1
|
Baek SM, Kim MN, Kim EG, Lee YJ, Park CH, Kim MJ, Kim KW, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Regulates the Expression of Interleukin-33 in RSV Induced Airway Inflammation by Regulating MAPK Signaling Pathways. Lung 2024; 202:127-137. [PMID: 38502305 DOI: 10.1007/s00408-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The respiratory syncytial virus (RSV) is a common respiratory virus that causes acute lower respiratory tract infectious diseases, particularly in young children and older individuals. Activated leukocyte cell adhesion molecule (ALCAM) is a membrane glycoprotein expressed in various cell types, including epithelial cells, and is associated with inflammatory responses and various cancers. However, the precise role of ALCAM in RSV-induced airway inflammation remains unclear, and our study aimed to explore this gap in the literature. METHODS C57BL/6 wild-type, ALCAM knockout mice and airway epithelial cells were infected with RSV and the expression of ALCAM and inflammatory cytokines were measured. We also conducted further experiments using Anti-ALCAM antibody and recombinant ALCAM in airway epithelial cells. RESULTS The expression levels of ALCAM and inflammatory cytokines increased in both RSV-infected mice and airway epithelial cells. Interestingly, IL-33 expression was significantly reduced in ALCAM-knockdown cells compared to control cells following RSV infection. Anti-ALCAM antibody treatment also reduced IL-33 expression following RSV infection. Furthermore, the phosphorylation of ERK1/2, p38, and JNK was diminished in ALCAM-knockdown cells compared to control cells following RSV infection. Notably, in the control cells, inhibition of these pathways significantly decreased the expression of IL-33. In vivo study also confirmed a reduction in inflammation induced by RSV infection in ALCAM deficient mice compared to wild-type mice. CONCLUSION These findings demonstrate that ALCAM contributes to RSV-induced airway inflammation at least partly by influencing IL-33 expression through mitogen-activated protein kinase signaling pathways. These results suggest that targeting ALCAM could be a potential therapeutic strategy for alleviating IL-33-associated lung diseases.
Collapse
Affiliation(s)
- Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Yu Jin Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Chang Hyun Park
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Min Jung Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin, South Korea.
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
2
|
Huang Z, Liu X, Wu X, Chen M, Yu W. MiR-146a alleviates lung injury caused by RSV infection in young rats by targeting TRAF-6 and regulating JNK/ERKMAPK signaling pathways. Sci Rep 2022; 12:3481. [PMID: 35241728 PMCID: PMC8894416 DOI: 10.1038/s41598-022-07346-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 01/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in infants and children. The present study aimed to investigate the effects of miR-146a on RSV replication and the related mechanisms. Material and methods: We pretreated A549 and HEp-2 cells and young rats with miR-146a mimic before infection with RSV. The expressions of miR-146a and RSV-F mRNA in cells and lung tissues were detected by RT-qPCR, and production of IL-1β, IL-6, IL-18, and TNF-α in bronchial alveolar lavage fluid (BALF) were determined by ELISA. The expression level of TRAF-6 and activation of the JNK/ERK/MAPK/NF-κB signaling pathway was detected by Western blotting. Results: RSV infection significantly reduced miR-146a levels in both A549 and HEp-2 cells and rat lung tissues. RSV infection resulted in accelerated growth, increased release of inflammatory cytokines, increased expression of TRAF-6, and activation of the JNK pathway in cells, and the lung inflammatory infiltration and the pathological score increased in rats. Overexpression of miR-146a targeted down-regulation of TRAF-6 expression and JNK/ERK/MAPK/NF-κB pathway induced by RSV infection, reduced the production of inflammatory cytokines IL-1β, IL-6 and TNF-α, and alleviate lung injury in young rats. We got similar results in both A549 and HEp-2 cell experiments. Conclusion: MiR-146a alleviates lung injury caused by RSV infection in young rats by targeting TRAF-6 and regulating JNK/ERK/MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China.,School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, China
| | - Xiaoxian Liu
- Department of Medicine Intersive Care, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Xi Wu
- Department of Medicine Intersive Care, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Min Chen
- Department of Pneumology, Maternal, Child Health Hospital of Guiyang City, Guiyang, 550001, China.
| | - Wenfeng Yu
- School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, China.
