1
|
Coyle NM, O'Toole C, Thomas JCL, Ryder D, Feil EJ, Geary M, Bean TP, Joseph AW, Waine A, Cheslett D, Verner-Jeffreys DW. Vibrio aestuarianus clade A and clade B isolates are associated with Pacific oyster ( Magallana gigas) disease outbreaks across Ireland. Microb Genom 2023; 9:mgen001078. [PMID: 37540224 PMCID: PMC10483421 DOI: 10.1099/mgen.0.001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Bacteria from the family Vibrionaceae have been implicated in mass mortalities of farmed Pacific oysters (Magallana gigas) in multiple countries, leading to substantial impairment of growth in the sector. In Ireland there has been concern that Vibrio have been involved in serious summer outbreaks. There is evidence that Vibrio aestuarianus is increasingly becoming the main pathogen of concern for the Pacific oyster industry in Ireland. While bacteria belonging to the Vibrio splendidus clade are also detected frequently in mortality episodes, their role in the outbreaks of summer mortality is not well understood. To identify and characterize strains involved in these outbreaks, 43 Vibrio isolates were recovered from Pacific oyster summer mass mortality episodes in Ireland from 2008 to 2015 and these were whole-genome sequenced. Among these, 25 were found to be V. aestuarianus (implicated in disease) and 18 were members of the V. splendidus species complex (role in disease undetermined). Two distinct clades of V. aestuarianus - clade A and clade B - were found that had previously been described as circulating within French oyster culture. The high degree of similarity between the Irish and French V. aestuarianus isolates points to translocation of the pathogen between Europe's two major oyster-producing countries, probably via trade in spat and other age classes. V. splendidus isolates were more diverse, but the data reveal a single clone of this species that has spread across oyster farms in Ireland. This underscores that Vibrio could be transmitted readily across oyster farms. The presence of V. aestuarianus clades A and B in not only France but also Ireland adds weight to growing concern that this pathogen is spreading and impacting Pacific oyster production within Europe.
Collapse
Affiliation(s)
- Nicola M. Coyle
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Ciar O'Toole
- Marine Institute, Oranmore, Co. Galway H91 R673, Ireland
| | - Jennifer C. L. Thomas
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - David Ryder
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
| | - Edward J. Feil
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Michelle Geary
- Marine Institute, Oranmore, Co. Galway H91 R673, Ireland
| | - Timothy P. Bean
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | | - Ava Waine
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
- Newcastle University, School of Natural and Environmental Sciences, Newcastle Upon Tyne, NE1 7RU, UK
| | | | | |
Collapse
|
2
|
Appah JKM, Lynch SA, Lim A, O' Riordan R, O'Reilly L, de Oliveira L, Wheeler AJ. A health survey of the reef forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata in a remote submarine canyon on the European continental margin, NE Atlantic. J Invertebr Pathol 2022; 192:107782. [PMID: 35667398 DOI: 10.1016/j.jip.2022.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Monitoring of cold-water corals (CWCs) for pathogens and diseases is limited due to the environment, protected nature of the corals and their habitat and as well as the challenging and sampling effort required. It is recognised that environmental factors such as temperature and pH can expedite the ability of pathogens to cause diseases in cold-water corals therefore the characterisation of pathogen diversity, prevalence and associated pathologies is essential. The present study combined histology and polymerase chain reaction (PCR) diagnostic techniques to screen for two significant pathogen groups (bacteria of the genus Vibrio and the protozoan Haplosporidia) in the dominant NE Atlantic deep-water framework corals Lophelia pertusa (13 colonies) and Madrepora oculata (2 colonies) at three sampling locations (canyon head, south branch and the flank) in the Porcupine Bank Canyon (PBC), NE Atlantic. One M. oculata colony and four L. pertusa colonies were collected from both the canyon flank and the south branch whilst five L. pertusa colonies were collected from the canyon head. No pathogens were detected in the M. oculata samples. Neither histology nor PCR detected Vibrio spp. in L. pertusa, although Illumina technology used in this study to profile the CWCs microbiome, detected V. shilonii (0.03%) in a single L. pertusa individual, from the canyon head, that had also been screened in this study. A macroborer was observed at a prevalence of 0.07% at the canyon head only. Rickettsiales-like organisms (RLOs) were visualised with an overall prevalence of 40% and with a low intensity of 1 to 4 (RLO) colonies per individual polyp by histology. L. pertusa from the PBC canyon head had an RLO prevalence of 13.3% with the highest detection of 26.7% recorded in the south branch corals. Similarly, unidentified cells observed in L. pertusa from the south branch (20%) were more common than those observed in L. pertusa from the canyon head (6.7%). No RLOs or unidentified cells were