1
|
Zheng M, Yang Z, Shi L, Zhao L, Liu K, Tang N. The role of lncRNAs in AKI and CKD: Molecular mechanisms, biomarkers, and potential therapeutic targets. Genes Dis 2025; 12:101509. [PMID: 40083322 PMCID: PMC11904545 DOI: 10.1016/j.gendis.2024.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/04/2024] [Accepted: 11/02/2024] [Indexed: 03/16/2025] Open
Abstract
Exosomes, a type of extracellular vesicle, are commonly found in different body fluids and are rich in nucleic acids (circRNA, lncRNAs, miRNAs, mRNAs, tRNAs, etc.), proteins, and lipids. They are involved in intercellular communication. lncRNAs are responsible for the modulation of gene expression, thus affecting the pathological process of kidney injury. This review summarizes the latest knowledge on the roles of exosome lncRNAs and circulating lncRNAs in the pathogenesis, biomarker discovery, and treatment of chronic kidney disease, renal fibrosis, and acute kidney injury, providing an overview of novel regulatory approaches and lncRNA delivery systems.
Collapse
Affiliation(s)
- Minhui Zheng
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Zixuan Yang
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Lei Shi
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liyuan Zhao
- Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230000, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
| | - Kelan Liu
- Intensive Care Unit, Liyang People's Hospital, Liyang, Jiangsu 213300, China
| | - Naping Tang
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
2
|
Luo X, Chen X, Gu Y, Jia H, Lin X, Wang L, Feng J. LncRNA FENDRR/ miR-424-5p serves as a diagnostic biomarker for sepsis and its predictive value for clinical outcomes. Immunobiology 2025; 230:152870. [PMID: 39862730 DOI: 10.1016/j.imbio.2025.152870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE This study intends to investigate the relationship between FENDRR and miR-424-5p and their clinical significance in sepsis, aiming to provide new diagnostic markers and prognostic markers for sepsis. METHODS 136 patients with sepsis and 132 healthy volunteers were included as study subjects. The expression levels of FENDRR and miR-424-5p were detected by qPCR. ROC was applied to evaluate the diagnostic value of FENDRR and miR-424-5p. COX analyzed the independent risk factors for the occurrence of death in sepsis patients. Dual luciferase reporter assay detected the binding of FENDRR and miR-424-5p. The miR-424-5p target genes were predicted and enriched for GO function and KEGG pathway. RESULTS FENDRR was up-regulated and miR-424-5p was down-regulated in patients with sepsis. FENDRR can target and bind to miR-424-5p. Both FENDRR and miR-424-5p showed significant diagnostic potential in sepsis and their combination significantly improved the diagnostic efficiency. FENDRR/miR-424-5p were significantly correlated with WBC, CRP, APACH II, and SOFA of sepsis patients. FENDRR and miR-424-5p were independent risk factors for mortality in sepsis patients. Sepsis patients with high FENDRR levels or low miR-424-5p levels had higher mortality. GO and KEGG enrichment analyses revealed that the targets of miR-424-5p were predominantly associated with cell functions and inflammatory signaling pathways. CONCLUSION Upregulated FENDRR and downregulated miR-424-5p expression can serve as biomarkers of sepsis with predictive value on the onset and prognostic outcome. FENDRR and miR-424-5p were correlated with the severity of sepsis and FENDRR can play a function in the sepsis progression via targeting miR-424-5p.
Collapse
Affiliation(s)
- Xue Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ying Gu
- Department of Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250022, China
| | - Honggang Jia
- Department of Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250022, China
| | - Xinyu Lin
- Department of Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250022, China
| | - Ling Wang
- Department of Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan 250022, China.
| | - Jingyun Feng
- Department of Critical Care Medicine, The Third People's Hospital of Changzhou, Changzhou 213000, China.
| |
Collapse
|
3
|
Zhao HH, Chen CL, Chen FF, Zhang LL, Li MM, He ZB. Molecular mechanism of ALKBH5-mediated m6A demethylation regulating lipopolysaccharide-induced epithelial-mesenchymal transition in sepsis-induced acute kidney injury. Kaohsiung J Med Sci 2024; 40:985-995. [PMID: 39287046 DOI: 10.1002/kjm2.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
This study explored the mechanism by which the m6A demethylase ALKBH5 mediates epithelial-mesenchymal transition (EMT) in sepsis-associated acute kidney injury (SA-AKI) and AKI-chronic kidney disease (CKD) transition. HK-2 cells were stimulated with lipopolysaccharide (LPS) to establish an in vitro model of SA-AKI. ALKBH5 expression was reduced through the transfection of si-ALKBH5. Cell viability, apoptosis, and migration were detected by CCK-8 assay, TUNEL staining, and Transwell. The levels of TNF-α, IL-1β, and IL-6 were measured by enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction or Western blotting was performed to determine the expressions of ALKBH5, miR-205-5p, DDX5, E-cadherin, and α-SMA. The m6A level was quantitatively analyzed. The expression of pri-miR-205 bound to DGCR8 and m6A-modified pri-miR-205 after intervention with ALKBH5 expression was detected by RNA immunoprecipitation. A dual-luciferase assay confirmed the binding between miR-205-5p and DDX5. ALKBH5 was highly expressed in LPS-induced HK-2 cells. Inhibition of ALKBH5 increased cell viability, repressed apoptosis, and reduced EMT. Inhibition of ALKBH5 increased the m6A modification level, thereby promoting DGCR8 binding to pri-miR-205 to increase miR-205-5p expression and eventually targeting DDX5 expression. Low expression of miR-205-5p or overexpression of DDX5 partially abolished the inhibitory effect of ALKBH5 silencing on EMT. In conclusion, ALKBH5 represses miR-205-5p expression by removing m6A modification to upregulate DDX5 expression, thereby promoting EMT and AKI-CKD transition after SA-AKI.
