1
|
Harsla TR, Breitzman MW, Showman LJ, Robeck TR, Staggs LA, Russell JP, Schmitt TL, Steinman KJ, McGill JL, Lippolis JD, Sacco RE. Shotgun metabolomic analysis of killer whale ( Orcinus orca) exhaled breath condensate. J Breath Res 2024; 19:016012. [PMID: 39637438 DOI: 10.1088/1752-7163/ad9ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
The ocean is facing many anthropogenic stressors caused from both pollution and climate change. These stressors are significantly impacting and changing the ocean's ecosystem, and as such, methods must continually be developed that can improve our ability to monitor the health of marine life. For cetaceans, the current practice for health assessments of individuals requires live capture and release, which is expensive, usually stressful, and for larger species impractical. In this study, we investigated the potential of exhaled breath condensate (EBC) samples to provide unique metabolomic profiles from healthy killer whales (Orcinus orca) of varying known age and sex. EBC collection is a non-invasive procedure that has potential for remote collection using unmanned aerial vehicles, thus improving our ability to understand physiologic parameters within wild populations while minimizing stress from collection procedures. However, descriptions of the available metabolome within EBC and its clinical significance within animals of known health and age must be described before this technique can be considered diagnostically useful. We describe normal variations of the metabolome across age and sex and provide evidence for the potential of this breath analysis method to become a valuable adjunctive tool for assessing the health of managed-care and free-ranging killer whales.
Collapse
Affiliation(s)
- Trevor R Harsla
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Matthew W Breitzman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, United States of America
| | - Lucas J Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, United States of America
| | - Todd R Robeck
- Corporate Zoological Operations, United Parks and Resorts, Orlando, FL 32821, United States of America
| | - Lydia A Staggs
- Zoological Department, SeaWorld of Florida, Orlando, FL 32821, United States of America
| | - Jennifer P Russell
- Zoological Department, SeaWorld of Texas, San Antonio, TX 78251, United States of America
| | - Todd L Schmitt
- Zoological Department, SeaWorld of California, San Diego, CA 92109, United States of America
| | - Karen J Steinman
- SeaWorld & Busch Gardens Species Preservation Lab, United Parks and Resorts, San Diego, CA 92109, United States of America
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, United States of America
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, United States of America
| |
Collapse
|
2
|
Krasner A, Durden WN, Stolen M, Jablonski T, Fabry A, Page A, Marks W, Costa C, Marley HCD, Fire S. Liver Lesions in Estuarine Dolphins in the Indian River Lagoon, Florida: Does Microcystin Play a Role? TOXICS 2024; 12:858. [PMID: 39771073 PMCID: PMC11678953 DOI: 10.3390/toxics12120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents. Yet, there are limited studies characterizing liver disease, as well as the potential role of MC, in humans and animals in this region. Thus, histopathology reports (n = 133) were reviewed in the stranded common bottlenose dolphin (Tursiops truncatus truncatus) (n = 156, 2005-2024) to describe liver lesions in this important IRL sentinel. Liver and fecal samples (n = 161) from stranded individuals were screened for MC via an enzyme immunoassay (ELISA). These samples were then confirmed via the 2-methyl-3-methoxy-4-phenylbutyric acid technique (MMPB) to evaluate whether liver histopathologic lesions were linked to MC exposure. Minimally invasive MC screening methods were also assessed using respiratory swabs and vapor. Inflammation (24%, n = 32), fibrosis (23%, n = 31), lipidosis/vacuolation (11%, n = 15), and necrosis (11%, n = 14) were the most common liver anomalies observed. These non-specific lesions have been reported to be associated with MC exposure in numerous species in the peer-reviewed literature. Ten bottlenose dolphins tested positive for the toxin via ELISA, including two individuals with hepatic lipidosis, but none were confirmed by MMPB. Thus, this study did not provide evidence for MC-induced liver disease in IRL bottlenose dolphins. Other causes should be considered for the lesions observed (e.g., heavy metals, metabolic disease, and endoparasites). Respiratory swabs require further validation as a pre-mortem MC screening tool in free-ranging wildlife.
Collapse
Affiliation(s)
- Ami Krasner
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA (S.F.)
| | - Wendy Noke Durden
- Hubbs-SeaWorld Research Institute, Melbourne Beach, San Diego, FL 32951, USA; (W.N.D.)
| | - Megan Stolen
- Hubbs-SeaWorld Research Institute, Melbourne Beach, San Diego, FL 32951, USA; (W.N.D.)
- Blue World Research Institute, Cocoa, FL 32927, USA
| | - Teresa Jablonski
- Hubbs-SeaWorld Research Institute, Melbourne Beach, San Diego, FL 32951, USA; (W.N.D.)
| | - Agatha Fabry
- Hubbs-SeaWorld Research Institute, Melbourne Beach, San Diego, FL 32951, USA; (W.N.D.)
