1
|
Choaji M, Samba-Louaka A, Fechtali-Moute Z, Aucher W, Pomel S. Encystment and Excystment Processes in Acanthamoeba castellanii: An Emphasis on Cellulose Involvement. Pathogens 2025; 14:268. [PMID: 40137753 PMCID: PMC11945136 DOI: 10.3390/pathogens14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
The free-living amoeba Acanthamoeba castellanii is a unicellular eukaryote distributed in a wide range of soil or aquatic environments, either natural or human-made, such as rivers, lakes, drinking water, or swimming pools. Besides its capacity to transport potential pathogens, such as bacteria or viruses, Acanthamoeba spp. can have intrinsic pathogenic properties by causing severe infections at the ocular and cerebral level, named granulomatous amoebic encephalitis and amoebic keratitis, respectively. During its life cycle, A. castellanii alternates between a vegetative and mobile form, named the trophozoite, and a resistant, latent, and non-mobile form, named the cyst. The cyst wall of Acanthamoeba is double-layered, with an inner endocyst and an outer ectocyst, and is mainly composed of cellulose and proteins. The resistance of cysts to many environmental stresses and disinfection treatments has been assigned to the presence of cellulose. The current review aims to present the importance of this glycopolymer in Acanthamoeba cysts and to further report the pathways involved in encystment and excystment.
Collapse
Affiliation(s)
- Mathew Choaji
- Université Paris-Saclay, CNRS BioCIS, 91400 Orsay, France
- Université de Poitiers, UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, 86000 Poitiers, France
| | - Ascel Samba-Louaka
- Université de Poitiers, UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, 86000 Poitiers, France
| | | | - Willy Aucher
- Université de Poitiers, UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, 86000 Poitiers, France
| | | |
Collapse
|
2
|
Guo S, Liu D, Wan X, Guo D, Zheng M, Zheng W, Feng X. Ac-HSP20 regulates autophagy and promotes the encystation of Acanthamoeba castellanii by inhibiting the PI3K/AKT/mTOR signaling pathway. Parasit Vectors 2024; 17:347. [PMID: 39160562 PMCID: PMC11331602 DOI: 10.1186/s13071-024-06436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The encystation of Acanthamoeba castellanii has important ecological and medical significance. Blocking encystation is the key to preventing transmission and curing infections caused by A. castellanii. The formation of autophagosomes is one of the most important changes that occur during the encystation of Acanthamoeba. Our previous studies have shown that the heat shock protein 20 of A. castellanii (Ac-HSP20) is involved in its encystation. This study aimed to determine the role and mechanism of Ac-HSP20 in regulating autophagy involved in the encystation of A. castellanii. METHODS Immunofluorescence assay, western blotting and transmission electron microscopy were used to analyze the dynamic changes in autophagy during the initiation and continuation of encystation. The knockdown of Ac-HSP20 was performed to clarify its regulation of encystation and autophagy and to elucidate the molecular mechanism by which Ac-HSP20 participates in autophagy to promote cyst maturation. RESULTS The encystation rates and autophagosomes were significantly decreased by treatment with the autophagy inhibitor 3-MA. The autophagy marker LC3B and autophagic lysosomes increased with the induced duration of encystation and reached the maximum at 48 h. The encystation rate, LC3B expression and autophagosomes decreased when Ac-HSP20 was knocked down by siRNA transfection. In addition, the expression levels of Ac-HSP20 and LC3B increased and the expressions of p-AKT and p-mTOR decreased after 48 h of encystation without knockdown. However, the expressions of p-AKT and p-mTOR increased while the expression of LC3B decreased under the knockdown of Ac-HSP20. Furthermore, the protein expression of LC3B increased when the PI3K/AKT/mTOR signaling pathway was inhibited but decreased when the pathway was activated. CONCLUSIONS The results demonstrated that autophagy is positively correlated with the encystation of A. castellanii, and Ac-HSP20 regulates autophagy to maintain the homeostasis of A. castellanii by inhibiting the PI3K /AKT /mTOR signaling pathway, thus promoting the maturation and stability of encystation.