Collapse
Affiliation(s)
- Hai-Hong Zhao
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Chun-Ling Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Fen-Fang Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Lu-Lu Zhang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Mei-Mei Li
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Ze-Bao He
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| |
Collapse
|
4
|
Alsaab HO, Alaqile AF, Alsaeedi RN, Alzahrani MS, Almutairy B. Long journey on the role of long non-coding RNA (lncRNA) in acute kidney injury (AKI). Pathol Res Pract 2024; 263:155591. [PMID: 39288476 DOI: 10.1016/j.prp.2024.155591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Acute kidney injury (AKI) has a high rate of morbidity, death, and medical expenses, making it a worldwide public health problem. There are still few viable treatment plans for AKI despite medical advancements. A subclass of non-coding RNAs with over 200 nucleotides in length, long non-coding RNAs (lncRNAs) have a wide range of biological roles. Lately, lncRNAs have become important mediators of AKI and prospective biomarkers. However, current studies show that, via constructing the lncRNA/microRNA/target gene regulatory axis, abnormal expression of lncRNAs has been connected to significant pathogenic processes associated with AKI, such as the inflammatory response, cell proliferation, and apoptosis. In order to compete with mRNAs for binding to the same miRNAs and affect the expression of transcripts targeted by miRNAs, lncRNAs may function as competing endogenous RNAs (ceRNAs). The most widely used approach for researching the biological roles of lncRNAs is the construction of ceRNA regulation networks. Our goal in this article is to deliver an updated review of lncRNAs in AKI and to provide more knowledge on their possible applications as therapeutic targets and AKI biomarkers.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Rahaf N Alsaeedi
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
5
|
Brown N, Roman M, Miller D, Murphy G, Woźniak MJ. A Systematic Review and Meta-Analysis of MicroRNA as Predictive Biomarkers of Acute Kidney Injury. Biomedicines 2024; 12:1695. [PMID: 39200160 PMCID: PMC11351452 DOI: 10.3390/biomedicines12081695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Acute kidney injury (AKI) affects 10-15% of hospitalised patients and arises after severe infections, major surgeries, or exposure to nephrotoxic drugs. AKI diagnosis based on creatinine level changes lacks specificity and may be delayed. MicroRNAs are short non-coding RNA secreted by all cells. This review of studies measuring miRNAs in AKI aimed to verify miRNAs as diagnostic markers. The study included data from patients diagnosed with AKI due to sepsis, ischaemia, nephrotoxins, radiocontrast, shock, trauma, and cardiopulmonary bypass. Out of 71 studies, the majority focused on AKI in sepsis patients, followed by cardiac surgery patients, ICU patients, and individuals receiving nephrotoxic agents or experiencing ischaemia. Studies that used untargeted assays found 856 differentially regulated miRNAs, although none of these were confirmed by more than one study. Moreover, 68 studies measured miRNAs by qRT-PCR, and 2 studies reported downregulation of miR-495-3p and miR-370-3p in AKI patients with sepsis after the AKI diagnosis. In three studies, upregulation of miR-21 was reported at the time of the AKI diagnosis with a significant pooled effect of 0.56. MiR-21 was also measured 19-24 h after cardiac surgery in three studies. However, the pooled effect was not significant. Despite the considerable research into miRNA in AKI, there is a knowledge gap in their applicability as diagnostic markers of AKI in humans.
Collapse
Affiliation(s)
| | | | | | | | - Marcin J. Woźniak
- Department of Cardiovascular Sciences and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester LE3 9QP, UK; (N.B.); (M.R.); (D.M.); (G.M.)
| |
Collapse
|
6
|
Sivagurunathan N, Rahamathulla MP, Al-Dossary H, Calivarathan L. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson's Disease. Mol Neurobiol 2024; 61:4619-4632. [PMID: 38105409 DOI: 10.1007/s12035-023-03809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is one of the complex neurodegenerative disorders, primarily characterized by motor deficits, including bradykinesia, tremor, rigidity, and postural instability. The underlying pathophysiology involves the progressive loss of dopaminergic neurons within the substantia nigra pars compacta, leading to dopamine depletion in the basal ganglia circuitry. While motor symptoms are hallmark features of PD, emerging research highlights a wide range of non-motor symptoms, including cognitive impairments, mood disturbances, and autonomic dysfunctions. Inflammasome activation is pivotal in inducing neuroinflammation and promoting disease onset, progression, and severity of PD. Several studies have shown that long noncoding RNAs (lncRNAs) modulate inflammasomes in the pathogenesis of neurodegenerative diseases. Dysregulation of lncRNAs is linked to aberrant gene expression and cellular processes in neurodegeneration, causing the activation of inflammasomes that contribute to neuroinflammation and neurodegeneration. Inflammasomes are cytosolic proteins that form complexes upon activation, inducing inflammation and neuronal cell death. This review explores the significance of lncRNAs in regulating inflammasomes in PD, primarily focusing on specific lncRNAs such as nuclear paraspeckle assembly transcript 1 (NEATNEAT1), X-inactive specific transcript (XIST), growth arrest-specific 5 (GAS5), and HOX transcript antisense RNA (HOTAIR), which have been shown to activate or inhibit the NLRP3 inflammasome and induce the release of proinflammatory cytokines. Moreover, some lncRNAs mediate inflammasome activation through miRNA interactions. Understanding the roles of lncRNAs in inflammasome regulation provides new therapeutic targets for controlling neuroinflammation and reducing the progression of neurodegeneration. Identifying lncRNA-mediated regulatory pathways paves the way for novel therapies in the battle against these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Hussein Al-Dossary
- University Hospital, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India.
