1
|
Lema Fernandez AG, Nardelli C, Pierini V, Crescenzi B, Pellanera F, Matteucci C, Crocioni M, Arniani S, Di Battista V, Quintini M, Mondanelli G, Orabona C, Gorello P, Mecucci C. Epigenetic Modeling of Jumping Translocations of 1q Heterochromatin in Acute Myeloid Leukemia After 5'-Azacytidine Treatment. Genes Chromosomes Cancer 2024; 63:e70013. [PMID: 39604137 PMCID: PMC11602642 DOI: 10.1002/gcc.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Jumping translocations (JT) are rare cytogenetic abnormalities associated with progression in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Typically, a tri-tetra-somic 1q chromosome is translocated to two or more recipient chromosomes. In multiple myeloma JT were shown to originate after DNA demethylation and decondensation. Using epigenomics, we investigated sequential samples in an SRSF2-mutated MDS and AML cohort with normal karyotype at diagnosis and 1qJT at disease evolution after 5'-azacytidine (AZA). 1qJT breakpoints fell within repetitive DNA at both 1q12 and the translocation partners, namely acrocentrics n. 14, 15, 21, and 22, chromosome 16, and chromosome Y. The global methylome at diagnosis showed hypermethylation at 61% of the differentially methylated regions (DMRs), followed by hypomethylation at 80% of DMRs under AZA, mostly affecting pathways related to immune system, chromatin organization, chromosome condensation, telomere maintenance, rRNA, and DNA repair. At disease evolution, a shift toward hypermethylation, intronic enhancers enrichment and epigenetic involvement of the PI3K/AKT and MAPK signaling emerged. In particular, AKT1 phosphorylation behaved as a hallmark of the progression. Overall, we provided new insights on the characterization of 1qJT in SRSF2-mutated myeloid neoplasms and first showed that epigenetics is a powerful tool to investigate the molecular landscape of repetitive DNA rearrangements.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Translocation, Genetic
- Epigenesis, Genetic
- Heterochromatin/genetics
- Chromosomes, Human, Pair 1/genetics
- Azacitidine/pharmacology
- DNA Methylation
- Female
- Male
- Aged
- Middle Aged
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/pathology
Collapse
Affiliation(s)
- Anair Graciela Lema Fernandez
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Carlotta Nardelli
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Valentina Pierini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Barbara Crescenzi
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Fabrizia Pellanera
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Caterina Matteucci
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Maria Crocioni
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Silvia Arniani
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Valeria Di Battista
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Martina Quintini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| | - Giada Mondanelli
- Department of Medicine and Surgery, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Ciriana Orabona
- Department of Medicine and Surgery, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Paolo Gorello
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Cristina Mecucci
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation UnitUniversity of PerugiaPerugiaItaly
| |
Collapse
|
2
|
Schwickert M, Fischer TR, Zimmermann RA, Hoba SN, Meidner JL, Weber M, Weber M, Stark MM, Koch J, Jung N, Kersten C, Windbergs M, Lyko F, Helm M, Schirmeister T. Discovery of Inhibitors of DNA Methyltransferase 2, an Epitranscriptomic Modulator and Potential Target for Cancer Treatment. J Med Chem 2022; 65:9750-9788. [PMID: 35849534 DOI: 10.1021/acs.jmedchem.2c00388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.
Collapse
Affiliation(s)
- Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - J Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Moritz Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Martin M Stark
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Jonas Koch
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| |
Collapse
|
3
|
Lavogina D, Laasfeld T, Vardja M, Lust H, Jaal J. Viability fingerprint of glioblastoma cell lines: roles of mitotic, proliferative, and epigenetic targets. Sci Rep 2021; 11:20338. [PMID: 34645858 PMCID: PMC8514540 DOI: 10.1038/s41598-021-99630-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.
Collapse
Affiliation(s)
- Darja Lavogina
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tõnis Laasfeld
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia ,grid.10939.320000 0001 0943 7661Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Markus Vardja
- grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| | - Helen Lust
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia
| | - Jana Jaal
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
4
|
Sorrentino VG, Thota S, Gonzalez EA, Rameshwar P, Chang VT, Etchegaray JP. Hypomethylating Chemotherapeutic Agents as Therapy for Myelodysplastic Syndromes and Prevention of Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2021; 14:641. [PMID: 34358067 PMCID: PMC8308509 DOI: 10.3390/ph14070641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic Syndromes (MDSs) affect the elderly and can progress to Acute Myeloid Leukemia (AML). Epigenetic alterations including DNA methylation and chromatin modification may contribute to the initiation and progression of these malignancies. DNA hypomethylating agents such as decitabine and azacitidine are used as therapeutic treatments and have shown to promote expression of genes involved in tumor suppression, apoptosis, and immune response. Another anti-cancer drug, the proteasome inhibitor bortezomib, is used as a chemotherapeutic treatment for multiple myeloma (MM). Phase III clinical trials of decitabine and azacitidine used alone and in combination with other chemotherapeutics demonstrated their capacity to treat hematological malignancies and prolong the survival of MDS and AML patients. Although phase III clinical trials examining bortezomib's role in MDS and AML patients are limited, its underlying mechanisms in MM highlight its potential as a chemotherapeutic for such malignancies. Further research is needed to better understand how the epigenetic mechanisms mediated by these chemotherapeutic agents and their targeted gene networks are associated with the development and progression of MDS into AML. This review discusses the mechanisms by which decitabine, azacitidine, and bortezomib alter epigenetic programs and their results from phase III clinical trials.