observed in corals from the flank. Mean particulate organic matter concentration is highest in the south branch (2,612 μg l-1) followed by the canyon head (1,065 μg l-1) and lowest at the canyon flank (494 μg l-1). Although the route of pathogen entry and the impact of RLO infection on L. pertusa is unclear, particulate availability and the feeding strategies employed by the scleractinian corals may be influencing their exposure to pathogens. The absence of a pathogen in M. oculata may be attributed to the smaller number of colonies screened or the narrower diet in M. oculata compared to the unrestricted diet exhibited in L. pertusa, if ingestion is a route of entry for pathogen groups. The findings of this study also shed some light on how environmental conditions experienced by deep sea organisms and their life strategies may be limiting pathogen diversity and prevalence.
Collapse
Affiliation(s)
- J K M Appah
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - S A Lynch
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - A Lim
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Green Rebel Marine, Crosshaven Boatyard, Crosshaven, Co Cork, Ireland
| | - R O' Riordan
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - L O'Reilly
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - L de Oliveira
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - A J Wheeler
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Irish Centre for Research in Applied Geosciences / Marine & Renewable Energy Institute (MaREI), University College, Cork
| |
Collapse
|
3
|
Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology 2022; 148:1665-1679. [PMID: 35060462 PMCID: PMC8564771 DOI: 10.1017/s0031182021001396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite coinfections being recognized as the rule in animal populations, most studies focus on single pathogen systems. Pathogen interaction networks and the drivers of such associations are lacking in disease ecology studies. Common cockle Cerastoderma edule populations are exposed to a great diversity of pathogens, thus making them a good model system to investigate. This study examined the diversity and prevalence of pathogens from different taxonomic levels in wild and fished C. edule on the Irish coast. Potential interactions were tested focussing on abiotic (seawater temperature and salinity) and biotic (cockle size and age, and epiflora on shells) factors. No Microsporidia nor OsHV-1μVar were detected. Single infections with Haplosporidia (37.7%) or Vibrio (25.3%) were more common than two-pathogen coinfected individuals (9.5%), which may more easily succumb to infection. Fished C. edule populations with high cockle densities were more exposed to infections. Higher temperature and presence of epiflora on cockle shells promoted coinfection in warmer months. Low seawater salinity, host condition and proximity to other infected host species influenced coinfection distribution. A positive association between two Minchinia spp. was observed, most likely due to their different pathogenic effect. Findings highlight the major influence that ecological factors have on pathogen interactions and host–pathogen interplay.
Collapse
|
4
|
Albuixech-Martí S, Lynch SA, Culloty SC. Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds. Sci Rep 2021; 11:22159. [PMID: 34773053 PMCID: PMC8589998 DOI: 10.1038/s41598-021-01610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Shellfish, including the key species the common cockle Cerastoderma edule, living and feeding in waters contaminated by infectious agents can accumulate them within their tissues. It is unknown if microbial pathogens and microparasites can subsequently be transmitted via concomitant predation to their consumers, including shorebirds. The objective of this study was to assess if pathogens associated with C. edule could be detected seasonally in the faeces of shorebirds that feed on C. edule and in the physical environment (sediment) in which C. edule reside, along the Irish and Celtic Seas. Two potentially pathogenic global groups, Vibrio and Haplosporidia, were detected in C. edule. Although Haplosporidia were not detected in the bird faeces nor in the sediment, identical strains of Vibrio splendidus were detected in C. edule and bird faecal samples at sites where the oystercatcher Haematopus ostralegus and other waders were observed to be feeding on cockles. Vibrio spp. prevalence was seasonal and increased in C. edule and bird faecal samples during the warmer months, possibly due to higher seawater temperatures that promote the replication of this bacteria. The sediment samples showed an overall higher prevalence of Vibrio spp. than the bird faecal and C. edule samples, and its detection remained consistently high through the sites and throughout the seasons, which further supports the role of the sediment as a Vibrio reservoir. Our findings shed light on the fact that not all pathogen groups are transmitted from prey to predator via feeding but bacteria such as V. splendidus can be. As most of the wading birds observed in this study are migratory, the results also indicate the potential for this bacterium to be dispersed over greater geographic distances, which will have consequences for areas where it may be introduced.