| |
Collapse
|
7
|
Moon YJ, Jun DY, Jeong JY, Cho S, Lee JY, Jung HD. Percutaneous Nephrostomy versus Ureteral Stent for Severe Urinary Tract Infection with Obstructive Urolithiasis: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:861. [PMID: 38929478 PMCID: PMC11206041 DOI: 10.3390/medicina60060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: The European Association of Urology guidelines on urolithiasis highlight the limited evidence supporting the superiority of percutaneous nephrostomy (PCN) over retrograde ureteral stent placement for the primary treatment of infected hydronephrosis secondary to urolithiasis. We, therefore, conducted a systematic review and meta-analysis comparing the effects of PCN and retrograde ureteral stent in patients with severe urinary tract infections secondary to obstructive urolithiasis. Materials and Methods: Meta-analyses were performed to compare four outcomes: time for the temperature to return to normal; time for the white blood cell (WBC) count to return to normal; hospital length of stay; and procedure success rate. After a full-text review, eight studies were identified as relevant and included in our systematic review and meta-analysis. Results: No significant difference was detected between PCN and retrograde ureteral stenting for the time for the temperature to return to normal (p = 0.13; mean difference [MD] = -0.74; 95% confidence interval [CI] = -1.69, 0.21; I2 = 96%) or the time for the WBC count to return to normal (p = 0.24; MD = 0.46; 95% CI = -0.30, 1.21; I2 = 85%). There was also no significant difference between methods for hospital length of stay (p = 0.78; MD = 0.45; 95% CI = -2.78, 3.68; I2 = 96%) or procedure success rate (p = 0.76; odds ratio = 0.86; 95% CI = 0.34, 2.20; I2 = 47%). Conclusions: The clinical outcomes related to efficacy did not differ between PCN and retrograde ureteral stenting for severe urinary tract infection with obstructive urolithiasis. Thus, the choice between procedures depends mainly on the urologist's or patient's preferences.
Collapse
Affiliation(s)
- Young Joon Moon
- Department of Medicine, Graduate School, Yonsei University, Seoul 03722, Republic of Korea;
| | - Dae Young Jun
- Department of Urology, Severance Hospital, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (D.Y.J.); (J.Y.L.)
| | - Jae Yong Jeong
- Department of Urology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea;
| | - Seok Cho
- Department of Urology, Inje University Ilsan Paik Hospital, College of Medicine, Inje University, Goyang 10380, Republic of Korea;
| | - Joo Yong Lee
- Department of Urology, Severance Hospital, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (D.Y.J.); (J.Y.L.)
- Center of Evidence Based Medicine, Institute of Convergence Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Hae Do Jung
- Department of Urology, Inje University Ilsan Paik Hospital, College of Medicine, Inje University, Goyang 10380, Republic of Korea;
| |
Collapse
|
8
|
Dong W, Liao R, Weng J, Du X, Chen J, Fang X, Liu W, Long T, You J, Wang W, Peng X. USF2 activates RhoB/ROCK pathway by transcriptional inhibition of miR-206 to promote pyroptosis in septic cardiomyocytes. Mol Cell Biochem 2024; 479:1093-1108. [PMID: 37347361 DOI: 10.1007/s11010-023-04781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Septic cardiomyopathy (SCM) is one of the most serious complications of sepsis. The present study investigated the role and mechanism of upstream stimulatory factor 2 (USF2) in SCM. Serum samples were extracted from SCM patients and healthy individuals. A murine model of sepsis was induced by caecal ligation and puncture (CLP) surgery. Myocardial injury was examined by echocardiography and HE staining. ELISA assay evaluated myocardial markers (CK-MB, cTnI) and inflammatory cytokines (TNF-α, IL-1β, IL-18). Primary mouse cardiomyocytes were treated with lipopolysaccharide (LPS) to simulate sepsis in vitro. RT-qPCR and Western blot were used for analyzing gene and protein levels. CCK-8 assay assessed cell viability. NLRP3 was detected by immunofluorescence. ChIP, RIP and dual luciferase reporter assays were conducted to validate the molecular associations. USF2 was increased in serum from SCM patients, septic mice and primary cardiomyocytes. USF2 silencing improved the survival of septic mice and attenuated sepsis-induced myocardial pyroptosis and inflammation in vitro and in vivo. Mechanistically, USF2 could directly bind to the promoter of miR-206 to transcriptionally inhibit its expression. Moreover, RhoB was confirmed as a target of miR-206 and could promote ROCK activation and NLRP3 inflammasome formation. Moreover, overexpression of RhoB remarkably reversed the protection against LPS-induced inflammation and pyroptosis mediated by USF2 deletion or miR-206 overexpression in cardiomyocytes. The above findings elucidated that USF2 knockdown exerted a cardioprotective effect on sepsis by decreasing pyroptosis and inflammation via miR-206/RhoB/ROCK pathway, suggesting that USF2 may be a novel drug target in SCM.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Ruichun Liao
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Junfei Weng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xingxiang Du