Collapse
Affiliation(s)
- Vincent G. Sorrentino
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| | - Srijan Thota
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA;
| | - Victor T. Chang
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA;
- Veteran Affairs New Jersey Health Care System, East Orange, NJ 07018, USA;
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| |
Collapse
|
5
|
Tang H, Chen J, Han X, Feng Y, Wang F. Upregulation of SPP1 Is a Marker for Poor Lung Cancer Prognosis and Contributes to Cancer Progression and Cisplatin Resistance. Front Cell Dev Biol 2021; 9:646390. [PMID: 33996808 PMCID: PMC8116663 DOI: 10.3389/fcell.2021.646390] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
The chemoresistance of lung cancer is a significant contributor to its high mortality and morbidity rate. There is an urgent need to identify differentially expressed genes in lung cancer patients with a poor prognosis to develop effective means to overcome drug resistance in subsequent treatment. In this study, we identified the secreted phosphoprotein 1 (SPP1) as a potential gene associated with a poor diagnosis of lung cancer patients using the Cancer Genome Atlas analysis, which suggested that the expression of SPP1 in tumor tissues was significantly higher than normal tissues. The high expression of SPP1 was also correlated with tumor grade and poor clinical prognosis. To understand the roles of SPP1 and the DNA methyltransferase 1 (DNMT1), which regulated SPP1 expression, in affecting cell viability, migration and invasion, SPP1 and DNMT1 were overexpressed in the human lung cancer A549 and NCI-446 cells, followed by analyzing cell viability, migration and invasion. We showed that SPP1 promoted the proliferation, migration and invasion of lung cancer cells, and increased the resistance of lung cancer to the chemotherapeutic drug cisplatin. Knocking down SPP1 in cells restored sensitivity to cisplatin. Further, A549 cells without SPP1 overexpression demonstrated lower tumor growth rate than SPP1 overexpression cells using the xenograft tumor mouse model. High expression of SPP1 in lung cancer tumor tissue was caused by the reduced methylation level of its promoter region mediated by DNMT1. Our data suggested that SPP1 can be used as a marker for highly malignant lung cancer and targeting SPP1 may be a potential lung cancer treatment strategy.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Jianyou Chen
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaolei Han
- Health Office, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Feng
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Fang Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
6
|
Cabezón M, Malinverni R, Bargay J, Xicoy B, Marcé S, Garrido A, Tormo M, Arenillas L, Coll R, Borras J, Jiménez MJ, Hoyos M, Valcárcel D, Escoda L, Vall-Llovera F, Garcia A, Font LL, Rámila E, Buschbeck M, Zamora L. Different methylation signatures at diagnosis in patients with high-risk myelodysplastic syndromes and secondary acute myeloid leukemia predict azacitidine response and longer survival. Clin Epigenetics 2021; 13:9. [PMID: 33446256 PMCID: PMC7809812 DOI: 10.1186/s13148-021-01002-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epigenetic therapy, using hypomethylating agents (HMA), is known to be effective in the treatment of high-risk myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients who are not suitable for intensive chemotherapy and/or allogeneic stem cell transplantation. However, response rates to HMA are low and there is an unmet need in finding prognostic and predictive biomarkers of treatment response and overall survival. We performed global methylation analysis of 75 patients with high-risk MDS and secondary AML who were included in CETLAM SMD-09 protocol, in which patients received HMA or intensive treatment according to age, comorbidities and cytogenetic. RESULTS Unsupervised analysis of global methylation pattern at diagnosis did not allow patients to be differentiated according to the cytological subtype, cytogenetic groups, treatment response or patient outcome. However, after a supervised analysis we found a methylation signature defined by 200 probes, which allowed differentiating between patients responding and non-responding to azacitidine (AZA) treatment and a different methylation pattern also defined by 200 probes that allowed to differentiate patients according to their survival. On studying follow-up samples, we confirmed that AZA decreases global DNA methylation, but in our cohort the degree of methylation decrease did not correlate with the type of response. The methylation signature detected at diagnosis was not useful in treated samples to distinguish patients who were going to relapse or progress. CONCLUSIONS Our findings suggest that in a subset of specific CpGs, altered DNA methylation patterns at diagnosis may be useful as a biomarker for predicting AZA response and survival.