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL 34946, USA
| | - Wendy Marks
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL 34946, USA
| | - Cecilia Costa
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA (S.F.)
| | - H. C. D. Marley
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA (S.F.)
| | - Spencer Fire
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA (S.F.)
| |
Collapse
|
3
|
Schwacke LH, Thomas L, Wells RS, Rowles TK, Bossart GD, Townsend F, Mazzoil M, Allen JB, Balmer BC, Barleycorn AA, Barratclough A, Burt L, De Guise S, Fauquier D, Gomez FM, Kellar NM, Schwacke JH, Speakman TR, Stolen ED, Quigley BM, Zolman ES, Smith CR. An expert-based system to predict population survival rate from health data. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14073. [PMID: 36751981 DOI: 10.1111/cobi.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Timely detection and understanding of causes for population decline are essential for effective wildlife management and conservation. Assessing trends in population size has been the standard approach, but we propose that monitoring population health could prove more effective. We collated data from 7 bottlenose dolphin (Tursiops truncatus) populations in the southeastern United States to develop a method for estimating survival probability based on a suite of health measures identified by experts as indices for inflammatory, metabolic, pulmonary, and neuroendocrine systems. We used logistic regression to implement the veterinary expert system for outcome prediction (VESOP) within a Bayesian analysis framework. We fitted parameters with records from 5 of the sites that had a robust network of responders to marine mammal strandings and frequent photographic identification surveys that documented definitive survival outcomes. We also conducted capture-mark-recapture (CMR) analyses of photographic identification data to obtain separate estimates of population survival rates for comparison with VESOP survival estimates. The VESOP analyses showed that multiple measures of health, particularly markers of inflammation, were predictive of 1- and 2-year individual survival. The highest mortality risk 1 year following health assessment related to low alkaline phosphatase (odds ratio [OR] = 10.2 [95% CI: 3.41-26.8]), whereas 2-year mortality was most influenced by elevated globulin (OR = 9.60 [95% CI: 3.88-22.4]); both are markers of inflammation. The VESOP model predicted population-level survival rates that correlated with estimated survival rates from CMR analyses for the same populations (1-year Pearson's r = 0.99, p = 1.52 × 10-5 ; 2-year r = 0.94, p = 0.001). Although our proposed approach will not detect acute mortality threats that are largely independent of animal health, such as harmful algal blooms, it can be used to detect chronic health conditions that increase mortality risk. Random sampling of the population is important and advancement in remote sampling methods could facilitate more random selection of subjects, obtainment of larger sample sizes, and extension of the approach to other wildlife species.
Collapse
Affiliation(s)
- Lori H Schwacke
- National Marine Mammal Foundation, San Diego, California, USA
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, The Observatory, St Andrews, UK
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, USA
| | - Teresa K Rowles
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, USA
| | | | - Forrest Townsend
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Marilyn Mazzoil
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Vero Beach, Florida, USA
| | - Jason B Allen
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, USA
| | - Brian C Balmer
- National Marine Mammal Foundation, San Diego, California, USA
| | - Aaron A Barleycorn
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, USA
| | | | - Louise Burt
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, The Observatory, St Andrews, UK
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Deborah Fauquier
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, USA
| | - Forrest M Gomez
- National Marine Mammal Foundation, San Diego, California, USA
| | - Nicholas M Kellar
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, California, USA
| | - John H Schwacke
- Scientific Research Corporation, North Charleston, South Carolina, USA
| | - Todd R Speakman
- National Marine Mammal Foundation, San Diego, California, USA
| | - Eric D Stolen
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Brian M Quigley
- National Marine Mammal Foundation, San Diego, California, USA
| | - Eric S Zolman
- National Marine Mammal Foundation, San Diego, California, USA
| | - Cynthia R Smith
- National Marine Mammal Foundation, San Diego, California, USA
| |
Collapse
|
4
|
Durden WN, Jablonski T, Stolen M, Silbernagel C, Rotstein D, St Leger J. MORBIDITY AND MORTALITY PATTERNS OF INDIAN RIVER LAGOON COMMON BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS TRUNCATUS) 2002-2020. J Wildl Dis 2023; 59:616-628. [PMID: 37846908 DOI: 10.7589/jwd-d-22-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/10/2023] [Indexed: 10/18/2023]
Abstract
Mortality patterns in cetaceans are critical to understanding population health. Common bottlenose dolphins (Tursiops truncatus truncatus) inhabiting the Indian River Lagoon (IRL), Florida have been subjected to four unusual mortality events (UMEs), highlighting the need to evaluate morbidity and mortality patterns. Complete gross examinations were conducted on 392 stranded dolphins and histopathological analyses were conducted for 178 animals (2002-2020). The probable causes of mortality were grouped by etiologic category: degenerative, metabolic, nutritional, inflammatory (infectious and noninfectious disease), and trauma. Probable cause of mortality was determined in 57% (223/392) of cases. Inflammatory disease (infectious/noninfectious) and trauma were the most common. Inflammatory disease accounted for 41% of cases (91/223), with the lungs (pneumonia) most commonly affected. Trauma accounted for 36% of strandings (80/223). The majority of trauma cases were due to anthropogenic activities (entanglement, fishing gear or other debris ingestion, and propeller strikes), accounting for 58% of trauma cases (46/80). Natural trauma (prey-associated esophageal obstruction or asphyxiation, shark bites, and stingray interactions) accounted for 12% of all cases (26/223), and trauma of undetermined origin was identified in 4% of cases (8/223). Starvation or inanition (nutritional) were the probable cause of mortality in 17% of cases and peaked during the 2013 UME (61% of cases). Degenerative and metabolic etiologies accounted for 5% of cases. This study represents the most comprehensive evaluation of morbidity and mortality patterns in IRL dolphins. Because IRL dolphins are routinely exposed to anthropogenic threats and have endured multiple UMEs, these baseline data are critical to the conservation and management of this population.