Collapse
Affiliation(s)
- Sara Albuixech-Martí
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland.
| | - Sharon A Lynch
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
- MaREI Centre for Climate, Energy and Marine, Environmental Research Institute, University College Cork, Cork, VGV5+95, Ireland
| |
Collapse
|
5
|
Immunomodulatory and Antiviral Effects of Macroalgae Sulphated Polysaccharides: Case Studies Extend Knowledge on Their Importance in Enhancing Shellfish Health, and the Control of a Global Viral Pathogen Ostreid Herpesvirus-1 microVar. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macroalgae are the primary source of non-animal sulphated polysaccharides (SPs) in the marine environment with fucoidans derived from brown algae (Phaeophyta) and carrageenans from red algae (Rhodophyta). Much research has been carried out on SP effects on Asian shrimp species (genera Penaeus and Metapenaeus) but their effect on commercially important bivalve mollusc species is limited and in Pacific oyster Crassostrea gigas is unknown. Knowledge of their impact on bivalve pathogens and Palaemon shrimp is unknown. The objectives of this study were to assess the effects of Fucus vesiculosus (Phaeophyta), Mastocarpus stellatus (Rhodophyta) and algal derivatives (fucoidan and κ-carrageenan) on C. gigas performance, and on ostreid herpesvirus-1 microvar (OsHV-1 μVar) and bacteria Vibrio spp. development. Both pathogens have been associated with significant oyster mortalities and economic losses globally. The effects of sulphated galactan from Gracilaria fisheri (Rhodophyta) on European common prawn Palaemon serratus, an important fishery species, was also assessed. Findings indicate a rapid and prolonged increase in total blood cell count, lysozyme (enzyme that destroys pathogens), and a difference in the ratio of blood cell types in treated individuals compared to their control counterparts. A significantly lower OsHV-1 μVar prevalence was observed in treated oysters and κ-carrageenan was found to suppress viral replication (loads), while OsHV-1 μVar was not detected in the fucoidan treated oysters from Day 8 of the 26-day trial. No antibacterial effect was observed however, the oysters did not succumb to vibriosis. These findings contribute further knowledge to macroalgae sulphated polysaccharide biotherapeutic properties, their twofold effect on animal health and viral suppression.