Collapse
Affiliation(s)
- M Cabezón
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Badalona, Spain
| | - R Malinverni
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Spain
| | - J Bargay
- Hematology Service, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - B Xicoy
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Badalona, Spain
| | - S Marcé
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain
| | - A Garrido
- Hematology Service, Hospital de Sant Pau, Barcelona, Spain
| | - M Tormo
- Hematology Service, Hospital Clínico de Valencia, Valencia, Spain
| | - L Arenillas
- Hematology Service, Hospital del Mar, Barcelona, Spain
| | - R Coll
- Hematology Service, ICO Girona - Hospital Josep Trueta, Girona, Spain
| | - J Borras
- Hematology Service, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - M J Jiménez
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain
| | - M Hoyos
- Hematology Service, Hospital de Sant Pau, Barcelona, Spain
| | - D Valcárcel
- Hematology Service, Hospital Vall D'Hebron, Barcelona, Spain
| | - L Escoda
- Hematology Service, Hospital Joan XXIII, Tarragona, Spain
| | - F Vall-Llovera
- Hematology Service, Hospital Mútua de Terrassa, Terrassa, Spain
| | - A Garcia
- Hematology Service, Hospital Arnau de Vilanova, Lleida, Spain
| | - L L Font
- Hematology Service, Hospital Verge de La Cinta, Tortosa, Spain
| | - E Rámila
- Hematology Service, Hospital Parc Taulí, Sabadell, Spain
| | - M Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias I Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - L Zamora
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.
| | | |
Collapse
|
7
|
Greene AG, Eivers SB, McDonnell F, Dervan EWJ, O'Brien CJ, Wallace DM. Differential Lysyl oxidase like 1 expression in pseudoexfoliation glaucoma is orchestrated via DNA methylation. Exp Eye Res 2020; 201:108349. [PMID: 33188817 DOI: 10.1016/j.exer.2020.108349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Pseudoexfoliation syndrome (PXF) is the most common cause of secondary open angle glaucoma worldwide. Single nucleotide polymorphisms (SNPs) in the gene Lysyl oxidase like 1 (LOXL1) are strongly associated with the development of pseudoexfoliation glaucoma (PXFG). However, these SNPs are also present in 50-80% of the general population, suggestive of other factors being involved in the pathogenesis of PXFG. In this study, we aimed to investigate the influence of epigenetic regulation, specifically DNA methylation, on LOXL1 expression in PXFG using human tenons fibroblasts (HTFs), aqueous humour and serum samples from donors with and without PXFG. LOXL1 expression in HTFs was measured by qPCR and Western Blotting and LOXL1 concentration in aqueous humour was determined by ELISA. Global DNA methylation levels were quantified using an ELISA for 5-methylcytosine. MeDIP assays assessed the methylation status of the LOXL1 promoter region. Expression of methylation-associated enzymes (DNMT1, DNMT3a and MeCP2) were determined by qPCR and inhibited by 0.3 μM 5-azacytidine (5-aza). Results showed that LOXL1 expression was significantly decreased in PXFG HTFs compared with Control HTFs at gene (Fold change 0.37 ± 0.05, P < 0.01) level and showed a decrease, when measured at the protein level (Fold change 0.65 ± 0.42, P = 0.22), however this was not found to be significant. LOXL1 concentration was increased in the aqueous of PXFG patients compared with Controls (2.76 ± 0.78 vs. 1.79 ± 0.33 ng/ml, P < 0.01). Increased global methylation (56.07% ± 4.87% vs. 32.39% ± 4.29%, P < 0.01) was observed in PXFG HTFs compared with Control HTFs, as was expression of methylation-associated enzymes (DNMT1 1.58 ± 0.30, P < 0.05, DNMT3a 1.89 ± 0.24, P < 0.05, MeCP2 1.63 ± 0.30, P < 0.01). Methylation-associated enzymes were also increased when measured at protein level (DNMT1 5.70 ± 2.64, P = 0.04, DNMT3a 1.79 ± 1.55, P = 0.42, MeCP2 1.64 ± 1.33, P = 0.45). LOXL1 promoter methylation was increased in patients with PXFG compared to Control patients in both blood (3.98 ± 2.24, 2.10 ± 1.29, P < 0.05) and HTF cells (37.31 ± 22.0, 8.66 ± 10.40, P < 0.01). Treatment of PXFG HTFs with in 5-azacytidine increased LOXL1 expression when compared with untreated PXFG HTFs (Fold change 2.26 ± 0.67, P < 0.05). These data demonstrate that LOXL1 expression is altered in PXFG via DNA methylation and that reversal of these epigenetic changes may represent future potential therapeutic targets in the management of PXFG.