Collapse
Affiliation(s)
- Siyao Guo
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
- Department of Clinical Laboratory, Jilin City Hospital of Chemical Industry, Jilin, China
| | - Di Liu
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Xi Wan
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Dingrui Guo
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Meiyu Zheng
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Wenyu Zheng
- Department of Microsurgery, Jilin City Central Hospital, Jilin, China.
| | - Xianmin Feng
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China.
| |
Collapse
|
3
|
Samba-Louaka A, Labruyère E, Matondo M, Locard-Paulet M, Olivo-Marin JC, Guillen N. Encystation and Stress Responses under the Control of Ubiquitin-like Proteins in Pathogenic Amoebae. Microorganisms 2023; 11:2670. [PMID: 38004682 PMCID: PMC10673212 DOI: 10.3390/microorganisms11112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Amoebae found in aquatic and terrestrial environments encompass various pathogenic species, including the parasite Entamoeba histolytica and the free-living Acanthamoeba castellanii. Both microorganisms pose significant threats to public health, capable of inducing life-threatening effects on humans. These amoebae exist in two cellular forms: trophozoites and cysts. The trophozoite stage is the form used for growth and reproduction while the cyst stage is the resistant and disseminating form. Cysts occur after cellular metabolism slowdown due to nutritional deprivation or the appearance of environmental conditions unfavourable to the amoebae's growth and division. The initiation of encystation is accompanied by the activation of stress responses, and scarce data indicate that encystation shares factors and mechanisms identified in stress responses occurring in trophozoites exposed to toxic compounds derived from human immune defence. Although some "omics" analyses have explored how amoebae respond to diverse stresses, these studies remain limited and rarely report post-translational modifications that would provide knowledge on the molecular mechanisms underlying amoebae-specific stress responses. In this review, we discuss ubiquitin-like proteins associated with encystation and cell survival during oxidative damage. We aim to shed light on the signalling pathways involved in amoebic defence mechanisms, with a focus on their potential clinical implications against pathogenic amoebae, addressing the pressing need for effective therapies.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Université de Poitiers, Centre National de la Recherche Scientifique UMR7267, Laboratoire Ecologie et Biologie des Interactions, TSA51106, 86073 Poitiers, France
| | - Elisabeth Labruyère
- Institut Pasteur, Biological Image Analysis Unit, Centre National de la Recherche Scientifique UMR3691, Université Paris Cité, 75015 Paris, France; (E.L.); (J.-C.O.-M.)
| | - Mariette Matondo
- Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit, Centre National de la Recherche Scientifique UAR 2024, Université Paris Cité, 75015 Paris, France;
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089, Université Toulouse III-Paul Sabatier, 31077 Toulouse, France;
- Infrastructure Nationale de Proteomique ProFI—FR2048, 2048 Toulouse, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Biological Image Analysis Unit, Centre National de la Recherche Scientifique UMR3691, Université Paris Cité, 75015 Paris, France; (E.L.); (J.-C.O.-M.)
| | - Nancy Guillen
- Institut Pasteur, Biological Image Analysis Unit, Centre National de la Recherche Scientifique UMR3691, Université Paris Cité, 75015 Paris, France; (E.L.); (J.-C.O.-M.)
- Institut Pasteur, Centre National de la Recherche Scientifique ERL9195, 75015 Paris, France
| |
Collapse
|
4
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Wang Y, Jiang L, Zhao Y, Ju X, Wang L, Jin L, Fine RD, Li M. Biological characteristics and pathogenicity of Acanthamoeba. Front Microbiol 2023; 14:1147077. [PMID: 37089530 PMCID: PMC10113681 DOI: 10.3389/fmicb.2023.1147077] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Acanthamoeba is an opportunistic protozoa, which exists widely in nature and is mainly distributed in soil and water. Acanthamoeba usually exists in two forms, trophozoites and cysts. The trophozoite stage is one of growth and reproduction while the cyst stage is characterized by cellular quiescence, commonly resulting in human infection, and the lack of effective monotherapy after initial infection leads to chronic disease. Acanthamoeba can infect several human body tissues such as the skin, cornea, conjunctiva, respiratory tract, and reproductive tract, especially when the tissue barriers are damaged. Furthermore, serious infections can cause Acanthamoeba keratitis, granulomatous amoebic encephalitis, skin, and lung infections. With an increasing number of Acanthamoeba infections in recent years, the pathogenicity of Acanthamoeba is becoming more relevant to mainstream clinical care. This review article will describe the etiological characteristics of Acanthamoeba infection in detail from the aspects of biological characteristic, classification, disease, and pathogenic mechanism in order to provide scientific basis for the diagnosis, treatment, and prevention of Acanthamoeba infection.