Collapse
|
6
|
Moussa M, Cauvin E, Le Piouffle A, Lucas O, Bidault A, Paillard C, Benoit F, Thuillier B, Treilles M, Travers MA, Garcia C. A MALDI-TOF MS database for fast identification of Vibrio spp. potentially pathogenic to marine mollusks. Appl Microbiol Biotechnol 2021; 105:2527-2539. [PMID: 33590268 PMCID: PMC7954726 DOI: 10.1007/s00253-021-11141-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/05/2023]
Abstract
In mollusk aquaculture, a large number of Vibrio species are considered major pathogens. Conventional methods based on DNA amplification and sequencing used to accurately identify Vibrio species are unsuitable for monitoring programs because they are time-consuming and expensive. The aim of this study was, therefore, to develop the MALDI-TOF MS method in order to establish a rapid identification technique for a large panel of Vibrio species. We created the EnviBase containing 120 main spectra projections (MSP) of the Vibrio species that are potentially responsible for mollusk diseases, comprising 25 species: V. aestuarianus, V. cortegadensis, V. tapetis and species belonging to the Coralliilyticus, Harveyi, Mediterranei, and Orientalis clades. Each MSP was constructed by the merger of raw spectra obtained from three different media and generated by three collaborating laboratories to increase the diversity of the conditions and thus obtain a good technique robustness. Perfect discrimination was obtained with all of the MSP created for the Vibrio species and even for very closely related species as V. europaeus and V. bivalvicida. The new EnviBase library was validated through a blind test on 100 Vibrio strains performed by our three collaborators who used the direct transfer and protein extraction methods. The majority of the Vibrio strains were successfully identified with the newly created EnviBase by the three laboratories for both protocol methods. This study documents the first development of a freely accessible database exclusively devoted to Vibrio found in marine environments, taking into account the high diversity of this genus. KEY POINTS: • Development of a MALDI-TOF MS database to quickly affiliate Vibrio species. • Increase of the reactivity when faced with Vibrio associated with mollusk diseases. • Validation of MALDI-TOF MS as routine diagnostic tool.
Collapse
Affiliation(s)
- M Moussa
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, F-17390, La Tremblade, France
| | - E Cauvin
- Labeo-Manche, 1352 avenue de Paris, 50000, Saint-Lô, France
| | - A Le Piouffle
- Labocea, Avenue de la Plage des Gueux, 29330, Quimper, France
| | - O Lucas
- Qualyse, ZI Montplaisir, 79220, Champdeniers Saint-Denis, France
| | - A Bidault
- Univ Brest, CNRS, IRD, Ifremer, UMR6539 LEMAR, F-29280, Plouzané, France
| | - C Paillard
- Univ Brest, CNRS, IRD, Ifremer, UMR6539 LEMAR, F-29280, Plouzané, France
| | - F Benoit
- Labeo-Manche, 1352 avenue de Paris, 50000, Saint-Lô, France
| | - B Thuillier
- Labocea, Avenue de la Plage des Gueux, 29330, Quimper, France
| | - M Treilles
- Qualyse, ZI Montplaisir, 79220, Champdeniers Saint-Denis, France
| | - M A Travers
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, F-17390, La Tremblade, France
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, F-34090, Montpellier, France
| | - Céline Garcia
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, F-17390, La Tremblade, France.
| |
Collapse
|
7
|
|
8
|
Chimetto Tonon LA, Thompson JR, Moreira APB, Garcia GD, Penn K, Lim R, Berlinck RGS, Thompson CC, Thompson FL. Quantitative Detection of Active Vibrios Associated with White Plague Disease in Mussismilia braziliensis Corals. Front Microbiol 2017; 8:2272. [PMID: 29204142 PMCID: PMC5698304 DOI: 10.3389/fmicb.2017.02272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Over recent decades several coral diseases have been reported as a significant threat to coral reef ecosystems causing the decline of corals cover and diversity around the world. The development of techniques that improve the ability to detect and quantify microbial agents involved in coral disease will aid in the elucidation of disease cause, facilitating coral disease detection and diagnosis, identification and pathogen monitoring, pathogen sources, vectors, and reservoirs. The genus Vibrio is known to harbor pathogenic strains to marine organisms. One of the best-characterized coral pathogens is Vibrio coralliilyticus, an aetilogic agent of White Plague Disease (WPD). We used Mussismilia coral tissue (healthy and diseased specimens) to develop a rapid reproducible detection system for vibrios based on RT-QPCR and SYBR chemistry. We were able to detect total vibrios in expressed RNA targeting the 16S rRNA gene at 5.23 × 106 copies/μg RNA and V. coralliilyticus targeting the pyrH gene at 5.10 × 103 copies/μg RNA in coral tissue. Detection of V. coralliilyticus in diseased and in healthy samples suggests that WPD in the Abrolhos Bank may be caused by a consortium of microorganism and not only a single pathogen. We developed a more practical and economic system compared with probe uses for the real-time detection and quantification of vibrios from coral tissues by using the 16S rRNA and pyrH gene. This qPCR assay is a reliable tool for the monitoring of coral pathogens, and can be useful to prevent, control, or reduce impacts in this ecosystem.