Collapse
Affiliation(s)
- Alison G Greene
- Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| | - Sarah B Eivers
- Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| | - Fiona McDonnell
- Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| | - Edward W J Dervan
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Colm J O'Brien
- Clinical Research Centre, School of Medicine, University College Dublin, Ireland; Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Deborah M Wallace
- Clinical Research Centre, School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
8
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
9
|
Topart C, Werner E, Arimondo PB. Wandering along the epigenetic timeline. Clin Epigenetics 2020; 12:97. [PMID: 32616071 PMCID: PMC7330981 DOI: 10.1186/s13148-020-00893-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing life expectancy but also healthspan seems inaccessible as of yet but it may become a reality in the foreseeable future. To extend lifespan, it is essential to unveil molecular mechanisms involved in ageing. As for healthspan, a better understanding of the mechanisms involved in age-related pathologies is crucial. MAIN BODY We focus on the epigenetic side of ageing as ageing is traced by specific epigenetic patterns and can be measured by epigenetic clocks. We discuss to what extent exposure to environmental factor, such as alcohol use, unhealthy diet, tobacco and stress, promotes age-related conditions. We focused on inflammation, cancer and Alzheimer's disease. Finally, we discuss strategies to reverse time based on epigenetic reprogramming. CONCLUSIONS Reversibility of the epigenetic marks makes them promising targets for rejuvenation. For this purpose, a better understanding of the epigenetic mechanisms underlying ageing is essential. Epigenetic clocks were successfully designed to monitor these mechanisms and the influence of environmental factors. Further studies on age-related diseases should be conducted to determine their epigenetic signature, but also to pinpoint the defect in the epigenetic machinery and thereby identify potential therapeutic targets. As for rejuvenation, epigenetic reprogramming is still at an early stage.
Collapse
Affiliation(s)
- Clémence Topart
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Emilie Werner
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Paola B Arimondo
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
10
|
Greene AG, Eivers SB, Dervan EWJ, O'Brien CJ, Wallace DM. Lysyl Oxidase Like 1: Biological roles and regulation. Exp Eye Res 2020; 193:107975. [PMID: 32070696 DOI: 10.1016/j.exer.2020.107975] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Lysyl Oxidase Like 1 (LOXL1) is a gene that encodes for the LOXL1 enzyme. This enzyme is required for elastin biogenesis and collagen cross-linking, polymerising tropoelastin monomers into elastin polymers. Its main role is in elastin homeostasis and matrix remodelling during injury, fibrosis and cancer development. Because of its vast range of biological functions, abnormalities in LOXL1 underlie many disease processes. Decreased LOXL1 expression is observed in disorders of elastin such as Cutis Laxa and increased expression is reported in fibrotic disease such as Idiopathic Pulmonary Fibrosis. LOXL1 is also downregulated in the lamina cribrosa in pseudoexfoliation glaucoma and genetic variants in the LOXL1 gene have been linked with an increased risk of developing pseudoexfoliation glaucoma and pseudoexfoliation syndrome. However the two major risk alleles are reversed in certain ethnic groups and are present in a large proportion of the normal population, implying complex genetic and environmental regulation is involved in disease pathogenesis. It also appears that the non-coding variants in intron 1 of LOXL1 may be involved in the regulation of LOXL1 expression. Gene alteration may occur via a number of epigenetic and post translational mechanisms such as DNA methylation, long non-coding RNAs and microRNAs. These may represent future therapeutic targets for disease. Environmental factors such as hypoxia, oxidative stress and ultraviolet radiation exposure alter LOXL1 expression, and it is likely a combination of these genetic and environmental factors that influence disease development and progression. In this review, we discuss LOXL1 properties, biological roles and regulation in detail with a focus on pseudoexfoliation syndrome and glaucoma.
Collapse
Affiliation(s)
- Alison G Greene
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland.