| |
Collapse
|
3
|
Oh DS, Park JH, Jung HE, Kim HJ, Lee HK. Autophagic protein ATG5 controls antiviral immunity via glycolytic reprogramming of dendritic cells against respiratory syncytial virus infection. Autophagy 2021; 17:2111-2127. [PMID: 32816604 PMCID: PMC8496528 DOI: 10.1080/15548627.2020.1812218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infections in infants. Macroautophagy/autophagy is a catalytic metabolic process required for cellular homeostasis. Although intracellular metabolism is important for immune responses in dendritic cells, the link between autophagy and immunometabolism remains unknown. Here, we show that the autophagy-related protein ATG5 regulates immunometabolism. Atg5-deficient mouse dendritic cells showed increased CD8A+ T-cell response and increased secretion of proinflammatory cytokines upon RSV infection. Transcriptome analysis showed that Atg5 deficiency alters the expression of metabolism-related genes. Atg5-deficient dendritic cells also showed increased activation of glycolysis and the AKT-MTOR-RPS6KB1 pathway and decreased mitochondrial activity, all of which are cellular signatures for metabolic activation. These cells also showed elevated CD8A+ T-cell priming and surface major histocompatibility complex (MHC) class I expression. Our results suggested that ATG5 regulated host immune responses by modulating dendritic cell metabolism. These findings may help develop potential antiviral therapies that alter host immunity by regulating autophagy and immunometabolism.Abbreviations : 2-DG: 2-deoxyglucose; AAK1: AP2 associated kinase 1; AKT: AKT serine/threonine kinase; AM: alveolar macrophage; ATG: autophagy; ATP: adenosine triphosphate; BAL: bronchoalveolar lavage; BMDC: bone marrow dendritic cell; CSF2/GM-CSF: colony-stimulating factor 2 (granulocyte-macrophage); CTL: cytotoxic T lymphocyte; ELISA: enzyme-linked immunosorbent assay; GFP: green fluorescent protein; GSEA: gene-set enrichment analysis; H-2Db: H-2 class I histocompatibility antigen, D-B alpha chain; H-2Kb: MHC class I H2-K-b; HIF1A: hypoxia-inducible factor 1 alpha; IFNG: interferon-gamma; IL: interleukin; ITGAX: integrin alpha X; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MHC: major histocompatibility complex; MTORC1: mammalian target of rapamycin kinase complex 1; PBS: phosphate-buffered saline; PFU: plaque-forming unit; RLR: retinoic acid-inducible-I-like receptor; ROS: reactive oxygen species; RPMI: Roswell Park Memorial Institute; RPS6KB1/S6K: ribosomal protein S6 kinase, polypeptide 1; RSV: respiratory syncytial virus; Th: T helper; TLR: toll-like receptor; Treg: regulatory T cells; UMAP: uniform manifold approximation and projection.
Collapse
Affiliation(s)
- Dong Sun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- The Center for Epidemic Preparedness, KAIST Institute, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Samy N, Reichhardt D, Schmidt D, Chen LM, Silbernagl G, Vidojkovic S, Meyer TP, Jordan E, Adams T, Weidenthaler H, Stroukova D, De Carli S, Chaplin P. Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: A randomized phase I clinical trial. Vaccine 2020; 38:2608-2619. [PMID: 32057576 DOI: 10.1016/j.vaccine.2020.01.055] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
Respiratory disease caused by RSV infection is recognized as a severe public health issue in infants, young children and elderly with no specific treatment option. Vaccination may be the most effective strategy to combat this highly infectious virus although no vaccine has been approved. The novel vaccine candidate MVA-BN-RSV encodes RSV surface proteins F and G (subtypes A, B) as well as internal proteins N and M2 in the MVA-BN viral vector backbone to provide broad protection against RSV. This was a first in human study to investigate safety, reactogenicity and immunogenicity of MVA-BN-RSV. Sixty-three participants were allocated to 3 groups: adult (18-49 years) low (1 × 107 TCID50) or high (1 × 108 TCID50) dose and older adult (50-65 years) high dose. Participants in each group were randomized in a 6:1 ratio to receive 2 doses of MVA-BN-RSV or placebo 4 weeks apart and were monitored for 30 weeks. All participants completed the study, receiving both doses. No serious AEs or AEs of special interest were reported. The most common AEs were injection site pain (56% in the combined high dose groups, 17% in the low dose group). MVA-BN-RSV induced robust T cell responses covering all 5 inserts with fold increases ranging from 1.8 to 3.8. Higher and broader responses were observed in the high dose groups (83% responders to at least 3 peptide pools in the combined high dose groups compared to 63% in the low dose group). Moderate but consistent humoral responses were observed against A and B RSV subtypes (up to approximately 2-fold increases in the high dose groups). No differences were observed between the adult and the older adult groups in safety, reactogenicity or immunogenicity. The study demonstrated that the well tolerated MVA-BN-RSV vaccine candidate induces broad cellular and humoral immune responses, warranting further development.