Collapse
Affiliation(s)
- Yuehua Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Linzhe Jiang
- General Surgery, Jilin People’s Hospital, Jilin City, China
| | - Yitong Zhao
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Xiaohong Ju
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Le Wang
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Liang Jin
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Ryan D. Fine
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York City, NY, United States
| | - Mingguang Li
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
- *Correspondence: Mingguang Li,
| |
Collapse
|
6
|
Lê HG, Choi JS, Hwang BS, Jeong YT, Kang JM, Võ TC, Cho PY, Lee YK, Yoo WG, Hong Y, Oh YT, Na BK. Phragmites australis (Cav.) Trin. ex Steud. Extract Induces Apoptosis-like Programmed Cell Death in Acanthamoeba castellanii Trophozoites. PLANTS (BASEL, SWITZERLAND) 2022; 11:3459. [PMID: 36559571 PMCID: PMC9783201 DOI: 10.3390/plants11243459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Acanthamoeba keratitis (AK) is an infectious ocular disease which is difficult to diagnose correctly and cure. Development of an effective and safe therapeutic drug for AK is needed. Our preliminary screening of more than 200 extracts from wild plants collected in Korea suggested the potential amoebicidal activity of Phragmites australis (Cav.) Trin. ex Steud. extract (PAE) against Acanthamoeba species. Here, we aimed to analyze the amoebicidal activity of PAE on Acanthamoeba and its underlying amoebicidal mechanism. PAE induced amoebicidal activity against both A. castellanii and A. polyphaga trophozoites, while it showed low cytotoxicity in human corneal epithelial cells (HCE-2) and human retinal pigment epithelial cells (ARPE-19). Transmission electron microscopy analysis showed subcellular morphological changes, such as increased granules, abnormal mitochondria, and atypical cyst wall formation, in the PAE-treated A. castellanii. Fluorometric apoptosis assay and TUNEL assay revealed apoptosis-like programmed cell death (PCD) in the PAE-treated A. castellanii. The PAE treatment increased reactive oxygen species production and reduced mitochondrial membrane potential in the amoeba. The enhanced expression of autophagy-associated genes was also detected. These results suggested that PAE exerted a promising amoebicidal effect on A. castellanii trophozoites via the PCD pathway. PAE could be a potential candidate for developing a therapeutic drug for AK.
Collapse
Affiliation(s)
- Hương-Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Su Choi
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Buyng-Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Yong-Tae Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tuấn-Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Pyo-Yun Cho
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Young-Kyung Lee
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Won-Gi Yoo
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Taek Oh
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
7
|
Fechtali-Moute Z, Loiseau PM, Pomel S. Stimulation of Acanthamoeba castellanii excystment by enzyme treatment and consequences on trophozoite growth. Front Cell Dev Biol 2022; 10:982897. [PMID: 36172275 PMCID: PMC9511172 DOI: 10.3389/fcell.2022.982897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthamoeba castellanii is a widespread Free-Living Amoeba (FLA) that can cause severe ocular or cerebral infections in immunocompetent and immunocompromised patients, respectively, besides its capacity to transport diverse pathogens. During their life cycle, FLA can alternate between a vegetative form, called a trophozoite, and a latent and resistant form, called a cyst. This resistant form is characterized by the presence of a cell wall containing two layers, namely the ectocyst and the endocyst, mainly composed of cellulose and proteins. In the present work, we aimed to stimulate Acanthamoeba castellanii excystment by treating their cysts with a cellulolytic enzyme, i.e., cellulase, or two proteolytic enzymes, i.e., collagenase and pepsin. While 11 days were necessary to obtain total excystment in the control at 27°C, only 48 h were sufficient at the same temperature to obtain 100% trophozoites in the presence of 25 U/mL cellulase, 50 U/mL collagenase or 100 U/mL pepsin. Additionally, more than 96% amoebae have excysted after only 24 h with 7.5 U/mL cellulase at 30°C. Nevertheless, no effect of the three enzymes was observed on the excystment of Balamuthia mandrillaris and Vermamoeba vermiformis. Surprisingly, A. castellanii trophozoites excysted in the presence of cellulase displayed a markedly shorter doubling time at 7 h, in comparison to the control at 23 h. Likewise, trophozoites doubled their population in 9 h when both cellulose and cellulase were added to the medium, indicating that Acanthamoeba cyst wall degradation products promote their trophozoite proliferation. The analysis of cysts in epifluorescent microscopy using FITC-lectins and in electron microscopy revealed a disorganized endocyst and a reduction of the intercystic space area after cellulase treatment, implying that these cellular events are preliminary to trophozoite release during excystment. Further studies would be necessary to determine the signaling pathways involved during this amoebal differentiation process to identify new therapeutic targets for the development of anti-acanthamoebal drugs.
Collapse
|
8
|
Bernard C, Locard-Paulet M, Noël C, Duchateau M, Giai Gianetto Q, Moumen B, Rattei T, Hechard Y, Jensen LJ, Matondo M, Samba-Louaka A. A time-resolved multi-omics atlas of Acanthamoeba castellanii encystment. Nat Commun 2022; 13:4104. [PMID: 35835784 PMCID: PMC9283445 DOI: 10.1038/s41467-022-31832-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment. By performing transcriptomic, proteomic, and phosphoproteomic experiments during encystment, we identified more than 150,000 previously undescribed transcripts and thousands of protein sequences absent from the reference genome. These results provide molecular details to the regulation of expected biological processes, such as cell proliferation shutdown, and reveal new insights such as a rapid phospho-regulation of sites involved in cytoskeleton remodeling and translation regulation. This work constitutes the first time-resolved molecular atlas of an encysting organism and a useful resource for further investigation of amoebae encystment to allow for a better control of pathogenic amoebae.