Collapse
Affiliation(s)
- Wendy Noke Durden
- Hubbs-SeaWorld Research Institute, 3830 South Highway A1A No. 4-181, Melbourne Beach, Florida 32951, USA
| | - Teresa Jablonski
- Hubbs-SeaWorld Research Institute, 3830 South Highway A1A No. 4-181, Melbourne Beach, Florida 32951, USA
| | - Megan Stolen
- Hubbs-SeaWorld Research Institute, 3830 South Highway A1A No. 4-181, Melbourne Beach, Florida 32951, USA
| | - Connie Silbernagel
- Hubbs-SeaWorld Research Institute, 3830 South Highway A1A No. 4-181, Melbourne Beach, Florida 32951, USA
| | - David Rotstein
- Marine Mammal Pathology Services, 19117 Bloomfield Road, Olney, Maryland 20832, USA
| | - Judy St Leger
- SeaWorld San Diego, 500 SeaWorld Drive, San Diego, California 92109, USA
| |
Collapse
|
5
|
Szott EA, Brightwell K, Gibson Q. Assessment of social mixing and spatial overlap as a pathway for disease transmission in a northeast Florida estuarine dolphin community. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Meza Cerda MI, Gray R, Thomson PC, Butcher L, Simpson K, Cameron A, Marcus AD, Higgins DP. Developing Immune Profiles of Endangered Australian Sea Lion ( Neophoca cinerea) Pups Within the Context of Endemic Hookworm ( Uncinaria sanguinis) Infection. Front Vet Sci 2022; 9:824584. [PMID: 35529837 PMCID: PMC9069138 DOI: 10.3389/fvets.2022.824584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
As a top predator, the endangered Australian sea lion (Neophoca cinerea) is a sentinel of ecosystem change, where population trends can reflect broader shifts in the marine environment. The population of this endemic pinniped was historically diminished by commercial sealing, and recovery has been slowed by fishery interactions, disease and, potentially, pollutants. Hookworm infects 100% of neonatal pups and has been identified as a contributor to population decline. Here, a multivariable approach using traditional serological and novel molecular tools such as qPCR and ddPCR was used to examine immune phenotypes of developing Australian sea lion pups infected with the endemic hookworm (Uncinaria sanguinis) from two South Australian colonies. Results show changing immunophenotypes throughout the patent period of infection represented by pro-inflammatory cytokines (IL-6), IgG and acute-phase proteins. Although cytokines may prove useful as markers of resistance, in this study, IL-6 is determined to be an early biomarker of inflammation in Australian sea lion pups, excluding the alternative hypothesis. Additionally, immunological differences between animals from high- and low-intensity hookworm seasons, as well as ivermectin-treated animals, indicate hookworm infection modulation of the host immune response, as evidenced by a lower IL-6 mRNA expression in the non-treated groups. This study of the Australian sea lion is an example of an ecoimmunological approach to disease investigation, which can be applied to evaluate the impact of environmental and anthropogenic factors on susceptibility to infectious diseases in free-ranging species
Collapse
Affiliation(s)
- María-Ignacia Meza Cerda
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Rachael Gray
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Peter C Thomson
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Loreena Butcher
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Kelly Simpson
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Abby Cameron
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Alan D Marcus
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Damien P Higgins
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Carolina Oliveira de Meirelles A, Lima D, Danise de Oliveira Alves M, Carlos Gomes Borges J, Marmontel M, Luz Carvalho V, Rodrigues dos Santos F. Don’t let me down: West Indian manatee, Trichechus manatus, is still Critically Endangered in Brazil. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Zhao C, Zhang Y, Niu T, Ayana MT. Environmental Health Risk Evaluation Model for Coastal Chemical Industry. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6896929. [PMID: 34804457 PMCID: PMC8598323 DOI: 10.1155/2021/6896929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
There are numerous uncertainties associated with environmental health risk assessment (EHRA), and it is unavoidable to apply the best models and information available to save human lives. The EHRA is a method for determining the type and likelihood of adverse health effects on people who are exposed to chemicals in the workplace. To address the environmental health problems caused by harmful gas leakage and water pollution generated by the coastal regional chemical industry, a novel EHRA model for the coastal chemical industry has been developed. The premise of the Gauss plume diffusion model is used to define the model's parameters and the evaluation criterion for harmful gas concentration health risk. The EHRA model is evaluated against the leakage of harmful gases and consists of three steps. The first step is to identify the threat posed by the chemical industry in the coastal region; the second step is to quantify the risk; the third step is to develop a model for assessing water-related environmental health risk. The water-related environmental health assessor analyzes the pollutant variables and parameters of the assessment model to estimate the health risk caused by dangerous compounds in the water, using the assessment model of chemical carcinogen health risk and noncarcinogen health risk Type B. The experiments' findings suggest that the model can effectively assess the dangers to human health from hazardous gases and heavy metals in the water bodies of chemical factories in coastal communities.