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xu Fang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenyu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Tao Long
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jiaxiang You
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wensheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
9
|
Dong W, Chen J, Wang Y, Weng J, Du X, Fang X, Liu W, Long T, You J, Wang W, Peng X. miR-206 alleviates LPS-induced inflammatory injury in cardiomyocytes via directly targeting USP33 to inhibit the JAK2/STAT3 signaling pathway. Mol Cell Biochem 2024; 479:929-940. [PMID: 37256445 PMCID: PMC10230473 DOI: 10.1007/s11010-023-04754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
Previous reports have confirmed that miR-206 participates in inflammatory cardiomyopathy, but its definite mechanism remains elusive. This study aims to elucidate the potential mechanism of miR-206 in septic cardiomyopathy (SCM). The primary mouse cardiomyocytes were isolated and exposed to lipopolysaccharides (LPS) to construct a septic injury model in vitro. Then, the gene transcripts and protein levels were detected by RT-qPCR and/or Western blot assay. Cell proliferation, apoptosis, and inflammatory responses were evaluated by CCK-8/EdU, flow cytometry, and ELISA assays, respectively. Dual luciferase assay, Co-IP, and ubiquitination experiments were carried out to validate the molecular interactions among miR-206, USP33, and JAK2/STAT3 signaling. miR-206 was significantly downregulated, but USP33 was upregulated in LPS-induced cardiomyocytes. Gain-of-function of miR-206 elevated the proliferation but suppressed the inflammatory responses and apoptosis in LPS-induced cardiomyocytes. USP33, as a member of the USP protein family, was confirmed to be a direct target of miR-206 and could catalyze deubiquitination of JAK2 to activate JAK2/STAT3 signaling. Rescue experiments presented that neither upregulation of USP33 nor JAK2/STAT3 signaling activation considerably reversed the protective effects of miR-206 upregulation in LPS-induced cardiomyocytes. The above data showed that miR-206 protected cardiomyocytes from LPS-induced inflammatory injuries by targeting the USP33/JAK2/STAT3 signaling pathway, which might be a novel target for SCM treatment.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yadong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Junfei Weng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xingxiang Du
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xu Fang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenyu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Tao Long
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jiaxiang You
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wensheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
10
|
Yue L, Gu Y, Xu J, Liu T. Roles of noncoding RNAs in septic acute kidney injury. Biomed Pharmacother 2023; 165:115269. [PMID: 37541179 DOI: 10.1016/j.biopha.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Septic acute kidney injury (SAKI) is one of the most common and life-threatening complications of sepsis. Patients with SAKI have increased mortality. However, the underlying pathogenesis is unclear, and the treatment targeting SAKI is unsatisfactory. Thus, identifying optimal biomarkers for SAKI diagnosis and treatment is an urgent requisite. Accumulating evidence indicates that noncoding RNAs (ncRNAs) are involved in the occurrence and progression of SAKI. In the present review, we summarized the studies of ncRNAs in SAKI, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The ncRNAs are divided into protective and damage factors according to their role in SAKI, and their expression patterns, functions, and molecular mechanisms were elaborated. Next, we proposed that ncRNAs have the potential to be diagnostic and prognostic biomarkers for SAKI and as new therapeutic targets. This review aimed to provide a comprehensive overview of ncRNAs in SKAI and explored the clinical value of ncRNAs as ideal biomarkers of SAKI.
Collapse
Affiliation(s)
- Lili Yue
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yulu Gu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Juntian Xu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
11
|
Wang P, Chen W, Zhao S, Cheng F. The role of LncRNA-regulated autophagy in AKI. Biofactors 2023; 49:1010-1021. [PMID: 37458310 DOI: 10.1002/biof.1980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 10/04/2023]
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome involving a series of pathophysiological processes regulated by multiple pathways at the molecular and cellular level. Long noncoding RNAs (lncRNAs) play an important role in the regulation of epigenetics, and their regulation of autophagy-related genes in AKI has attracted increasing attention. However, the role of lncRNA-regulated autophagy in AKI has not been fully elucidated. Evidence indicated that lncRNAs play regulatory roles in most factors that induce AKI. LncRNAs can regulate autophagy in AKI via a complex network of regulatory pathways to affect the development and prognosis of AKI. This article reviewed and analyzed the pathways of lncRNA regulation of autophagy in AKI in recent years. The results provide new ideas for further study of the pathophysiological process and targeted therapy for AKI.