Collapse
Affiliation(s)
- Clément Bernard
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Marie Locard-Paulet
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Cyril Noël
- IFREMER-IRSI-Service de Bioinformatique (SeBiMER), Centre Bretagne, Plouzane, France
| | - Magalie Duchateau
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
- Institut Pasteur, Université de Paris, Department of Computation Biology, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science; Doctoral School Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Yann Hechard
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Mariette Matondo
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
| | - Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France.
| |
Collapse
|
9
|
Boonhok R, Sangkanu S, Phumjan S, Jongboonjua R, Sangnopparat N, Kwankaew P, Tedasen A, Lim CL, Pereira MDL, Rahmatullah M, Wilairatana P, Wiart C, Dolma KG, Paul AK, Gupta M, Nissapatorn V. Curcumin effect on Acanthamoeba triangularis encystation under nutrient starvation. PeerJ 2022; 10:e13657. [PMID: 35811814 PMCID: PMC9261923 DOI: 10.7717/peerj.13657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level. Methods In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR. Results A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment. Conclusion Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suganya Phumjan
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Ramita Jongboonjua
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Nawarat Sangnopparat
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachathewee, Bangkok, Thailand
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| |
Collapse
|
10
|
Boonhok R, Sangkanu S, Norouzi R, Siyadatpanah A, Mirzaei F, Mitsuwan W, Charong N, Wisessombat S, Pereira MDL, Rahmatullah M, Wilairatana P, Wiart C, Tabo HA, Dolma KG, Nissapatorn V. Amoebicidal activity of Cassia angustifolia extract and its effect on Acanthamoeba triangularis autophagy-related gene expression at the transcriptional level. Parasitology 2021; 148:1074-1082. [PMID: 33966667 PMCID: PMC11010062 DOI: 10.1017/s0031182021000718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
Cassia angustifolia Vahl. plant is used for many therapeutic purposes, for example, in people with constipation, skin diseases, including helminthic and parasitic infections. In our study, we demonstrated an amoebicidal activity of C. angustifolia extract against Acanthamoeba triangularis trophozoite at a micromolar level. Scanning electron microscopy (SEM) images displayed morphological changes in the Acanthamoeba trophozoite, which included the formation of pores in cell membrane and the membrane rupture. In addition to the amoebicidal activity, effects of the extract on surviving trophozoites were observed, which included cyst formation and vacuolization by a microscope and transcriptional expression of Acanthamoeba autophagy in response to the stress by quantitative polymerase chain reaction. Our data showed that the surviving trophozoites were not transformed into cysts and the trophozoite number with enlarged vacuole was not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of AcATG genes was slightly changed. Interestingly, AcATG16 decreased significantly at 12 h post treatment, which may indicate a transcriptional regulation by the extract or a balance of intracellular signalling pathways in response to the stress, whereas AcATG3 and AcATG8b remained unchanged. Altogether, these data reveal the anti-Acanthamoeba activity of C. angustifolia extract and the autophagic response in the surviving trophozoites under the plant extract pressure, along with data on the formation of cysts. These represent a promising plant for future drug development. However, further isolation and purification of an active compound and cytotoxicity against human cells are needed, including a study on the autophagic response at the protein level.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz51664, Iran
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand9717853577, Iran
| | - Farzaneh Mirzaei
- Department Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd14188-15971, Iran
| | - Watcharapong Mitsuwan
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat80160, Thailand
- Akkhraratchakumari Veterinary College, and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Nurdina Charong
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro3810-193, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative Lalmatia, Dhaka1209, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok10400, Thailand
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor43500, Malaysia
| | - Hazel Anne Tabo
- Biological Sciences Department, College of Science and Computer Studies, De La Salle University-Dasmarinas, Cavite4115, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences (SMIMS), Gangtok, Sikkim737102, India
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat80160, Thailand
| |
Collapse
|
11
|