Collapse
Affiliation(s)
- Chen Zhao
- College of Economics and Management, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yongsheng Zhang
- College of Economics and Management, Taiyuan University of Technology, Jinzhong 030600, China
| | - Tong Niu
- College of Economics and Management, Taiyuan University of Technology, Jinzhong 030600, China
| | - Melkamu Teshome Ayana
- Department of Hydraulic and Water Resources Engineering, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
9
|
EVALUATION OF IMMUNE FUNCTION IN TWO POPULATIONS OF GREEN SEA TURTLES (CHELONIA MYDAS) IN A DEGRADED VERSUS A NONDEGRADED HABITAT. J Wildl Dis 2021; 57:761-772. [PMID: 34460917 DOI: 10.7589/jwd-d-20-00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
There is a strong correlation between degraded marine habitats and the prevalence of diseases such as green turtle fibropapillomatosis (GTFP) in coastal populations. In GTFP, small to large tumors grow on the turtle's soft tissues and shell, while internal nodules may also occur. The disease primarily affects juvenile green sea turtles (Chelonia mydas) that reside in nearshore waters. As a link has been shown between environmental pollution and immune suppression in a variety of animals, the objective of our research was to compare innate and adaptive immune responsiveness in green sea turtles from a severely degraded and a more pristine habitat, which differ greatly in rates of GTFP. We quantified phagocytosis by flow cytometry and performed in vitro stimulation analysis to measure activity of both the innate and adaptive immune systems in wild-caught Florida green turtles. Sea turtles from the degraded environment, both with and without visible cutaneous tumors, exhibited significantly reduced phagocytosis and stimulation indices than did those from the less polluted environment. Our results suggest that environmental factors may contribute to the development of GTFP and thus can impact the health of sea turtle populations.
Collapse
|
10
|
Durden WN, Stolen ED, Jablonski T, Moreland L, Howells E, Sleeman A, Denny M, Biedenbach G, Mazzoil M. Abundance and demography of common bottlenose dolphins (Tursiops truncatus truncatus) in the Indian River Lagoon, Florida: A robust design capture-recapture analysis. PLoS One 2021; 16:e0250657. [PMID: 33909689 PMCID: PMC8081176 DOI: 10.1371/journal.pone.0250657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Common bottlenose dolphins (Tursiops truncatus truncatus) inhabiting the Indian River Lagoon (IRL) estuarine system along the east coast of Florida are impacted by anthropogenic activities and have had multiple unexplained mortality events. Given this, managers need precise estimates of demographic and abundance parameters. Mark-recapture photo-identification boat-based surveys following a Robust Design were used to estimate abundance, adult survival, and temporary emigration for the IRL estuarine system stock of bottlenose dolphins. Models allowed for temporary emigration and included a parameter (time since first capture) to assess evidence for transient individuals. Surveys (n = 135) were conducted along predetermined contour and transect lines throughout the entire IRL (2016-2017). The best fitting model allowed survival to differ for residents and transients and to vary by primary period, detection to vary by secondary session, and did not include temporary emigration. Dolphin abundance was estimated from 981 (95% CI: 882-1,090) in winter to 1,078 (95% CI: 968-1,201) in summer with a mean of 1,032 (95% CI: 969-1,098). Model averaged seasonal survival rate for marked residents was 0.85-1.00. Capture probability was 0.20 to 0.42 during secondary sessions and the transient rate was estimated as 0.06 to 0.07. This study is the first Robust Design mark-recapture survey to estimate abundance for IRL dolphins and provides population estimates to improve future survey design, as well as an example of data simulation to validate and optimize sampling design. Transients likely included individuals with home ranges extending north of the IRL requiring further assessment of stock delineation. Results were similar to prior abundance estimates from line-transect aerial surveys suggesting population stability over the last decade. These results will enable managers to evaluate the impact of fisheries-related takes and provide baseline demographic parameters for the IRL dolphin population which contends with anthropogenic impacts and repeated mortality events.