Collapse
Affiliation(s)
- Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Chang YC, Liou JT, Peng YM, Chen GJ, Lin CY, Yang CA. Association of Long Noncoding RNA Expression Signatures with Stress-Induced Myocardial Perfusion Defects. Biomolecules 2023; 13:biom13050849. [PMID: 37238718 DOI: 10.3390/biom13050849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Stress-induced myocardial perfusion defects found in dipyridamole-thallium-201 single-photon emission computed tomography imaging may indicate vascular perfusion abnormalities and risk of obstructive or nonobstructive coronary heart disease. Besides nuclear imaging and subsequent coronary angiography (CAG), no blood test can indicate whether dysregulated homeostasis is associated with stress-induced myocardial perfusion defects. This study investigated the expression signature of long noncoding RNAs (lncRNAs) and genes involved in vascular inflammation and stress response in the blood of patients with stress-induced myocardial perfusion abnormalities (n = 27). The results revealed an expression signature consisting of the upregulation of RMRP (p < 0.01) and downregulations of THRIL (p < 0.01) and HIF1A (p < 0.01) among patients with a positive thallium stress test and no significant coronary artery stenosis within 6 months after baseline treatment. We developed a scoring system based on the expression signatures of RMRP, MIAT, NTT, MALAT1, HSPA1A, and NLRP3 to predict the need for further CAG among patients with moderate-to-significant stress-induced myocardial perfusion defects (area under the receiver operating characteristic curve = 0.963). Therefore, we identified a dysregulated expression profile of lncRNA-based genes in the blood that could be valuable for the early detection of vascular homeostasis imbalance and personalized therapy.
Collapse
Affiliation(s)
- Yu-Chieh Chang
- Division of Nuclear Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Jun-Ting Liou
- Division of Cardiology, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Yu-Min Peng
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Guan-Jun Chen
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Chien-Yu Lin
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Chin-An Yang
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
| |
Collapse
|
13
|
Xia H, Shanshan X, Sumeng L, Fang X, Tao Z, Cheng C. LncRNA RMRP aggravates LPS-induced HK-2 cell injury and AKI mice kidney injury by upregulating COX2 protein via targeting ELAVL1. Int Immunopharmacol 2023; 116:109676. [PMID: 36764281 DOI: 10.1016/j.intimp.2022.109676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 02/11/2023]
Abstract
OBJECTIVES There is emerging evidence that long non-coding RNA component of mitochondrial RNA processing endoribonuclease (lncRNA RMRP) is involved in acute kidney injury (AKI) progression, but the specific mechanism of action still requires further investigation. METHODS The lipopolysaccharide (LPS)-treated HK-2 cells were transfected with pcDNA-RMRP or si-RMRP, or transfected with pcDNA-ELAV like RNA binding protein 1 (ELAVL1) or si-ELAVL1, and cell viability, apoptosis, inflammatory factor secretion and oxidative stress were detected. The LPS-treated HK-2 cells were transfected with si-RMRP alone or together with pcDNA-ELAVL1, and cell behaviors were examined. The LPS-treated HK-2 cells were transfected with si-ELAVL1 alone or together with pcDNA- cyclooxygenase-2 (COX2), and the cellular changes were observed. The LPS-treated HK-2 cells were transfected with si-RMRP alone or together with pcDNA-ELAVL1, or together with pcDNA-ELAVL1 and si-COX2, and cell behaviors were examined. A mouse model of AKI was constructed using male C57BL/6 mice by the method of cecal ligation and puncture and intraperitoneal injection of LPS to explore the effect of RMRP silencing on renal injury in vivo. RESULTS RMRP and ELAVL1 was upregulated in LPS-treated HK-2 cells, and RMRP or ELAVL1 overexpression inhibited cell viability and promoted cell apoptosis, inflammatory factor secretion and oxidative stress, and RMRP knockdown showed the opposite effects. ELAVL1 upregulated COX2 protein expression and overexpression of COX2 reversed the promoting effects of RMRP knockdown on cell viability, as well as the inhibitory effects on cell apoptosis, inflammatory factor secretion and oxidative stress. Mechanistic findings suggested that RMRP aggravates LPS induced cell injury by activating prostaglandin E (PGE)/janus kinase-2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. We observed that knockdown of RMRP expression significantly alleviated renal tissue apoptosis, inflammatory factor secretion, and oxidative stress with AKI mice. CONCLUSIONS Our findings may provide a new reference for the treatment of AKI.
Collapse
Affiliation(s)
- Huang Xia
- Department of Laboratory Medicine, Taizhou People Hospital, Taizhou 225300, China
| | - Xue Shanshan
- Department of Laboratory Medicine, Taizhou People Hospital, Taizhou 225300, China
| | - Li Sumeng
- Department of Laboratory Medicine, Taizhou People Hospital, Taizhou 225300, China
| | - Xu Fang
- Department of Laboratory Medicine, Taizhou People Hospital, Taizhou 225300, China
| | - Zhou Tao
- Department of Medicine, Taizhou Polytechnic College, Taizhou 225300, China
| | - Cheng Cheng
- Department of Laboratory Medicine, Taizhou People Hospital, Taizhou 225300, China.