Boonhok R, Sangkanu S, Chuprom J, Srisuphanunt M, Norouzi R, Siyadatpanah A, Mirzaei F, Mitsuwan W, Wisessombat S, de Lourdes Pereira M, Rahmatullah M, Wilairatana P, Wiart C, Ling LC, Dolma KG, Nissapatorn V. Peganum harmala Extract Has Antiamoebic Activity to Acanthamoeba triangularis Trophozoites and Changes Expression of Autophagy-Related Genes. Pathogens 2021; 10:842. [PMID: 34357992 PMCID: PMC8308471 DOI: 10.3390/pathogens10070842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 02/03/2023] Open
Abstract
Peganum harmala, a well-known medicinal plant, has been used for several therapeutic purposes as it contains numerous pharmacological active compounds. Our study reported an anti-parasitic activity of P. harmala seed extract against Acanthamoeba triangularis. The stress induced by the extract on the surviving trophozoites for Acanthamoeba encystation and vacuolization was examined by microscopy, and transcriptional expression of Acanthamoeba autophagy-related genes was investigated by quantitative PCR. Our results showed that the surviving trophozoites were not transformed into cysts, and the number of trophozoites with enlarged vacuoles were not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of tested AcATG genes, i.e., ATG3, ATG8b, and ATG16, was at a basal level along the treatment. However, upregulation of AcATG16 at 24 h post treatment was observed, which may indicate an autophagic activity of this protein in response to the stress. Altogether, these data revealed the anti-Acanthamoeba activity of P. harmala extract and indicated the association of autophagy mRNA expression and cyst formation under the extract stress, representing a promising plant for future drug development. However, further identification of an active compound and a study of autophagy at the protein level are needed.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
| | - Suthinee Sangkanu
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.S.); (J.C.)
| | - Julalak Chuprom
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.S.); (J.C.)
| | - Mayuna Srisuphanunt
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Farzaneh Mirzaei
- Department Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 14188-15971, Iran;
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1209, Bangladesh;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor 43500, Malaysia;
| | - Lim Chooi Ling
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences (SMIMS), Sikkim 737102, India;
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.S.); (J.C.)
| |
Collapse
|
12
|
Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI, Hong Y. The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba. Parasit Vectors 2020; 13:368. [PMID: 32698828 PMCID: PMC7376869 DOI: 10.1186/s13071-020-04237-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The encystation of Acanthamoeba leads to the development of resilient cysts from vegetative trophozoites. This process is essential for the survival of parasites under unfavorable conditions. Previous studies have reported that, during the encystation of A. castellanii, the expression levels of encystation-related factors are upregulated. However, the regulatory mechanisms for their expression during the encystation process remains unknown. Proteins in the sirtuin family, which consists of nicotinamide adenine dinucleotide-dependent deacetylases, are known to play an important role in various cellular functions. In the present study, we identified the Acanthamoeba silent-information regulator 2-like protein (AcSir2) and examined its role in the growth and encystation of Acanthamoeba. METHODS We obtained the full-length sequence for AcSir2 using reverse-transcription polymerase chain reaction. In Acanthamoeba transfectants that constitutively overexpress AcSir2 protein, SIRT deacetylase activity was measured, and the intracellular localization of AcSir2 and the effects on the growth and encystation of trophozoites were examined. In addition, the sirtuin inhibitor salermide was used to determine whether these effects were caused by AcSir2 overexpression RESULTS: AcSir2 was classified as a class-IV sirtuin. AcSir2 exhibited functional SIRT deacetylase activity, localized mainly in the nucleus, and its transcription was upregulated during encystation. In trophozoites, AcSir2 overexpression led to greater cell growth, and this growth was inhibited by treatment with salermide, a sirtuin inhibitor. When AcSir2 was overexpressed in the cysts, the encystation rate was significantly higher; this was also reversed with salermide treatment. In AcSir2-overexpressing encysting cells, the transcription of cellulose synthase was highly upregulated compared with that of control cells, and this upregulation was abolished with salermide treatment. Transmission electron microscope-based ultrastructural analysis of salermide-treated encysting cells showed that the structure of the exocyst wall and intercyst space was impaired and that the endocyst wall had not formed. CONCLUSIONS These results indicate that AcSir2 is a SIRT deacetylase that plays an essential role as a regulator of a variety of cellular processes and that the regulation of AcSir2 expression is important for the growth and encystation of A. castellanii.