Collapse
Affiliation(s)
- Wendy Noke Durden
- Hubbs-SeaWorld Research Institute, Melbourne Beach, Melbourne, Florida, United States of America
| | - Eric D. Stolen
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Teresa Jablonski
- Hubbs-SeaWorld Research Institute, Melbourne Beach, Melbourne, Florida, United States of America
| | - Lydia Moreland
- Hubbs-SeaWorld Research Institute, Melbourne Beach, Melbourne, Florida, United States of America
| | - Elisabeth Howells
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Ft. Pierce, Florida, United States of America
| | - Anne Sleeman
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Ft. Pierce, Florida, United States of America
| | - Matthew Denny
- Georgia Aquarium Conservation Field Station, St. Augustine, Florida, United States of America
| | - George Biedenbach
- Georgia Aquarium Conservation Field Station, St. Augustine, Florida, United States of America
| | - Marilyn Mazzoil
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Ft. Pierce, Florida, United States of America
| |
Collapse
|
11
|
Interactions between the imperiled West Indian manatee, Trichechus manatus, and mosquitoes (Diptera: Culicidae) in Everglades National Park, Florida, USA. Sci Rep 2020; 10:12971. [PMID: 32737372 PMCID: PMC7395156 DOI: 10.1038/s41598-020-69942-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Abstract
Arthropod-borne viruses (arboviruses), including those vectored by mosquitoes, have recently been cited as potential emerging health threats to marine mammals. Despite the fully aquatic habits of cetaceans, immunologic exposure to arboviruses including West Nile virus and Eastern equine encephalitis virus has been detected in wild Atlantic bottlenose dolphins, and captive orcas have been killed by West Nile virus and St. Louis encephalitis virus. Currently, there is no evidence of direct interactions between mosquitoes and marine mammals in nature, and it remains unknown how wild cetaceans are exposed to mosquito-vectored pathogens. Here, we report the first evidence of direct interactions between an aquatic mammal, the West Indian manatee, a federally threatened species, and mosquitoes in nature. Observations of manatees in Everglades National Park, Florida, USA, indicate that mosquitoes of three genera, Aedes, Anopheles, and Culex are able to locate and land on surface-active manatees, and at minimum, penetrate and probe manatee epidermis with their mouthparts. Whether mosquitoes can successfully take a blood meal is not known; however, an arbovirus-infected mosquito can inoculate extravascular host tissues with virus-infected saliva during probing. These observations suggest that it is possible for marine mammals to be exposed to mosquito-vectored pathogens through direct interactions with mosquitoes.
Collapse
|
12
|
Baldwin WS, Bain LJ, Di Giulio R, Kullman S, Rice CD, Ringwood AH, den Hurk PV. 20th Pollutant Responses in Marine Organisms (PRIMO 20): Global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105620. [PMID: 32932042 PMCID: PMC11106729 DOI: 10.1016/j.aquatox.2020.105620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The 20th Pollutant Responses in Marine Organisms (PRIMO 20) conference provided a forum for scientists from around the world to communicate novel toxicological research findings specifically focused on aquatic organisms, by combining applied and basic research at the intersection of environmental and mechanistic toxicology. The work highlighted in this special issue of Aquatic Toxicology, a special issue of Marine Environmental Research, and presented through posters and presentations, encompass important and emerging topics in freshwater and marine toxicology. This includes multiple types of emerging contaminants including microplastics and UV filtering chemicals. Other studies aimed to further our understanding of the effects of endocrine disrupting chemicals, pharmaceuticals, and personal care products. Further research presented in this virtual issue examined the interactive effects of chemicals and pathogens, while the final set of manuscripts demonstrates continuing efforts to combine traditional biomonitoring, data from -omic technologies, and modeling for use in risk assessment and management. An additional goal of PRIMO meetings is to address the link between environmental and human health. Several articles in this issue of Aquatic Toxicology describe the appropriateness of using aquatic organisms as models for human health, while the keynote speakers, as described in the editorial below, presented research that highlighted bioaccumulation of contaminants such as PFOS and mercury from fish to marine mammals and coastal human populations such as the Gullah/GeeChee near Charleston, South Carolina, USA.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29631, United States.
| | - Lisa J Bain
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Seth Kullman
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| | - Charles D Rice
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Amy H Ringwood
- Biological Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, United States.
| | - Peter van den Hurk
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| |
Collapse
|
13
|
What is your diagnosis? Keloidal cord-like lesion on the leg. An Bras Dermatol 2020; 95:386-389. [PMID: 32312547 PMCID: PMC7253847 DOI: 10.1016/j.abd.2019.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
We report a 74-year-old male presented to an outpatient dermatology clinic in Manaus, Amazonas, with a one-year history of pruritic, keloidal lesions on his left lower extremity. Histopathology showed round structures in reticular dermis. Grocott methenamine silver stain revealed numerous round yeasts with thick double walls, occurring singly or in chains connected by tubular projections. The diagnosis was lobomycosis. Although the keloidal lesions presented by this patient are typical of lobomycosis, their linear distribution along the left lower limb is unusual.
Collapse
|
14
|
Barratclough A, Wells RS, Schwacke LH, Rowles TK, Gomez FM, Fauquier DA, Sweeney JC, Townsend FI, Hansen LJ, Zolman ES, Balmer BC, Smith CR. Health Assessments of Common Bottlenose Dolphins ( Tursiops truncatus): Past, Present, and Potential Conservation Applications. Front Vet Sci 2019; 6:444. [PMID: 31921905 PMCID: PMC6923228 DOI: 10.3389/fvets.2019.00444] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
The common bottlenose dolphin (Tursiops truncatus) is a global marine mammal species for which some populations, due to their coastal accessibility, have been monitored diligently by scientists for decades. Health assessment examinations have developed a comprehensive knowledge base of dolphin biology, population structure, and environmental or anthropogenic stressors affecting their dynamics. Bottlenose dolphin health assessments initially started as stock assessments prior to acquisition. Over the last four decades, health assessments have evolved into essential conservation management tools of free-ranging dolphin populations. Baseline data enable comparison of stressors between geographic locations and associated changes in individual and population health status. In addition, long-term monitoring provides opportunities for insights into population shifts over time, with retrospective application of novel diagnostic tests on archived samples. Expanding scientific knowledge enables effective long-term conservation management strategies by facilitating informed decision making and improving social understanding of the anthropogenic effects. The ability to use bottlenose dolphins as a model for studying marine mammal health has been pivotal in our understanding of anthropogenic effects on multiple marine mammal species. Future studies aim to build on current knowledge to influence management decisions and species conservation. This paper reviews the historical approaches to dolphin health assessments, present day achievements, and development of future conservation goals.