| | - Sarah B Eivers
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| | - Edward W J Dervan
- Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Colm J O'Brien
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Deborah M Wallace
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
11
|
Ye F, Li N. Role of p15(INK4B) Methylation in Patients With Myelodysplastic Syndromes: A Systematic Meta-Analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e259-e265. [PMID: 31023595 DOI: 10.1016/j.clml.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor suppressor gene cyclin-dependent kinase inhibitor 2B (p15(INK4B)) methylation has been frequently reported in myelodysplastic syndromes (MDS). However, the association between p15(INK4B) methylation and MDS remains elusive. Thus, this meta-analysis was first conducted to evaluate the clinical significance of p15(INK4B) methylation in MDS. MATERIALS AND METHODS Eligible studies were identified via an online electronic databases search. The overall odds ratios (ORs) or hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. RESULTS Twenty-eight studies published between 1997 and 2017 were identified, including 1205 MDS patients and 243 nontumor controls. No evidence of heterogeneity was found in our study. p15(INK4B) methylation was significantly elevated in MDS compared with nontumor controls (OR, 10.37; P < .001). In addition, p15(INK4B) methylation was significantly higher in advanced MDS than in early MDS (OR, 4.70; P < .001) and was linked to an unfavorable overall survival (multivariate analysis: HR, 1.78; 95% CI, 1.23-2.71). Subgroup analyses on the basis of ethnicity and detection method showed that the results remained significant in different subgroups (all Ps < .05). CONCLUSION Our findings suggest that p15(INK4B) methylation might play an important role in the development, progression, and poor prognosis of MDS. More prospective studies with larger study populations are needed.
Collapse
Affiliation(s)
- Fang Ye
- Department of Hematology, Chuiyangliu Hospital affiliated to Tsinghua University, Beijing, China.
| | - Ningning Li
- Department of Hematology, Chuiyangliu Hospital affiliated to Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Mutations in the DNA methylation pathway and number of driver mutations predict response to azacitidine in myelodysplastic syndromes. Oncotarget 2017; 8:106948-106961. [PMID: 29291002 PMCID: PMC5739787 DOI: 10.18632/oncotarget.22157] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
We evaluated the association of mutations in 34 candidate genes and response to azacitidine in 84 patients with myelodysplastic syndrome (MDS), with 217 somatic mutations identified by next-generation sequencing. Most patients (93%) had ≥1 mutation (mean=2.6/patient). The overall response rate to azacitidine was 42%. No clinical characteristic was associated with response to azacitidine. However, total number of mutations/patient was negatively associated with overall drug response (odds ratio [OR]: 0.56, 95% confidence interval [CI]: 0.33–0.94; p=0.028), and a positive association was found for having ≥1 mutation in a DNA methylation-related gene: TET2, DNMT3A, IDH1 and/or IDH2 (OR: 4.76, 95%CI: 1.31–17.27; p=0.017). Mutations in TP53 (hazard ratio [HR]: 3.88; 95%CI: 1.94–7.75) and EZH2 (HR: 2.50; 95%CI: 1.23–5.09) were associated with shorter overall survival. Meta-analysis of 6 studies plus present data (n=815 patients) allowed assessment of the association of drug response with mutations in 9 candidate genes: ASXL1, CBL, EZH2, SF3B1, SRSF2, TET2, DNMT3A, IDH1/2 and TP53. TET2 mutations predicted a more favorable drug response compared with ‘wild-type’ peers (pooled OR: 1.67, 95%CI: 1.14–2.44; p=0.01). In conclusion, mutations in the DNA methylation pathway, especially TET2 mutations, and low number of total mutations are associated with a better response to azacitidine.
Collapse
|
13
|
Kim CK, Han DH, Ji YS, Lee MS, Min CW, Park SK, Kim SH, Yun J, Kim HJ, Kim KH, Lee KT, Won JH, Hong DS, Kim HK. Biomarkers of angiogenesis as prognostic factors in myelodysplastic syndrome patients treated with hypomethylating agents. Leuk Res 2016; 50:21-28. [PMID: 27639703 DOI: 10.1016/j.leukres.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/04/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Angiogenesis occurs in response to tissue ischemia and wound healing, and contributes to the pathogenesis of a variety of diseases, such as benign and malignant neoplasia. Several studies have measured bone marrow microvessel density (MVD) in MDS patients and acute myeloid leukemia (AML) patients transformed from MDS, and MVD was higher in MDS patients than controls, but was lower than in AML patients. Vascular endothelial growth factor (VEGF) is expressed in bone marrow blast cells, and an autocrine VEGF signaling mechanism has been established in MDS. Increased bone marrow angiogenesis and VEGF concentrations are adverse prognostic features in all of these patients. In this study, 69 patients were treated in two groups: hypomethylating agents or supportive care with oxymetholone±pyridoxine. We evaluated the MVD and VEGF expression of paraffin-embedded bone marrow samples from patients. We also investigated the relationship between angiogenesis-related biomarkers including MVD, VEGF expression, and clinical factors. The patient median age was 65 years, and the median follow-up duration was 28 months. MVD assessment among subtypes of WHO MDS classification showed that the MVD of RCUD was significantly lower than in other types (p=0.02). However, there was no significant difference in VEGF expression according to the subtype of MDS. Although MVD and VEGF expression did not differ between risk groups based on the IPSS, the low risk group tended to have lower expression of angiogenesis-related biomarkers. MDS patients receiving hypomethylating agents had significantly lower MVD expression in responders than in non-responders (6.13±3.38 vs. 9.89±2.10, respectively, p=0.039). In a consecutive evaluation at the time of diagnosis and 3 months after the initial treatment, the group with a decrease or no change of MVD had a higher response rate compared to that in the group with an increase of MVD (92.9% vs. 58.8%, respectively, p=0.045). Adverse prognostic factors included older age, MDS type other than RCUD, a higher IPSS risk group, and abnormal cytogenetics. Although angiogenesis-related markers did not demonstrate any significant prognostic association with survival, MVD (≥10n/mm2) and a strong expression of VEGF seemed to be associated with lower survival rate. These data suggested that the MVD value might be helpful in predicting responsiveness to treatment, especially in MDS patients treated with hypomethylating agents. Although angiogenesis-related markers including VEGF did not demonstrate a significant association with survival outcomes, we observed that high MVD and strong VEGF expression seemed to be associated with lower survival rate. Therefore, biologic markers related to angiogenesis might have a potential as prognostic factors for MDS patients.