Collapse
Affiliation(s)
- So-Young Joo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ja Moon Aung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
13
|
Cruz-Saavedra L, Vallejo GA, Guhl F, Ramírez JD. Transcriptomic changes across the life cycle of Trypanosoma cruzi II. PeerJ 2020; 8:e8947. [PMID: 32461822 PMCID: PMC7231504 DOI: 10.7717/peerj.8947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi is a flagellated protozoan that causes Chagas disease; it presents a complex life cycle comprising four morphological stages: epimastigote (EP), metacyclic trypomastigote (MT), cell-derived trypomastigote (CDT) and amastigote (AM). Previous transcriptomic studies on three stages (EPs, CDTs and AMs) have demonstrated differences in gene expressions among them; however, to the best of our knowledge, no studies have reported on gene expressions in MTs. Therefore, the present study compared differentially expressed genes (DEGs), and signaling pathway reconstruction in EPs, MTs, AMs and CDTs. The results revealed differences in gene expressions in the stages evaluated; these differences were greater between MTs and AMs-PTs. The signaling pathway that presented the highest number of DEGs in all the stages was associated with ribosomes protein profiles, whereas the other related pathways activated were processes related to energy metabolism from glucose, amino acid metabolism, or RNA regulation. However, the role of autophagy in the entire life cycle of T. cruzi and the presence of processes such as meiosis and homologous recombination in MTs (where the expressions of SPO11 and Rad51 plays a role) are crucial. These findings represent an important step towards the full understanding of the molecular basis during the life cycle of T. cruzi.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de Los Andes, Bogota, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
14
|
Anwar A, Siddiqui R, Khan NA. Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation. BIOLOGY 2020; 9:E79. [PMID: 32316619 PMCID: PMC7235994 DOI: 10.3390/biology9040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
Cancer recurrence has remained a significant challenge, despite advances in therapeutic approaches. In part, this is due to our incomplete understanding of the biology of cancer stem cells and the underlying molecular mechanisms. The phenomenon of differentiation and dedifferentiation (phenotypic switching) is not only unique to stem cells but it is also observed in several other organisms, as well as evolutionary-related microbes. Here, we propose the use of a primitive eukaryotic unicellular organism, Acanthamoeba castellanii, as a model to study the molecular mechanisms of cellular differentiation and dedifferentiation.
Collapse
Affiliation(s)
- Areeba Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia;
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City 26666, UAE;
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City 26666, UAE;
| |
Collapse
|
15
|
Chan LL, Mak JW, Ambu S, Chong PY. Identification and ultrastructural characterization of Acanthamoeba bacterial endocytobionts belonging to the Alphaproteobacteria class. PLoS One 2018; 13:e0204732. [PMID: 30356282 PMCID: PMC6200196 DOI: 10.1371/journal.pone.0204732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
The detection and identification of two endocytobiotic bacterial strains, one affiliated to the "Candidatus Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba", and another to the endosymbiont of Acanthamoeba UWC8 and "Ca. Jidaibacter acanthamoeba" are described. For endocytobiont screening, we developed a PCR method with a set of broad-range bacterial 16S rRNA primers to substitute the commonly used but technically demanding fluorescent in situ hybridization technique. Our PCR test alone without sequencing failed to discriminate the endocytobiont-containing and endocytobiont-free Acanthamoeba sp. due to the presence of mismatched primers to host mitochondrial DNA. We highlighted the need to perform bacterial primer checking against the Acanthamoeba genome to avoid false positive detection in PCR. Although the genetic aspect of "Ca. Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba" and the endosymbiont of Acanthamoeba UWC8/"Ca. Jidaibacter acanthamoeba" are well studied, knowledge pertaining to their morphologies are quite vague. Hence, we used transmission electron microscopy to examine our endocytobionts which are affiliated to previously described intracellular bacteria of Acanthamoeba sp. We used good-quality TEM images for the localization and the fate of the current endocytobionts inside different life stages of the hosts. Furthermore, to the best of our knowledge, our TEM findings are the first to provide morphological evidence for the clearance of defective Acanthamoeba endocytobionts via an autophagic-like process.
Collapse
Affiliation(s)
- Li Li Chan
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Joon Wah Mak
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Stephen Ambu
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Pei Yee Chong
- Medical Sciences, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Wu D, Qiao K, Feng M, Fu Y, Cai J, Deng Y, Tachibana H, Cheng X. Apoptosis of Acanthamoeba castellanii Trophozoites Induced by Oleic Acid. J Eukaryot Microbiol 2017; 65:191-199. [PMID: 28787535 DOI: 10.1111/jeu.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Acanthamoeba spp. can be parasitic in certain situations and are responsible for serious human infections, including Acanthamoeba keratitis, granulomatous amoebic encephalitis, and cutaneous acanthamoebiasis. We analyzed the fatty acid composition of Acanthamoeba castellanii trophozoites and tested the inhibitory activity of the main fatty acids, oleic acid and arachidonic acid, in vitro. Oleic acid markedly inhibited the growth of A. castellanii, with trophozoite viability of 57.4% at a concentration of 200 μM. Caspase-3 staining and annexin V assays showed that apoptotic death occurred in A. castellanii trophozoites. Quantitative PCR and dot blot analysis showed increased levels of metacaspase and interleukin-1β converting enzyme, which is also an indication of apoptosis. In contrast, arachidonic acid showed negligible inhibition of growth of A. castellanii trophozoites. Stimulated expression of Atg3, Atg8 and LC3A/B genes and monodansylcadaverine labeling suggested that oleic acid induces apoptosis by triggering autophagy of trophozoites.