Collapse
Affiliation(s)
- Luciane A Chimetto Tonon
- Laboratory of Organic Chemistry of Biological Systems, Chemical Institute of São Carlos, University of São Paulo, São Carlos, Brazil.,Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janelle R Thompson
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ana P B Moreira
- Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gizele D Garcia
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kevin Penn
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rachelle Lim
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Roberto G S Berlinck
- Laboratory of Organic Chemistry of Biological Systems, Chemical Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
He Y, Sen B, Shang J, He Y, Xie N, Zhang Y, Zhang J, Johnson ZI, Wang G. Seasonal influence of scallop culture on nutrient flux, bacterial pathogens and bacterioplankton diversity across estuaries off the Bohai Sea Coast of Northern China. MARINE POLLUTION BULLETIN 2017; 124:411-420. [PMID: 28779889 DOI: 10.1016/j.marpolbul.2017.07.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
In this study, we investigated the environmental impacts of scallop culture on two coastal estuaries adjacent the Bohai Sea including developing a quantitative PCR assay to assess the abundance of the bacterial pathogens Escherichia coli and Vibrio parahaemolyticus. Scallop culture resulted in a significant reduction of nitrogen, Chlorophyll a, and phosphorous levels in seawater during summer. The abundance of bacteria including V. parahaemolyticus varied significantly across estuaries and breeding seasons and was influenced by nitrate as well as nutrient ratios (Si/DIN, N/P). Bacterioplankton diversity varied across the two estuaries and seasons, and was dominated by Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes. Overall, this study suggests a significant influence of scallop culture on the ecology of adjacent estuaries and offers a sensitive tool for monitoring scallop contamination.
Collapse
Affiliation(s)
- Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Junyang Shang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yike He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yongfeng Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianle Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zackary I Johnson
- Qinhuangdao Marine Environmental Monitoring Central Station, SOA, Qinhuangdao, Hebei 066002, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Duke Marine Laboratory, Nicholas School of the Environment, Duke University, NC 28516, USA.
| |
Collapse
|
10
|
Travers MA, Tourbiez D, Parizadeh L, Haffner P, Kozic-Djellouli A, Aboubaker M, Koken M, Dégremont L, Lupo C. Several strains, one disease: experimental investigation of Vibrio aestuarianus infection parameters in the Pacific oyster, Crassostrea gigas. Vet Res 2017; 48:32. [PMID: 28549482 PMCID: PMC5446674 DOI: 10.1186/s13567-017-0438-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/04/2017] [Indexed: 01/20/2023] Open
Abstract
This study investigated oyster infection dynamics by different strains of Vibrio aestuarianus isolated before and after the apparent re-emergence of this pathogen observed in France in 2011. We conducted experiments to compare minimal infective dose, lethal dose 50 and bacterial shedding for six V. aestuarianus strains. Whatever the strain used, mortality was induced in juvenile oysters by intramuscular injection and reached 90–100% of mortality within 5 days. Moreover, bacterial shedding was comparable among strains and reached its maximum after 20 h (≈10 EXP5 bacteria/mL/animal). Similarly, our first estimations of lethal dose 50 were comparable among strains (minimal infective dose around 0.4 × 10EXP5 bacteria/mL and LD50 around 10EXP5 bacteria/mL) by using seawater containing freshly shed bacteria. These results indicate that, at least with these criteria, despite V. aestuarianus strains genetic diversity, the disease process is similar. The strains isolated after the apparent re-emergence of the bacteria in 2011, do not present a more acute virulence phenotype than the reference strains isolated between 2002 and 2007. Finally, our study provides original and noteworthy data indicating that infected oysters shed bacteria at a level above the threshold of LD50 a few days before they die, meaning that infection is expected to spread in a susceptible population.