Collapse
Affiliation(s)
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Lori H Schwacke
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Teresa K Rowles
- NOAA, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD, United States
| | - Forrest M Gomez
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Deborah A Fauquier
- NOAA, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD, United States
| | | | | | - Larry J Hansen
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Eric S Zolman
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Brian C Balmer
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Cynthia R Smith
- National Marine Mammal Foundation, San Diego, CA, United States
| |
Collapse
|
15
|
Wilson AE, Fair PA, Carlson RI, Houde M, Cattet M, Bossart GD, Houser DS, Janz DM. Environment, endocrinology, and biochemistry influence expression of stress proteins in bottlenose dolphins. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100613. [PMID: 31382157 DOI: 10.1016/j.cbd.2019.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Natural and anthropogenic stressors have been reported to impact the health of marine mammals. Therefore, investigation of quantifiable biomarkers in response to stressors is required. We hypothesized that stress protein expression would be associated with biological and health variables in wild and managed-care bottlenose dolphins (Tursiops truncatus). To test this hypothesis, our study objectives were to (1) determine if stress proteins in skin, white blood cells (WBCs), and plasma could be measured with an antibody-based microarray, (2) measure stress-protein expression relative to biological data (location, sex, age, environment), and (3) determine if stress-protein expression was associated with endocrine, hematological, biochemical and serological variables and gene expression in bottlenose dolphins. Samples were collected from two wild groups (n = 28) and two managed-care groups (n = 17). Proteins involved in the HPA axis, apoptosis, proteotoxicity, and inflammation were identified as stress proteins. The expression of 3 out of 33 proteins was significantly (P < 0.05) greater in skin than plasma and WBCs. Male dolphins had significantly greater expression levels for 10 proteins in skin compared to females. The greatest number of stress-associated proteins varied by the dolphins' environment; nine were greater in managed-care dolphins and 15 were greater in wild dolphins, which may be related to wild dolphin disease status. Protein expression in skin and WBCs showed many positive relationships with measures of plasma endocrinology and biochemistry. This study provides further understanding of the underlying mechanisms of the stress response in bottlenose dolphins and application of a combination of novel methods to measure stress in wildlife.
Collapse
Affiliation(s)
- Abbey E Wilson
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Patricia A Fair
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health & Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, United States of America; Department of Public Health Sciences, Medical University of South Carolina, 221 Fort Johnson Road, Charleston, SC 29412, United States of America
| | - Ruth I Carlson
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill Street, Montreal, Quebec H2Y 2E7, Canada
| | - Marc Cattet
- RGL Recovery Wildlife Health & Veterinary Services, 415 Mount Allison Crescent, Saskatoon, Saskatchewan S7H 4A6, Canada
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker St NW, Atlanta, GA 30313, United States of America; Division of Comparative Pathology, Miller School of Medicine, University of Miami, PO Box 016960 (R-46), Miami, FL 33101, United States of America
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Dr, San Diego, CA 92106, United States of America
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada.
| |
Collapse
|
16
|
Bossart GD, Romano TA, Peden-Adams MM, Schaefer AM, Rice CD, Fair PA, Reif JS. Comparative Innate and Adaptive Immune Responses in Atlantic Bottlenose Dolphins ( Tursiops truncatus) With Viral, Bacterial, and Fungal Infections. Front Immunol 2019; 10:1125. [PMID: 31231361 PMCID: PMC6558379 DOI: 10.3389/fimmu.2019.01125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Free-ranging Atlantic bottlenose dolphins (n = 360) from two southeastern U.S. estuarine sites were given comprehensive health examinations between 2003 and 2015 as part of a multi-disciplinary research project focused on individual and population health. The study sites (and sample sizes) included the Indian River Lagoon (IRL), Florida, USA (n = 246) and Charleston harbor and associated rivers (CHS), South Carolina, USA (n = 114). Results of a suite of clinicoimmunopathologic tests revealed that both populations have a high prevalence of infectious and neoplastic disease and a variety of abnormalities of their innate and adaptive immune systems. Subclinical infections with cetacean morbillivirus and Chlamydiaceae were detected serologically. Clinical evidence of orogenital papillomatosis was supported by the detection of a new strain of dolphin papillomavirus and herpesvirus by molecular pathology. Dolphins with cutaneous lobomycosis/lacaziasis were subsequently shown to be infected with a novel, uncultivated strain of Paracoccidioides brasiliensis, now established as the etiologic agent of this enigmatic disease in dolphins. In this review, innate and adaptive immunologic responses are compared between healthy dolphins and those with clinical and/or immunopathologic evidence of infection with these specific viral, bacterial, and fungal pathogens. A wide range of immunologic host responses was associated with each pathogen, reflecting the dynamic and complex interplay between the innate, humoral, and cell-mediated immune systems in the dolphin. Collectively, these studies document the comparative innate and adaptive immune responses to various types of infectious diseases in free-ranging Atlantic bottlenose dolphins. Evaluation of the type, pattern, and degree of immunologic response to these pathogens provides novel insight on disease immunopathogenesis in this species and as a comparative model. Importantly, the data suggest that in some cases infection may be associated with subclinical immunopathologic perturbations that could impact overall individual and population health.