Collapse
Affiliation(s)
- Nathaly Samy
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Liddy M Chen
- Bavarian Nordic Inc, 3025 Carrington Mill Boulevard, Morrisville, NC 27560, United States
| | - Günter Silbernagl
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Sanja Vidojkovic
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Thomas Ph Meyer
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Elke Jordan
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Tatiana Adams
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Daria Stroukova
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Sonja De Carli
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Paul Chaplin
- Bavarian Nordic A/S, Hejreskovvej 10A, DK-3490 Kvistgård, Denmark
| |
Collapse
|
5
|
Kim MJ, Shim DH, Cha H, Moon K, Yang CM, Hwang SJ, Kim KW, Park JH, Lee C, Elias JA, Sohn MH, Lee JM. Chitinase 3-like 1 protein plays a critical role in respiratory syncytial virus-induced airway inflammation. Allergy 2019; 74:685-697. [PMID: 30402955 PMCID: PMC7159489 DOI: 10.1111/all.13661] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/09/2018] [Accepted: 09/19/2018] [Indexed: 12/28/2022]
Abstract
Background Chitinase 3‐like 1 protein (CHI3L1) (YKL‐40 in humans and breast regression protein [BRP]‐39 in mice) is required for optimal allergen sensitization and Th2 inflammation in various chronic inflammatory diseases including asthma. However, the role of CHI3L1 in airway inflammation induced by respiratory viruses has not been investigated. The aim of this study was to investigate the relationship between CHI3L1 and airway inflammation caused by respiratory syncytial virus (RSV) infection. Methods We measured YKL‐40 levels in human nasopharyngeal aspirate (NPA) from hospitalized children presenting with acute respiratory symptoms. Wild‐type (WT) and BRP‐39 knockout (KO) C57BL/6 mice were inoculated with live RSV (A2 strain). Bronchoalveolar lavage fluid and lung tissue samples were obtained on day 7 after inoculation to assess lung inflammation, airway reactivity, and expression of cytokines and BRP‐39. Results In human subjects, YKL‐40 and IL‐13 levels in NPA were higher in children with RSV infection than in control subjects. Expression of BRP‐39 and Th2 cytokines, IL‐13 in particular, was increased following RSV infection in mice. Airway inflammation caused by RSV infection was reduced in BRP‐39 KO mice as compared to WT mice. Th2 cytokine levels were not increased in the lungs of RSV‐infected BRP‐39 KO mice. BRP‐39 regulated M2 macrophage activation in RSV‐infected mice. Additionally, treatment with anti‐CHI3L1 antibody attenuated airway inflammation and Th2 cytokine production in RSV‐infected WT mice. Conclusion These findings suggest that CHI3L1 could contribute to airway inflammation induced by RSV infection. CHI3L1 could be a potential therapeutic candidate for attenuating Th2‐associated immunopathology during RSV infection.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
- Department of Pediatrics Severance Hospital Institute of Allergy Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Doo Hee Shim
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Hye‐Ran Cha
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Kuk‐Young Moon
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Chang Mo Yang
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Su Jin Hwang
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Kyung Won Kim
- Department of Pediatrics Severance Hospital Institute of Allergy Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Jeon Han Park
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology Brown University Providence Rhode Island USA
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology Brown University Providence Rhode Island USA
| | - Myung Hyun Sohn
- Department of Pediatrics Severance Hospital Institute of Allergy Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology Brain Korea 21 PLUS Project for Medical Science Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
6
|
Respiratory syncytial virus F and G protein core fragments fused to HBsAg-binding protein (SBP) induce a Th1-dominant immune response without vaccine-enhanced disease. Int Immunol 2018; 31:199-209. [DOI: 10.1093/intimm/dxy078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022] Open