Collapse
Affiliation(s)
- Marie-Agnès Travers
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France.
| | - Delphine Tourbiez
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Leïla Parizadeh
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Philippe Haffner
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France.,Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, IFREMER, Université de Perpignan Via Domitia, Université de Montpellier, 34095, Montpellier, France
| | - Angélique Kozic-Djellouli
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | | | - Marcel Koken
- LABOCEA-CNRS, 120 Avenue Alexis de Rochon, 29280, Plouzané, France
| | - Lionel Dégremont
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Coralie Lupo
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| |
Collapse
|
11
|
Mortensen S, Strand Å, Bodvin T, Alfjorden A, Skår CK, Jelmert A, Aspán A, Sælemyr L, Naustvoll LJ, Albretsen J. Summer mortalities and detection of ostreid herpesvirus microvariant in Pacific oyster Crassostrea gigas in Sweden and Norway. DISEASES OF AQUATIC ORGANISMS 2016; 117:171-176. [PMID: 26758650 DOI: 10.3354/dao02944] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Pacific oyster Crassostrea gigas has recently expanded its range in Scandinavia. The expansion is presumably a result of northwards larval drift. Massive settlements were recorded in many areas along the Swedish west coast and southern Norway in 2013 and 2014. After the spawning season in 2014, the temperature of the surface water peaked at 24-26°C. After this period, high and sudden mortalities occurred in a Swedish hatchery and in wild populations along the Swedish west coast and south coast of Norway. Surveys and collected data showed that mortalities mainly occurred during 3 wk in September. All size classes were affected, and affected populations displayed a patchy distribution with heavily affected and unaffected populations in close proximity. Flat oysters Ostrea edulis and blue mussels Mytilus edulis were unaffected. Ostreid herpesvirus (OsHV) was detected in moribund Pacific oyster spat as well as in surviving adults. The virus was identified as OsHV-1 μvar. This is the first detection of this variant in Scandinavia, showing that OsHV-1 μvar is present in areas with recent establishments of Pacific oysters, and where there is no aquaculture of this species.
Collapse
Affiliation(s)
- Stein Mortensen
- Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bidault A, Richard GG, Le Bris C, Paillard C. Development of a Taqman real-time PCR assay for rapid detection and quantification of Vibrio tapetis in extrapallial fluids of clams. PeerJ 2015; 3:e1484. [PMID: 26713238 PMCID: PMC4690387 DOI: 10.7717/peerj.1484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/18/2015] [Indexed: 02/05/2023] Open
Abstract
The Gram-negative bacterium Vibrio tapetis is known as the causative agent of Brown Ring Disease (BRD) in the Manila clam Venerupis (=Ruditapes) philippinarum. This bivalve is the second most important species produced in aquaculture and has a high commercial value. In spite of the development of several molecular methods, no survey has been yet achieved to rapidly quantify the bacterium in the clam. In this study, we developed a Taqman real-time PCR assay targeting virB4 gene for accurate and quantitative identification of V. tapetis strains pathogenic to clams. Sensitivity and reproducibility of the method were assessed using either filtered sea water or extrapallial fluids of clam injected with the CECT4600(T) V. tapetis strain. Quantification curves of V. tapetis strain seeded in filtered seawater (FSW) or extrapallial fluids (EF) samples were equivalent showing reliable qPCR efficacies. With this protocol, we were able to specifically detect V. tapetis strains down to 1.125 10(1) bacteria per mL of EF or FSW, taking into account the dilution factor used for appropriate template DNA preparation. This qPCR assay allowed us to monitor V. tapetis load both experimentally or naturally infected Manila clams. This technique will be particularly useful for monitoring the kinetics of massive infections by V. tapetis and for designing appropriate control measures for aquaculture purposes.
Collapse
Affiliation(s)
- Adeline Bidault
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/Ifremer, Université de Bretagne Occidentale, Plouzané, France
| | - Gaëlle G. Richard
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/Ifremer, Université de Bretagne Occidentale, Plouzané, France
| | - Cédric Le Bris
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/Ifremer, Université de Bretagne Occidentale, Plouzané, France
| | - Christine Paillard
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/Ifremer, Université de Bretagne Occidentale, Plouzané, France
| |
Collapse
|
13
|
|