Collapse
Affiliation(s)
- Gregory D. Bossart
- Georgia Aquarium, Atlanta, GA, United States
- Division of Comparative Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tracy A. Romano
- The Mystic Aquarium, a Division of Sea Research Foundation, Inc., Mystic, CT, United States
| | - Margie M. Peden-Adams
- Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas, NV, United States
| | - Adam M. Schaefer
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Ft. Pierce, FL, United States
| | - Charles D. Rice
- Graduate Program in Environmental Toxicology, Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Patricia A. Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - John S. Reif
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Leone AB, Bonanno Ferraro G, Boitani L, Blasi MF. Skin marks in bottlenose dolphins (Tursiops truncatus) interacting with artisanal fishery in the central Mediterranean Sea. PLoS One 2019; 14:e0211767. [PMID: 30721248 PMCID: PMC6363217 DOI: 10.1371/journal.pone.0211767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/22/2019] [Indexed: 11/18/2022] Open
Abstract
Skin marks occur frequently in many cetacean species across the globe revealing a broad spectrum of causes, including social interactions, infectious diseases and injuries produced by anthropogenic factors. The current study used photo-id data from 2005-2014 to estimate the skin mark pattern on resident bottlenose dolphins (Tursiops truncatus) from the Aeolian Archipelago (Italy). Thirteen skin mark types were identified and their origin, prevalence and permanence time were examined. The pattern of skin marks was assessed for the abundance, richness, distribution and severity in six body regions and compared among age classes, sex and degree of dolphins' interaction with trammel nets (DIN). Our results showed higher prevalence, abundance, richness and distribution of skin marks in adults than in the younger age classes, with the exception of black marks and white ring lesions. The prevalence and abundance of skin marks were higher in males than females, with the exception of scratches and white patches. Moreover, gunshot wounds, mutilations and irregular dorsal fin edges were found only on adult males. Since males showed higher DIN than females and, in dolphins with higher DIN, skin marks were more abundant and frequently distributed in different body regions, the skin mark pattern in regard to DIN seems to be sex-related. The more severe marks were observed on adults, males and dolphins with higher DIN, namely skin disorder, tooth rake marks, small shallow indentations, deep indentations and mutilations. On the contrary, the severity of scratches, white patches and dark ring lesions was higher in females than males, but not significantly related to DIN and age of the individuals. Our results showed that photo-id data provide an efficient and cost-effective approach to document the occurrence of skin marks in free-ranging bottlenose dolphin populations, a critical step toward understanding the cause and supporting the conservation strategies.
Collapse
Affiliation(s)
| | | | - Luigi Boitani
- Department of Biology and Biotechnologies, University “La Sapienza”, Rome, Italy
| | | |
Collapse
|
18
|
Rodrigues TCS, Subramaniam K, McCulloch SD, Goldstein JD, Schaefer AM, Fair PA, Reif JS, Bossart GD, Waltzek TB. Genomic characterization of a novel pegivirus species from free-ranging bottlenose dolphins (Tursiops truncatus) in the Indian River Lagoon, Florida. Virus Res 2019; 263:98-101. [PMID: 30633958 DOI: 10.1016/j.virusres.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/15/2022]
Abstract
We report the discovery of the first cetacean pegivirus (family Flaviviridae) using a next-generation sequencing approach. One of two infected bottlenose dolphins had elevated activities of liver enzymes, which may suggest hepatocellular injury. Further research is needed to determine the epidemiology and pathogenicity of dolphin pegivirus.