|
7
|
Khan IU, Huang J, Li X, Xie J, Zhu N. Nasal immunization with RSV F and G protein fragments conjugated to an M cell-targeting ligand induces an enhanced immune response and protection against RSV infection. Antiviral Res 2018; 159:95-103. [PMID: 30290196 DOI: 10.1016/j.antiviral.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/24/2023]
Abstract
Human respiratory syncytial virus (RSV) is a major paediatric health concern worldwide. The development of an effective and safe vaccine against RSV is urgently needed. As RSV infects via the mucosal surfaces, developing a nasal vaccine may offer protective benefits over alternative administration routes. In this study, we tested a recombinant protein FG-Gb1 as an intranasal vaccine candidate against RSV. FG-Gb1 consists of the core fragments of the RSV fusion (F) and attachment (G) proteins conjugated to an microfold (M) cell-specific ligand Gb-1. Intranasal immunization with FG-Gb1 induced efficient systemic and mucosal immune responses as measured by the level of antigen-specific antibodies, cytokine-secreting cells and antigen-specific lymphocyte proliferation after exposure to antigen. Moreover, intranasal immunization induced protective immunity against nasal challenge with RSV, which was confirmed by a lack of weight loss and by viral clearance after challenge. Collectively, we confirmed that a ligand capable of targeting the conjugated antigen to nasopharynx-associated lymphoid tissue (NALT) can be used as an effective nasal vaccine adjuvant to induce protective immunity against RSV infection. Moreover, FG-Gb1 may have promise as an RSV vaccine but requires further studies.
Collapse
Affiliation(s)
- Inam Ullah Khan
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jiansheng Huang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Xue Li
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
8
|
Kuhdari P, Brosio F, Malaventura C, Stefanati A, Orsi A, Icardi G, Gabutti G. Human respiratory syncytial virus and hospitalization in young children in Italy. Ital J Pediatr 2018; 44:50. [PMID: 29728106 PMCID: PMC5935991 DOI: 10.1186/s13052-018-0492-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human respiratory syncytial virus (hRSV) is ubiquitous and causes respiratory diseases in both children and adults. Worldwide, hRSV pneumonia is the second cause of postnatal infant death after malaria. Given the high impact in terms of morbidity, mortality and costs, especially in the pediatric population, hRSV is recognized as a global health problem and the WHO, in view of the availability of new vaccines, has urged an active surveillance program of virus-related infections. The aim of this study has been to evaluate the impact of hRSV infections in the Italian population, particularly the pediatric one, in terms of hospitalizations. METHODS In the period 2001-2014, Hospital Discharge Records (HDRs) with the following diagnosis codes included in the primary diagnosis were evaluated: 466.11 (hRSV bronchiolitis), 480.1 (hRSV pneumonia) and 796 (hRSV). HDRs were supplied by the National Archive of HDRs data, Ministry of Health. RESULTS During the period 2001-2014, 57,656 hospital admissions due to hRSV pathologies were performed. Most hospitalizations (88.8%) involved patients with less than 1 year of age. Considering only primary diagnosis, 93% of the admissions were due to bronchiolitis, 5% to pneumonia and 2% to not otherwise specified hRSV infections. In the period 2001-2014, the hospitalization rate in 0-2 years old children, was equal to 224.8, 9.6 and 4.6/100,000 for hRSV bronchiolitis, hRSV pneumonia and not otherwise specified hRSV infection, respectively. CONCLUSIONS This study confirms the high impact of hRSV on the pediatric population in the age class 0-4 years, with a peak in the first 12 months of life. Most hospitalizations were urgent, although the duration of the hospital stay was for the most part less than a week, with ordinary discharge at home. Pending the conclusion of ongoing clinical trials on different hRSV vaccine types, it is extremely important to have updated data on the impact of hRSV-related pathologies in the various age groups.