Collapse
Affiliation(s)
- Duo Wu
- Department of Medical Microbiology and Parasitology, Fudan University School of Medicine, Shanghai, 200032, China
| | - Ke Qiao
- Department of Medical Microbiology and Parasitology, Fudan University School of Medicine, Shanghai, 200032, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, Fudan University School of Medicine, Shanghai, 200032, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, Fudan University School of Medicine, Shanghai, 200032, China
| | - Junlong Cai
- Department of Medical Microbiology and Parasitology, Fudan University School of Medicine, Shanghai, 200032, China
| | - Yihong Deng
- Department of Medical Microbiology and Parasitology, Fudan University School of Medicine, Shanghai, 200032, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, Fudan University School of Medicine, Shanghai, 200032, China
| |
Collapse
|
17
|
Kim SH, Moon EK, Hong Y, Chung DI, Kong HH. Autophagy protein 12 plays an essential role in Acanthamoeba encystation. Exp Parasitol 2015; 159:46-52. [DOI: 10.1016/j.exppara.2015.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/25/2015] [Accepted: 08/16/2015] [Indexed: 11/28/2022]
|
18
|
Picazarri K, Nakada-Tsukui K, Tsuboi K, Miyamoto E, Watanabe N, Kawakami E, Nozaki T. Atg8 is involved in endosomal and phagosomal acidification in the parasitic protist Entamoeba histolytica. Cell Microbiol 2015; 17:1510-22. [PMID: 25923949 PMCID: PMC4744732 DOI: 10.1111/cmi.12453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 01/08/2023]
Abstract
Autophagy is one of two major bulk protein degradation systems and is conserved throughout eukaryotes. The protozoan Entamoeba histolytica, which is a human intestinal parasite, possesses a restricted set of autophagy‐related (Atg) proteins compared with other eukaryotes and thus represents a suitable model organism for studying the minimal essential components and ancestral functions of autophagy. E. histolytica possesses two conjugation systems: Atg8 and Atg5/12, although a gene encoding Atg12 is missing in the genome. Atg8 is considered to be the central and authentic marker of autophagosomes, but recent studies have demonstrated that Atg8 is not exclusively involved in autophagy per se, but other fundamental mechanisms of vesicular traffic. To investigate this question in E. histolytica, we studied on Atg8 during the proliferative stage. Atg8 was constitutively expressed in both laboratory‐maintained and recently established clinical isolates and appeared to be lipid‐modified in logarithmic growth phase, suggesting a role of Atg8 in non‐stress and proliferative conditions. These findings are in contrast to those for Entamoeba invadens, in which autophagy is markedly induced during an early phase of differentiation from the trophozoite into the cyst. The repression of Atg8 gene expression in En. histolytica by antisense small RNA‐mediated transcriptional gene silencing resulted in growth retardation, delayed endocytosis and reduced acidification of endosomes and phagosomes. Taken together, these results suggest that Atg8 and the Atg8 conjugation pathway have some roles in the biogenesis of endosomes and phagosomes in this primitive eukaryote.
Collapse
Affiliation(s)
- Karina Picazarri
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Tsuboi
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eri Miyamoto
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Naoko Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Eiryo Kawakami
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Laboratory for Disease Systems Modeling, RIKEN Center for integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Autophagy inhibitors as a potential antiamoebic treatment for Acanthamoeba keratitis. Antimicrob Agents Chemother 2015; 59:4020-5. [PMID: 25896709 DOI: 10.1128/aac.05165-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Acanthamoeba cysts are resistant to extreme physical and chemical conditions. Autophagy is an essential pathway for encystation of Acanthamoeba cells. To evaluate the possibility of an autophagic Acanthamoeba encystation mechanism, we evaluated autophagy inhibitors, such as 3-methyladenine (3MA), LY294002, wortmannin, bafilomycin A, and chloroquine. Among these autophagy inhibitors, the use of 3MA and chloroquine showed a significant reduction in the encystation ratio in Acanthamoeba cells. Wortmannin also inhibited the formation of mature cysts, while LY294002 and bafilomycin A did not affect the encystation of Acanthamoeba cells. Transmission electron microscopy revealed that 3MA and wortmannin inhibited autophagy formation and that chloroquine interfered with the formation of autolysosomes. Inhibition of autophagy or autolysosome formation resulted in a significant block in the encystation in Acanthamoeba cells. Clinical treatment with 0.02% polyhexamethylene biguanide (PHMB) showed high cytopathic effects on Acanthamoeba trophozoites and cysts; however, it also revealed high cytopathic effects on human corneal epithelial cells. In this study, we investigated effects of the combination of a low (0.00125%) concentration of PHMB with each of the autophagy inhibitors 3MA, wortmannin, and chloroquine on Acanthamoeba and human corneal epithelial cells. These new combination treatments showed low cytopathic effects on human corneal cells and high cytopathic effects on Acanthamoeba cells. Taken together, these results provide fundamental information for optimizing the treatment of Acanthamoeba keratitis.
