingly, our data also suggested that the MMP-9 polymorphisms seem to result in higher risk of lymph node metastasis through a pathway independent of cancer invasion because no positive associations were found between these polymorphisms and cancer invasion (OR, 0.59 < 1). The stratified analyses indicated a synergistic interaction between the MMP-9 polymorphisms and the type of diffuse in affecting lymph node metastasis (OR, 13.4; P(between strata) = 0.04). Significant association between both SNPs and the overall occurrence of gastric cancer was not observed. CONCLUSION The present study has shown significant associations between the two nonsynonymous MMP-9 polymorphisms with lymph node metastasis in gastric cancer, especially with the diffuse type. The relatively large values of ORs and disassociation with cancer invasion suggest that the genetic differences of MMP-9 protein play an important and specific role in lymph node metastases, and therefore, further investigation of the underlying molecular mechanism is warranted.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of Infection and Oncology, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
21
|
Hou Q, Wu YH, Grabsch H, Zhu Y, Leong SH, Ganesan K, Cross D, Tan LK, Tao J, Gopalakrishnan V, Tang BL, Kon OL, Tan P. Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res 2008; 68:4623-30. [PMID: 18559507 DOI: 10.1158/0008-5472.can-07-5870] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recurrent genomic amplifications and deletions are frequently observed in primary gastric cancers (GC). However, identifying specific oncogenes and tumor suppressor genes within these regions can be challenging, as they often cover tens to hundreds of genes. Here, we combined high-resolution array-based comparative genomic hybridization (aCGH) with gene expression profiling to target genes within focal high-level amplifications in GC cell lines, and identified RAB23 as an amplified and overexpressed Chr 6p11p12 gene in Hs746T cells. High RAB23 protein expression was also observed in some lines lacking RAB23 amplification, suggesting additional mechanisms for up-regulating RAB23 besides gene amplification. siRNA silencing of RAB23 significantly reduced cellular invasion and migration in Hs746T cells, whereas overexpression of RAB23 enhanced cellular invasion in AGS cells. RAB23 amplifications in primary gastric tumors were confirmed by both fluorescence in situ hybridization and genomic qPCR, and in two independent patient cohorts from Hong Kong and the United Kingdom RAB23 expression was significantly associated with diffuse-type GC (dGC) compared with intestinal-type GC (iGC). These results provide further evidence that dGC and iGC likely represent two molecularly distinct tumor types, and show that investigating focal chromosomal amplifications by combining high-resolution aCGH with expression profiling is a powerful strategy for identifying novel cancer genes in regions of recurrent chromosomal aberration.
Collapse
Affiliation(s)
- Qingsong Hou
- National Cancer Centre, Department of Biochemistry, National University of Singapore, Duke-NUS Graduate Medical School, and Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Panani AD. Cytogenetic and molecular aspects of gastric cancer: clinical implications. Cancer Lett 2008; 266:99-115. [PMID: 18381231 DOI: 10.1016/j.canlet.2008.02.053] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/05/2008] [Accepted: 02/22/2008] [Indexed: 12/13/2022]
Abstract
Gastric cancer is of major importance world-wide being the second most common cause of cancer-related death in the world. According to Lauren's histological classification gastric cancer is divided in two groups, the better differentiated intestinal carcinomas and the poorly differentiated diffuse-type cancers. The genetic changes underlying the initiation and progression of gastric cancer are not well defined. Gastric carcinogenesis is a multistep process involving a number of genetic and epigenetic factors. Although it has been proposed that different genetic pathways exist for differentiated and undifferentiated carcinomas, the two histological subtypes of gastric cancer share some common genetic alterations. Currently, tumor histology and pathologic stage are the major prognostic variables used in the clinical practice for gastric cancer patients. However, it is known that tumors with similar morphology may differ in biological aggressiveness, prognosis and response to treatment. Molecular genetic analysis of gastric cancer revealed a number of associations of certain genetic changes with pathological features, tumor biological behavior and prognosis of gastric cancer patients, suggesting that these genetic abnormalities might play an important role in gastric tumorigenesis. Increasing evidence suggests that the molecular genetic changes could be helpful in the clinical setting, contributing to prognosis and management of patients. Regarding epigenetic events in gastric tumorigenesis, a number of methylating markers have been proposed for risk assessment, prognostic evaluation and as therapeutic targets. However, further research is required in order to systematically investigate the genetic changes in gastric cancer estimating also their usefulness in the clinical practice. A good understanding of the genetic changes underlying gastric carcinogenesis may provide new perspectives for prognosis and screening of high risk individuals. Some of the genetic alterations could definitely improve tumor classification and management of gastric cancer patients. Also, based on molecular data identified in gastric cancer novel therapeutics might help to improve the treatment of this disease.
Collapse
Affiliation(s)
- Anna D Panani
- Critical Care Department, Medical School of Athens University, Cytogenetics Unit, Evangelismos Hospital, Ipsilandou 45-47, Athens 10676, Greece
| |
Collapse
|