Collapse
Affiliation(s)
- Parvanè Kuhdari
- Department of Medical Sciences, Section of Public Health Medicine, University of Ferrara, via Fossato di Mortara 64/b, Ferrara, Italy
| | - Federica Brosio
- Department of Medical Sciences, Section of Public Health Medicine, University of Ferrara, via Fossato di Mortara 64/b, Ferrara, Italy
| | - Cristina Malaventura
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Armando Stefanati
- Department of Medical Sciences, Section of Public Health Medicine, University of Ferrara, via Fossato di Mortara 64/b, Ferrara, Italy
| | - Andrea Orsi
- Department of Health Sciences, University of Genoa, “Ospedale Policlinico San Martino IRCCS” teaching hospital, Genoa, Italy
| | - Giancarlo Icardi
- Department of Health Sciences, University of Genoa, “Ospedale Policlinico San Martino IRCCS” teaching hospital, Genoa, Italy
| | - Giovanni Gabutti
- Department of Medical Sciences, Section of Public Health Medicine, University of Ferrara, via Fossato di Mortara 64/b, Ferrara, Italy
| |
Collapse
|
9
|
Nguyen VH, Dubot-Pérès A, Russell FM, Dance DAB, Vilivong K, Phommachan S, Syladeth C, Lai J, Lim R, Morpeth M, Mayxay M, Newton PN, Richet H, De Lamballerie X. Acute respiratory infections in hospitalized children in Vientiane, Lao PDR - the importance of Respiratory Syncytial Virus. Sci Rep 2017; 7:9318. [PMID: 28839157 PMCID: PMC5571090 DOI: 10.1038/s41598-017-09006-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/14/2017] [Indexed: 01/12/2023] Open
Abstract
The Human respiratory syncytial virus (RSV) is one of the most important viral pathogens, causing epidemics of acute respiratory infection (ARI), especially bronchiolitis and pneumonia, in children worldwide. To investigate the RSV burden in Laos, we conducted a one-year study in children <5 years old admitted to Mahosot Hospital, Vientiane Capital, to describe clinical and epidemiological characteristics and predictive factors for severity of RSV-associated ARI. Pooled nasal and throat swabs were tested using multiplex real-time PCR for 33 respiratory pathogens (FTD® kit). A total of 383 patients were included, 277 (72.3%) of whom presented with pneumonia. 377 (98.4%) patients were positive for at least one microorganism, of which RSV was the most common virus (41.0%), with a peak observed between June and September, corresponding to the rainy season. Most RSV inpatients had pneumonia (84.1%), of whom 35% had severe pneumonia. Children <3-months old were a high-risk group for severe pneumonia, independently of RSV infection. Our study suggests that RSV infection is frequent in Laos and commonly associated with pneumonia in hospitalized young children. Further investigations are required to provide a better overall view of the Lao nationwide epidemiology and public health burden of RSV infection over time.
Collapse
Affiliation(s)
- Van Hoan Nguyen
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille university - IRD190 - Inserm 1207 - EHESP), Marseille, France
- Institut hospitalo-universitaire Méditerranée infection, APHM Public Hospitals of Marseille, Marseille, France
- Department of Infectious Diseases, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Audrey Dubot-Pérès
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille university - IRD190 - Inserm 1207 - EHESP), Marseille, France.
- Institut hospitalo-universitaire Méditerranée infection, APHM Public Hospitals of Marseille, Marseille, France.
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao PDR.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom.
| | - Fiona M Russell
- Dept. of Paediatrics, The University of Melbourne, Melbourne, Australia
- Pneumococcal Research Group, Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Keoudomphone Vilivong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao PDR
| | - Souphatsone Phommachan
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao PDR
| | - Chanthaphone Syladeth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao PDR
| | - Jana Lai
- Pneumococcal Research Group, Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia
- National Centre for Epidemiology & Population Health, Australian National University, Canberra, Australia
| | - Ruth Lim
- Pneumococcal Research Group, Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - Melinda Morpeth
- Dept. of Paediatrics, The University of Melbourne, Melbourne, Australia
- The Royal Children's Hospital, Melbourne, Australia
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao PDR
- Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR, Vientiane, Laos
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Hervé Richet
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille university - IRD190 - Inserm 1207 - EHESP), Marseille, France
| | - Xavier De Lamballerie
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille university - IRD190 - Inserm 1207 - EHESP), Marseille, France
- Institut hospitalo-universitaire Méditerranée infection, APHM Public Hospitals of Marseille, Marseille, France
| |
Collapse
|