Collapse
Affiliation(s)
- Chan Kyu Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Dong Hoon Han
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Young Seok Ji
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Min Sung Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Chang Wook Min
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Seong Kyu Park
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea.
| | - Se Hyung Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Jina Yun
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Hyun Jeung Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Kyoung Ha Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401, South Korea
| | - Kyu Taek Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, 23-20 Byeongmyeong-dong, Dongnam-gu, Cheonan, 31151, South Korea
| | - Jong Ho Won
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401, South Korea
| | - Dae Sik Hong
- Division of Hematology/Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| | - Hee Kyung Kim
- Department of Pathology, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea
| |
Collapse
|
14
|
Scott LJ. Azacitidine: A Review in Myelodysplastic Syndromes and Acute Myeloid Leukaemia. Drugs 2016; 76:889-900. [DOI: 10.1007/s40265-016-0585-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Wang JZ, Zhu YX, Ma HC, Chen SN, Chao JY, Ruan WD, Wang D, Du FG, Meng YZ. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:215-25. [DOI: 10.1016/j.msec.2016.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 01/17/2023]
|
16
|
Chen XL, Wang FM, Li JJ, He XY, Liu XY, Ma LB. The effect of two nucleoside antitumor drugs on the proliferation and DNA methylation of human gastric cancer cells. Oncol Lett 2015; 10:1919-1923. [PMID: 26622775 DOI: 10.3892/ol.2015.3427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 06/02/2015] [Indexed: 11/06/2022] Open
Abstract
Fluorouracil (5-Fu) and 5-azacitidine (5-aza) are two types of nucleoside analog, which have been widely applied in the treatment of several types of cancer. However, the effect of these two types of drug on the proliferation and DNA methylation of cancer cells has not been compared in a single study. In the present study, in vitro cultured human gastric cancer cells (hGCCs) were treated with various concentrations of 5-Fu and 5-aza, and cell counting, MTT assay and methyl-sensitive amplified polymorphism were used to evaluate the resulting levels of proliferation and DNA methylation of hGCCs. The results revealed that the two drugs were able to inhibit the proliferation of hGCCs, but that the effect of 5-aza was weaker than that of 5-Fu. However, 5-aza decreased the level of DNA methylation in hGCCs, whereas 5-Fu did not alter DNA methylation. These results indicated that 5-Fu was able to more efficiently inhibit the proliferation of hGCCs than 5-aza, and that this difference may be due to differences in the anticancer mechanism of these two types of drug.