| |
Collapse
|
14
|
Endothelial Progenitor Cells Affect the Growth and Apoptosis of Renal Cells by Secreting Microvesicles Carrying Dysregulated miR-205 and miR-206. DISEASE MARKERS 2023; 2023:4397829. [PMID: 36845016 PMCID: PMC9949956 DOI: 10.1155/2023/4397829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
Background This study investigated the mechanism of microRNA (miRNA, miR) in microvesicles (MVs) secreted by endothelial progenitor cells (EPCs) involved in renal function in vivo and in vitro injury repair of rat primary kidney cells (PRKs). Methods Gene Expression Omnibus analysis of potential target miRNAs in nephrotic rats. Real-time quantitative polymerase chain reaction verified the correlation of these miRNAs and screened the effective target miRNAs and their downstream putative target mRNAs. Western blot analyzes the protein levels of DEAD-box helicase 5 (DDX5) and the activation of the proapoptotic factor caspase-3/9 (cleaved). Dil-Ac-LDL staining, immunofluorescence, and a transmission electron microscope (TEM) were used to identify the successful isolation of EPCs and PRKs and the morphology of MVs. Cell Counting Kit-8 was used to detect the effect of miRNA-mRNA on the proliferation of PRKs. Standard biochemical kits were used to detect biochemical indicators in rat blood and urine. Dual-luciferase analysis of miRNA binding to mRNA was conducted. The effect of miRNA-mRNA interaction on the apoptosis level of PRKs was analyzed by flow cytometry. Results A total of 13 rat-derived miRNAs were potential therapeutic targets, and miR-205 and miR-206 were screened as the targets of this study. We found that the EPC-MVs alleviated the increase of blood urea nitrogen and urinary albumin excretion and the decrease in creatinine clearance caused by hypertensive nephropathy in vivo. The effect of MVs in improving renal function indicators was promoted by miR-205 and miR-206 and inhibited by knockdown of expressed miR-205 and miR-206. In vitro, angiotensin II (Ang II) promoted growth inhibition and apoptosis of PRKs, and similarly, dysregulated miR-205 and miR-206 affected the induction of Ang II. We then observed that miR-205 and miR-206 cotargeted the downstream target DDX5 and regulated its transcriptional activity and translational levels, while also reducing the activation of proapoptotic factors caspase-3/9. Overexpressed DDX5 reversed the effects of miR-205 and miR-206. Conclusion By upregulating the expression of miR-205 and miR-206 in MVs secreted by EPC, the transcriptional activity of DDX5 and the activation of caspase-3/9 can be inhibited, thereby promoting the growth of PRKs and protecting the injury caused by hypertensive nephropathy.
Collapse
|
15
|
Emami Meybodi SM, Soleimani N, Yari A, Javadifar A, Tollabi M, Karimi B, Emami Meybodi M, Seyedhossaini S, Brouki Milan P, Dehghani Firoozabadi A. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: Implications for cardiovascular diseases complications. Int J Biol Macromol 2023; 225:1049-1071. [PMID: 36414082 DOI: 10.1016/j.ijbiomac.2022.11.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders with major global health consequences. The prevalence of CVDs continues to grow due to population-aging and lifestyle modifications. Non-coding RNAs (ncRNAs) as key regulators of cell signaling pathways have gained attention in the occurrence and development of CVDs. Exosomal-lncRNAs (exos-lncRNAs) are emerging biomarkers due to their high sensitivity and specificity, stability, accuracy and accessibility in the biological fluids. Recently, circulatory and exos-based-lncRNAs are emerging and novel bio-tools in various pathogenic conditions. It is worth mentioning that dysregulation of these molecules has been found in different types of CVDs. In this regard, we aimed to discuss the knowledge gaps and suggest research priorities regarding circulatory and exos-lncRNAs as novel bio-tools and therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nafiseh Soleimani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Mciences, Birjand, Iran.
| | - Amin Javadifar
- Immunology Research Center, Inflammation and Inflammatory Disease Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Tollabi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahmoud Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyedmostafa Seyedhossaini
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Dehghani Firoozabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Hou J, He M, Chen Q, Liang S. LncRNA H19 acts as miR-301a-3p sponge to alleviate lung injury in mice with sepsis by regulating Adcy1. Immunopharmacol Immunotoxicol 2022; 44:565-573. [PMID: 35438054 DOI: 10.1080/08923973.2022.2067045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The abnormal expression of long non-coding RNA (lncRNA) is closely related to disease progression. However, the role and mechanism of lncRNA H19 (lncH19) in sepsis-induced lung injury remain to be elucidated. METHODS Cercal ligation and puncture (CLP) mice models and lipopolysaccharide (LPS)-induced cell injury model were used to construct sepsis-induced lung injury in vivo and in vitro. The expression of lncH19, microRNA (miR)-301a-3p and adenylate cyclase 1 (Adcy1) mRNA was assessed using quantitative real-time PCR. The concentrations of inflammatory factors were determined by ELISA assay. Cell proliferation and apoptosis were determined using cell counting kit 8 assay, EdU staining and flow cytometry. The protein expression of apoptosis markers and Adcy1 was examined by western blot analysis. Oxidative stress was assessed by detecting the contents of oxidative stress markers. The interaction between miR-301a-3p and lncH19 or Adcy1 was confirmed using RNA pull-down assay, dual-luciferase reporter assay and RIP assay. RESULTS LncH19 was lowly expressed in CLP mice models and LPS-induced cell injury models. Overexpressed lncH19 could alleviate CLP-induced lung injury in mice, as well as LPS-induced cell apoptosis, inflammation and oxidative stress. MiR-301a-3p could be sponged by lncH19, and its overexpression could reverse the inhibition of lncH19 on LPS-induced cell injury. Adcy1 was a target of miR-301a-3p, and its expression was upregulated by lncH19. Silencing of Adcy1 could abolish the suppressive effect of miR-301a-3p inhibitor on LPS-induced cell injury. CONCLUSION LncH19 might inhibit sepsis-induced lung injury through acting as a sponge of miR-301a-3p to upregulate Adcy1.Highlights:LncH19 overexpression relieves CLP-induced lung injury and LPS-induced cell injury.LncH19 directly sponges miR-301a-3p.MiR-301a-3p targets Adcy1.