Collapse
|
20
|
Chloroquine has a cytotoxic effect on Acanthamoeba encystation through modulation of autophagy. Antimicrob Agents Chemother 2014; 58:6235-41. [PMID: 25114131 DOI: 10.1128/aac.03164-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Encystation of Acanthamoeba castellanii is associated with resistance to chemotherapeutic agents. Blocking the encystation process could potentiate the efficacy of chemotherapeutic agents and biocides. During encystation, autophagy is highly stimulated and required for proper encystation of Acanthamoeba. In this study, the cytotoxic effect of chloroquine, a well-known autophagy-inhibitory drug, was tested in A. castellanii. Chloroquine was able to selectively reduce cell survival during the encystation of A. castellanii. However, A. castellanii trophozoites and mature cysts were resistant to chloroquine. Chloroquine treatment led to an increase in the number and size of lysosomes in encysting cells. Moreover, chloroquine inhibited the degradation of long-lived proteins in the encysting cells. Decreased autophagic flux, indicated by an increased number of lysosomes and decreased degradation of long-lived proteins, may be the mechanism by which cell death is induced by chloroquine in encysting Acanthamoeba. These results suggest a potential novel therapeutic application of chloroquine as an anti-Acanthamoeba drug. Our findings also suggest that targeting autophagy could be a therapeutic strategy against Acanthamoeba infection.
Collapse
|
21
|
Moon EK, Hong Y, Chung DI, Kong HH. Identification of atg8 isoform in encysting Acanthamoeba. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:497-502. [PMID: 24327773 PMCID: PMC3857495 DOI: 10.3347/kjp.2013.51.5.497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 12/31/2022]
Abstract
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.
Collapse
Affiliation(s)
- Eun-Kyung Moon
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | | | |
Collapse
|
22
|
Moon EK, Chung DI, Hong Y, Kong HH. Protein kinase C signaling molecules regulate encystation of Acanthamoeba. Exp Parasitol 2012; 132:524-9. [DOI: 10.1016/j.exppara.2012.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 07/16/2012] [Accepted: 07/23/2012] [Indexed: 01/09/2023]
|
23
|
Moon EK, Hong Y, Chung DI, Kong HH. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol Biochem Parasitol 2012; 185:121-6. [DOI: 10.1016/j.molbiopara.2012.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
24
|
Moon EK, Xuan YH, Chung DI, Hong Y, Kong HH. Microarray analysis of differentially expressed genes between cysts and trophozoites of Acanthamoeba castellanii. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 49:341-7. [PMID: 22355200 PMCID: PMC3279671 DOI: 10.3347/kjp.2011.49.4.341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 12/02/2022]
Abstract
Acanthamoeba infection is difficult to treat because of the resistance property of Acanthamoeba cyst against the host immune system, diverse antibiotics, and therapeutic agents. To identify encystation mediating factors of Acanthamoeba, we compared the transcription profile between cysts and trophozoites using microarray analysis. The DNA chip was composed of 12,544 genes based on expressed sequence tag (EST) from an Acanthamoeba ESTs database (DB) constructed in our laboratory, genetic information of Acanthamoeba from TBest DB, and all of Acanthamoeba related genes registered in the NCBI. Microarray analysis indicated that 701 genes showed higher expression than 2 folds in cysts than in trophozoites, and 859 genes were less expressed in cysts than in trophozoites. The results of real-time PCR analysis of randomly selected 9 genes of which expression was increased during cyst formation were coincided well with the microarray results. Eukaryotic orthologous groups (KOG) analysis showed an increment in T article (signal transduction mechanisms) and O article (posttranslational modification, protein turnover, and chaperones) whereas significant decrement of C article (energy production and conversion) during cyst formation. Especially, cystein proteinases showed high expression changes (282 folds) with significant increases in real-time PCR, suggesting a pivotal role of this proteinase in the cyst formation of Acanthamoeba. The present study provides important clues for the identification and characterization of encystation mediating factors of Acanthamoeba.
Collapse
Affiliation(s)
- Eun-Kyung Moon
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | | | | | |
Collapse
|