Collapse
Affiliation(s)
- Xiu-Li Chen
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China ; Faculty of Biological Science and Technology, Baotou Teachers College, Baotou, Inner Mongolia 014030, P.R. China
| | - Feng-Mei Wang
- School of Farm and Garden Engineering, Baotou Light Industry Vocational Technical College, Baotou, Inner Mongolia 014030, P.R. China
| | - Jia-Jia Li
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Xiao-Ying He
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Xi-Yu Liu
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| | - Li-Bing Ma
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P.R. China
| |
Collapse
|
17
|
Kang H, Wang X, Gao L, Cen J, Li M, Wang W, Wang N, Li Y, Wang L, Yu L. Clinical implications of the quantitative detection of ID4 gene methylation in myelodysplastic syndrome. Eur J Med Res 2015; 20:16. [PMID: 25889027 PMCID: PMC4336702 DOI: 10.1186/s40001-015-0092-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) eventually transforms into acute leukemia (AL) in about 30% of patients. Hypermethylation of the inhibitor of DNA binding 4 (ID4) gene may play an important role in the initiation and development of MDS and AL. The aim of this study was to quantitatively assess ID4 gene methylation in MDS and to establish if it could be an effective method of evaluating MDS disease progression. Methods We examined 142 bone marrow samples from MDS patients, healthy donors and MDS-AL patients using bisulfite sequencing PCR and quantitative real-time methylation-specific PCR. The ID4 methylation rates and levels were assessed. Results ID4 methylation occurred in 27 patients (27/100). ID4 gene methylation was more frequent and at higher levels in patients with advanced disease stages and in high-risk subgroups according to WHO (P < 0.001, P < 0.001, respectively) and International Prognostic Scoring System (IPSS) (P = 0.002, P = 0.007, respectively) classifications. ID4 methylation levels changed during disease progression. Both methylation rates and methylation levels were significantly different between healthy donor, MDS patients and patients with MDS-AL (P < 0.001, P < 0.001, respectively). Multivariate analysis indicated that the level of ID4 methylation was an independent factor influencing overall survival. Patients with MDS showed decreased survival time with increased ID4 methylation levels (P = 0.011, hazard ratio (HR) = 2.371). Patients with ID4 methylation had shorter survival time than those without ID4 methylation (P = 0.008). Conclusions Our findings suggest that ID4 gene methylation might be a new biomarker for MDS monitoring and the detection of minimal residual disease.
Collapse
Affiliation(s)
- Huiyuan Kang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. .,Department of Clinical Tests, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Xinrong Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Li Gao
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Jian Cen
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Mianyang Li
- Department of Clinical Tests, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Wei Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Nan Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
18
|
Prolonged treatment with DNMT inhibitors induces distinct effects in promoters and gene-bodies. PLoS One 2013; 8:e71099. [PMID: 23940695 PMCID: PMC3735498 DOI: 10.1371/journal.pone.0071099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/25/2013] [Indexed: 11/19/2022] Open
Abstract
Treatment with the demethylating drugs 5-azacytidine (AZA) and decitabine (DAC) is now recognised as an effective therapy for patients with Myelodysplastic Syndromes (MDS), a range of disorders arising in clones of hematopoietic progenitor cells. A variety of cell models have been used to study the effect of these drugs on the methylation of promoter regions of tumour suppressor genes, with recent efforts focusing on the ability of these drugs to inhibit DNA methylation at low doses. However, it is still not clear how nano-molar drug treatment exerts its effects on the methylome. In this study, we have characterised changes in DNA methylation caused by prolonged low-dose treatment in a leukemic cell model (SKM-1), and present a genome-wide analysis of the effects of AZA and DAC. At nano-molar dosages, a one-month continuous treatment halved the total number of hypermethylated probes in leukemic cells and our analysis identified 803 candidate regions with significant demethylation after treatment. Demethylated regions were enriched in promoter sequences whereas gene-body CGIs were more resistant to the demethylation process. CGI methylation in promoters was strongly correlated with gene expression but this correlation was lost after treatment. Our results indicate that CGI demethylation occurs preferentially at promoters, but that it is not generally sufficient to modify expression patterns, and emphasises the roles of other means of maintaining cell state.
Collapse
|
19
|
Kim YJ, Jang JH, Kwak JY, Lee JH, Kim HJ. Use of azacitidine for myelodysplastic syndromes: controversial issues and practical recommendations. Blood Res 2013; 48:87-98. [PMID: 23826577 PMCID: PMC3698413 DOI: 10.5045/br.2013.48.2.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 01/10/2023] Open
Abstract
Azacitidine is recommended for patients with higher-risk myelodysplastic syndromes (MDS) who are not eligible for intensive therapy or for patients with lower-risk MDS who have thrombocytopenia or neutropenia or have anemia that is unresponsive to other therapies. However, standard treatment with azacitidine has not been optimized and many issues about the use of azacitidine remain unresolved. The use of azacitidine is expanding rapidly, but limited comparative clinical trial data are available to (i) define the optimal use of azacitidine in patients with higher-risk MDS or around the time of allogeneic hematopoietic stem cell transplantation, (ii) identify those patients with lower-risk MDS who may benefit from treatment, and (iii) guide physicians on alternative therapies after treatment failure. Increasing evidence suggests that the clinical features, prognostic factors, and cytogenetic profiles of patients with MDS in Asia differ significantly from those of patients in Western countries, so the aim of this review is to summarize the evidence and provide practical recommendations on the use of azacitidine in patients with MDS in the Republic of Korea. Evidence considered in this review is based on published clinical data and on the clinical experience of an expert panel from the acute myeloid leukemia/MDS Working Party of the Korean Society of Hematology.