Collapse
Affiliation(s)
- Jingjing Hou
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Mei He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qiang Chen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Siwei Liang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
17
|
Jin J, Zhou TJ, Ren GL, Cai L, Meng XM. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin 2022; 43:2789-2806. [PMID: 35365780 PMCID: PMC8972670 DOI: 10.1038/s41401-022-00886-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.
Collapse
|
18
|
Yang L, Wang B, Ma L, Fu P. An Update of Long-Noncoding RNAs in Acute Kidney Injury. Front Physiol 2022; 13:849403. [PMID: 35350698 PMCID: PMC8957988 DOI: 10.3389/fphys.2022.849403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a global public health concern with high morbidity, mortality, and medical costs. Despite advances in medicine, effective therapeutic regimens for AKI remain limited. Long non-coding RNAs (lncRNAs) are a subtype of non-coding RNAs, which longer than 200 nucleotides and perform extremely diverse functions in biological processes. Recently, lncRNAs have emerged as promising biomarkers and key mediators to AKI. Meanwhile, existing research reveals that the aberrant expression of lncRNAs has been linked to major pathological processes in AKI, including the inflammatory response, cell proliferation, and apoptosis, via forming the lncRNA/microRNA/target gene regulatory axis. Following a comprehensive and systematic search of the available literature, 87 relevant papers spanning the years 2005 to 2021 were identified. This review aims to provide and update an overview of lncRNAs in AKI, and further shed light on their potential utility as AKI biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Hei B, Yue C, Sun Y. Long Noncoding RNA ZFAS1 Protects HK-2 Cells against Sepsis-Induced Injury through Targeting the miR3723p/PPAR α Axis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7768963. [PMID: 35035856 PMCID: PMC8759900 DOI: 10.1155/2022/7768963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
In septic acute kidney injury, one of the main purposes of long noncoding RNA (lncRNA) ZFAS1 is still unclear. This study is intended to analyze the effects of lncRNA ZFAS1 on the septic AKI in the HK-2 cell line. Materials and Methods. In order to construct an in vitro model of septic AKI, HK-2 cells have been treated with lipopolysaccharides. CCK-8 assay has been utilized to check the viability of HK-2 cells. The contents of inflammatory cytokines (that includes IL-1β, TNF-α, and IL-6) have been marked with enzyme-linked immune sorbent assay (ELISA). Cell apoptosis was assessed by TUNEL staining. To detect the expression of lncRNA ZFAS1 and microRNA-372-3p, quantitative reverse-transcription PCR has been used. And to confirm the connection among genes, luciferase reporter assay has been applied. Results. Overexpression of ZFAS1 alleviated LPS-induced HK-2 cell injury. ZFAS1 positively regulated expression of α receptor activated by peroxisome proliferation (PPARα) through competitive linkage with miR-372-3p. In addition, over expression of miR-372-3p counteracted the protective effect of upward regulation of ZFAS1 on LPS-induced HK-2 cell damage, which could be reversed by over expression of PPARα. Conclusion. It is concluded that, in LPS-induced HK-2 cell injury, ZFAS1 has a protective role via modulating the miR-372-3p/PPARα axis, suggesting the potential of ZFAS1 as a protective target for septic AKI.