Collapse
Affiliation(s)
| | | | - Stephen D McCulloch
- Protect Wild Dolphins Alliance, 2046 Treasure Coast Plaza, 32960, Vero Beach, FL, USA
| | - Juli D Goldstein
- Protect Wild Dolphins Alliance, 2046 Treasure Coast Plaza, 32960, Vero Beach, FL, USA
| | - Adam M Schaefer
- Florida Atlantic University, 5600 US 1, North, 34946, Fort Pierce, FL, USA
| | - Patricia A Fair
- Medical University of South Carolina, 179 Ashley Ave, 29425, Charleston, SC, USA
| | - John S Reif
- Colorado State University, 102 Administration Bldg, 80523, Fort Collins, CO, USA
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker Street, 30313, Atlanta, GA, USA; University of Miami, PO Box 016960 (R-46), 33101, Miami, FL, USA
| | - Thomas B Waltzek
- University of Florida, 2187 Mowry Road, 32611, Gainesville, FL, USA.
| |
Collapse
|
19
|
Kiryu Y, Landsberg JH, Bakenhaster MD, Tyler-Jedlund AJ, Wilson PW. Putative histiocytic sarcoma in redfin needlefish Strongylura notata (Beloniformes: Belonidae) in Florida, USA. DISEASES OF AQUATIC ORGANISMS 2018; 132:57-78. [PMID: 30530931 DOI: 10.3354/dao03304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Redfin needlefish Strongylura notata from Florida coastal waters were observed with unusual neoplastic lesions. Affected specimens were collected from 1 Atlantic estuary (Indian River Lagoon, prevalence = 0.32%, n = 5314) and 2 Gulf of Mexico estuaries (Tampa Bay, prevalence = 0.02%, n = 10762; Charlotte Harbor, prevalence = 0.02%, n = 5112) during routine fisheries-independent monitoring surveys conducted from 1999-2009. Grossly, each lesion manifested as a large (18-30 mm × 20-50 mm), raised (approximately 10 mm), white, creamy, or pinkish nodule on the flank, dorsal trunk, base of the pectoral fin, or head. Multiple small (<5 mm) nodules possessing poorly demarcated borders with neighboring tissues on the external jaw surface and at the base of the teeth were also observed. Histopathologically, neoplastic cells were found in the dermis, beneath the skeletal muscle, and in the soft tissue at the base of teeth of the premaxilla and the dentary jaw processes. Neoplastic cells usually had prominently invaded among the myosepta of the skeletal muscle. Neoplastic parenchymal cells had the basic characteristics of atypical, mononuclear, round, histiocytic cells with an eccentric, reniform nucleus and abundant cytoplasmic vacuolation, while some exhibited bizarre nuclear pleomorphism. Transmission electron microscopy revealed that neoplastic cells had a grooved nucleus and cytoplasmic organelles with rough endoplasmic reticulum, mitochondria, Golgi apparatus, and lysosomes. Neoplastic cells had possibly metastasized to liver, spleen, and kidney. Positive immunohistochemical staining with Ki67, p53, S-100, and CD163 support neoplastic features and a putative diagnosis of histiocytic sarcoma.
Collapse
Affiliation(s)
- Yasunari Kiryu
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida 33701, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
This chapter presents the pathology of cetaceans, a diverse group of mammals restricted exclusively to aquatic habitats. The taxa include the largest mammals on earth, the baleen whales, as well as marine and freshwater toothed whales, dolphins, and porpoises. Pathologies of these species include infectious, toxic, and other disease processes, such as ship strike and entanglements in free-ranging animals. In animals under managed care, concerns include nutritional, degenerative and geriatric processes, such as formation of ammonium urate renal calculi. Due to potential population level effects and individual animal health concerns, viral agents of interest include morbilliviruses, pox virus, and herpes viruses. Both free ranging and captive animals have important neoplasms, including a variety of toxin-related tumors in beluga whales from the St. Lawrence Estuary and oral squamous cell carcinomas in bottlenose dolphins in managed care.
Collapse
|
21
|
Reif JS, Schaefer AM, Bossart GD, Fair PA. Health and Environmental Risk Assessment Project for bottlenose dolphins Tursiops truncatus from the southeastern USA. II. Environmental aspects. DISEASES OF AQUATIC ORGANISMS 2017; 125:155-166. [PMID: 28737160 DOI: 10.3354/dao03143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bottlenose dolphins Tursiops truncatus are the most common apex predators found in coastal and estuarine ecosystems along the southeastern coast of the USA, where these animals are exposed to multiple chemical pollutants and microbial agents. In this review, we summarize the results of investigations of environmental exposures evaluated in 360 free-ranging dolphins between 2003 and 2015. Bottlenose dolphins inhabiting the Indian River Lagoon, Florida (IRL, n = 246), and coastal waters of Charleston, South Carolina (CHS, n = 114), were captured, given comprehensive health examinations, and released as part of a multidisciplinary and multi-institutional study of individual and population health. High concentrations of persistent organic pollutants including legacy contaminants (DDT and other pesticides, polychlorinated biphenyl compounds) as well as 'emerging' contaminants (polybrominated diphenyl ethers, perfluorinated compounds) were detected in dolphins from CHS, with lower concentrations in the IRL. Conversely, the concentrations of mercury in the blood and skin of IRL dolphins were among the highest reported worldwide and approximately 5 times as high as those found in CHS dolphins. A high prevalence of resistance to antibiotics commonly used in humans and animals was detected in bacteria isolated from fecal, blowhole, and/or gastric samples at both sites, including methicillin-resistant Staphylococcus aureus (MRSA) at CHS. Collectively, these studies illustrate the importance of long-term surveillance of estuarine populations of bottlenose dolphins and reaffirm their important role as sentinels for marine ecosystems and public health.
Collapse
Affiliation(s)
- John S Reif
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|