Collapse
Affiliation(s)
- Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
20
|
Cross M, Bach E, Tran T, Krahl R, Jaekel N, Niederwieser D, Junghanss C, Maschmeyer G, Al-Ali HK. Pretreatment long interspersed element (LINE)-1 methylation levels, not early hypomethylation under treatment, predict hematological response to azacitidine in elderly patients with acute myeloid leukemia. Onco Targets Ther 2013; 6:741-8. [PMID: 23836986 PMCID: PMC3699298 DOI: 10.2147/ott.s45459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Epigenetic modulations, including changes in DNA cytosine methylation, are implicated in the pathogenesis and progression of acute myeloid leukemia (AML). Azacitidine is a hypomethylating agent that is incorporated into RNA as well as DNA. Thus, there is a rationale to its use in patients with AML. We determined whether baseline and/or early changes in the methylation of long interspersed element (LINE)-1 or CDH13 correlate with bone marrow blast clearance, hematological response, or survival in patients with AML treated with azacitidine. Methods An open label, phase I/II trial was performed in 40 AML patients (median bone marrow blast count was 42%) unfit for intensive chemotherapy treated with azacitidine 75 mg/m2/day subcutaneously for 5 days every 4 weeks. Bone marrow mononuclear cell samples were taken on day 0 (pretreatment) and day 15 during the first treatment cycle; LINE-1 and CDH13 methylation levels were quantified by methylation-specific, semiquantitative, real-time polymerase chain reaction. Results Treatment with azacitidine significantly reduced LINE-1 but not CDH13 methylation levels over the first cycle (P < 0.0001). Absolute LINE-1 methylation levels tended to be lower on day 0 (P = 0.06) and day 15 of cycle 1 (P = 0.03) in patients who went on to achieve subsequent complete remission, partial remission or hematological improvement versus patients with stable disease. However, the decrease in LINE-1 methylation over the first treatment cycle did not correlate with subsequent response (P = 0.31). Baseline methylation levels of LINE-1 or CDH13 did not correlate with disease-related prognostic factors, including cytogenetic risk, relapsed/refractory AML, or presence of NPM1 or FLT3 mutations. No correlation was observed between LINE-1 or CDH13 methylation levels and overall survival. Conclusion Analysis of baseline LINE-1 methylation levels may help identify elderly AML patients who are most likely to respond to azacitidine therapy.
Collapse
Affiliation(s)
- Michael Cross
- Division of Hematology and Oncology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS One 2013; 8:e59610. [PMID: 23555724 PMCID: PMC3608663 DOI: 10.1371/journal.pone.0059610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/15/2013] [Indexed: 02/07/2023] Open
Abstract
In the present study, monocytes were treated with 5-azacytidine (azacytidine), gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER)- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.
Collapse
|
22
|
Tran HTT, Kim HN, Lee IK, Nguyen-Pham TN, Ahn JS, Kim YK, Lee JJ, Park KS, Kook H, Kim HJ. Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin A. J Korean Med Sci 2013; 28:237-46. [PMID: 23400519 PMCID: PMC3565135 DOI: 10.3346/jkms.2013.28.2.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/07/2012] [Indexed: 12/31/2022] Open
Abstract
SUV39H1 is a histone 3 lysine 9 (H3K9)-specific methyltransferase that is important for heterochromatin formation and the regulation of gene expression. Chaetocin specifically inhibits SUV39H1, resulted in H3K9 methylation reduction as well as reactivation of silenced genes in cancer cells. Histone deacetylase (HDAC) inhibitors inhibit deacetylases and accumulate high levels of acetylation lead to cell cycle arrest and apoptosis. In this study, we demonstrated that treatment with chaetocin enhanced apoptosis in human leukemia HL60, KG1, Kasumi, K562, and THP1 cells. In addition, chaetocin induced the expression of cyclin-dependent kinase inhibitor 2B (p15), E-cadherin (CDH1) and frizzled family receptor 9 (FZD9) through depletion of SUV39H1 and reduced H3K9 methylation in their promoters. Co-treatment with chaetocin and HDAC inhibitor trichostatin A (TSA) dramatically increased apoptosis and produced greater activation of genes. Furthermore, this combined treatment significantly increased loss of SUV39H1 and reduced histone H3K9 trimethylation responses accompanied by increased acetylation. Importantly, co-treatment with chaetocin and TSA produced potent antileukemic effects in leukemia cells derived from patients. These in vitro findings suggest that combination therapy with SUV39H1 and HDAC inhibitors may be of potential value in the treatment of leukemia.
Collapse
Affiliation(s)
- Huong Thi Thanh Tran
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hee Nam Kim
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Il-Kwon Lee
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Thanh-Nhan Nguyen-Pham
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yeo-Kyeoung Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyeong-Soo Park
- Department of Preventive Medicine, College of Medicine, Seonam University, Namwon, Korea
| | - Hoon Kook
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyeoung-Joon Kim
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
23
|
|