Collapse
Affiliation(s)
- Bingchang Hei
- Intensive Care Unit, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, China
| | - Caifang Yue
- Department of Critical Care Medicine, No. 1 Hospital Attached to Jiamusi University in Heilongjiang Province, ICU, Jiamusi 154002, Heilongjiang, China
| | - Yao Sun
- Department of Neurology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150088, Heilongjiang, China
| |
Collapse
|
20
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Wang J, Jiao P, Wei X, Zhou Y. Silencing Long Non-coding RNA Kcnq1ot1 Limits Acute Kidney Injury by Promoting miR-204-5p and Blocking the Activation of NLRP3 Inflammasome. Front Physiol 2021; 12:721524. [PMID: 34858199 PMCID: PMC8632456 DOI: 10.3389/fphys.2021.721524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is a critical clinical disease characterized by an acute decrease in renal function. Long non-coding RNAs (LncRNAs) are important in AKI. This study aimed to explore the mechanism of lncRNA Kcnq1ot1 in AKI by sponging microRNA (miR)-204-5p as a competitive endogenous RNA (ceRNA). AKI mouse model and hypoxia/reoxygenation (H/R) model of human kidney (HK) cells were established. Kcnq1ot1 expression, cell proliferation, and apoptosis were measured. Binding relations among Kcnq1ot1, miR-204-5p, and NLRP3 were verified. Pathological changes and cell apoptosis were detected. The results showed that Kcnq1ot1 was highly expressed in the AKI model in vivo and in vitro. Kcnq1ot1 knockdown promoted cell proliferation and prevented apoptosis and inflammation. Furthermore, Kcnq1ot1 inhibited miR-204-5p expression by competitively binding to miR-204-5p in HK-2 cells. miR-204-5p targeted NLRP3 and NLRP3 overexpression averted the inhibiting effect of miR-204-5p on apoptosis and inflammation in HK-2 cells in vitro. Kcnq1ot1 knockdown in vivo promoted miR-204-5p expression, inhibited NLRP3 inflammasome activation, reduced levels of SCr, BUN, and KIM-1, and thus alleviated AKI and reduced apoptosis. In summary, silencing lncRNA Kcnq1ot1 inhibited AKI by promoting miR-204-5p and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- JunTao Wang
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Peng Jiao
- Department of Emergency, The First People's Hospital of Shangqiu, Shangqiu, China
| | - XiaoYing Wei
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Yun Zhou
- Institute of Nephrology Eastern Theater General Hospital, Nanjing, China
| |
Collapse
|
22
|
Wang C, Liang G, Shen J, Kong H, Wu D, Huang J, Li X. Long Non-Coding RNAs as Biomarkers and Therapeutic Targets in Sepsis. Front Immunol 2021; 12:722004. [PMID: 34630395 PMCID: PMC8492911 DOI: 10.3389/fimmu.2021.722004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Sepsis, an infection-induced systemic inflammatory disorder, is often accompanied by multiple organ dysfunction syndromes with high incidence and mortality rates, and those who survive are often left with long-term sequelae, bringing great burden to social economy. Therefore, novel approaches to solve this puzzle are urgently needed. Previous studies revealed that long non-coding RNAs (lncRNAs) have exerted significant influences on the process of sepsis. The aim of this review is to summarize our understanding of lncRNAs as potential sepsis-related diagnostic markers and therapeutic targets, and provide new insights into the diagnosis and treatment for sepsis. In this study, we also introduced the current diagnostic markers of sepsis and discussed their limitations, while review the research advances in lncRNAs as promising biomarkers for diagnosis and prognosis of sepsis. Furthermore, the roles of lncRNAs in sepsis-induced organ dysfunction were illustrated in terms of different organ systems. Nevertheless, further studies should be carried out to elucidate underlying molecular mechanisms and pathological process of sepsis.
Collapse
Affiliation(s)
- Chuqiao Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Guorui Liang
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jieni Shen
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Haifan Kong
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Donghong Wu
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jinxiang Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Wang W, Yang N, Yang YH, Wen R, Liu CF, Zhang TN. Non-Coding RNAs: Master Regulators of Inflammasomes in Inflammatory Diseases. J Inflamm Res 2021; 14:5023-5050. [PMID: 34616171 PMCID: PMC8490125 DOI: 10.2147/jir.s332840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging data indicates that non-coding RNAs (ncRNAs) represent more than just “junk sequences” of the genome and have been found to be involved in multiple diseases by regulating various biological process, including the activation of inflammasomes. As an important aspect of innate immunity, inflammasomes are large immune multiprotein complexes that tightly regulate the production of pro-inflammatory cytokines and mediate pyroptosis; the activation of the inflammasomes is a vital biological process in inflammatory diseases. Recent studies have emphasized the function of ncRNAs in the fine control of inflammasomes activation either by directly targeting components of the inflammasomes or by controlling the activity of various factors that control the activation of inflammasomes; consequently, ncRNAs may represent potential therapeutic targets for inflammatory diseases. Understanding the precise role of ncRNAs in controlling the activation of inflammasomes will help us to design targeted therapies for multiple inflammatory diseases. In this review, we summarize the regulatory role and therapeutic potential of ncRNAs in the activation of inflammasomes by focusing on a range of inflammatory diseases, including microbial infection, sterile inflammatory diseases, and fibrosis-related diseases. Our goal is to provide new ideas and perspectives for future research.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
24
|
Lu F, Hong Y, Liu L, Wei N, Lin Y, He J, Shao Y. Long noncoding RNAs: A potential target in sepsis-induced cellular disorder. Exp Cell Res 2021; 406:112756. [PMID: 34384779 DOI: 10.1016/j.yexcr.2021.112756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Sepsis, an inflammation-related clinical syndrome, is characterized by disrupted immune homeostasis accompanied by infection and multiple organ dysfunction as determined by the Sequential Organ Failure Assessment (SOFA). Substantial evidence has recently suggested that lncRNAs orchestrate various biological processes in diseases, and lncRNAs play special roles in the diagnosis and management of sepsis. To date, very few reviews have provided clear and comprehensive clues to demonstrate the roles of lncRNAs in the pathogenesis of sepsis. Based on previously published studies, in this review, we summarize the different functions of lncRNAs in sepsis-induced cellular disorders and sepsis-induced organ failure to show the potential roles of lncRNAs in the diagnosis and management of sepsis. We further depict the function of some lncRNAs known to be pivotal regulators in the pathogenesis of sepsis to discuss the underlying molecular events. Additionally, we list and discuss several hotspots in research on lncRNAs, which may be conducive to future lncRNA-targeted therapeutic approaches for sepsis treatment.
Collapse
Affiliation(s)
- Furong Lu
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuan Hong
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Lizhen Liu
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Ning Wei
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yao Lin
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China
| | - Junbing He
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China.
| | - Yiming Shao
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|