1
|
Pak ES, Cha JJ, Cha DR, Kanasaki K, Ha H. Adenosine receptors as emerging therapeutic targets for diabetic kidney disease. Kidney Res Clin Pract 2022; 41:S74-S88. [PMID: 36239063 PMCID: PMC9590297 DOI: 10.23876/j.krcp.22.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 08/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is now a pandemic worldwide, and novel therapeutic options are urgently required. Adenosine, an adenosine triphosphate metabolite, plays a role in kidney homeostasis through interacting with four types of adenosine receptors (ARs): A1AR, A2AAR, A2BAR, and A3AR. Increasing evidence highlights the role of adenosine and ARs in the development and progression of DKD: 1) increased adenosine in the plasma and urine of diabetics with kidney injury, 2) increased expression of each of the ARs in diabetic kidneys, 3) the protective effect of coffee, a commonly ingested nonselective AR antagonist, on DKD, and 4) the protective effect of AR modulators in experimental DKD models. We propose AR modulators as a new therapeutic option to treat DKD. Detailed mechanistic studies on the pharmacology of AR modulators will help us to develop effective first-in-class AR modulators against DKD.
Collapse
Affiliation(s)
- Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Jin Joo Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Keizo Kanasaki
- Department of Internal Medical 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Sanni O, Terre'Blanche G. Therapeutic potentials of agonist and antagonist of adenosine receptors in type 2 diabetes. Rev Endocr Metab Disord 2021; 22:1073-1090. [PMID: 34165671 DOI: 10.1007/s11154-021-09668-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes has been a global health challenge over the decades and is among the leading causes of death. Several treatment approaches have been developed, but more effective and new therapies are still needed. The role of adenosine in glucose and lipid homeostasis has offered a different therapeutic approach. Adenosine mediates its physiological role through the activation of adenosine receptors. These adenosine receptors have been implicated in glucose and lipid homeostasis. The ability of agonists and antagonists of adenosine receptors to activate or inhibit the adenosine signalling cascade and thereby affecting the balance of glucose and lipid homeostasis has challenged the studies of agonists and antagonists of adenosine receptors, both preclinical and clinical, as potential anti-diabetic drugs. This review provides a background on different anti-diabetic therapeutic approaches, outlining the role of adenosine receptors in glucose and lipid homeostasis, and mechanisms underlying the action of agonists/antagonists of adenosine receptors as a therapeutic potential towards type 2 diabetes.
Collapse
Affiliation(s)
- Olakunle Sanni
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences. North-West University (NWU), Potchefstroom, 2357, South Africa.
| | - G Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences. North-West University (NWU), Potchefstroom, 2357, South Africa
| |
Collapse
|
3
|
Jain S, Jacobson KA. Purinergic signaling in diabetes and metabolism. Biochem Pharmacol 2020; 187:114393. [PMID: 33359363 DOI: 10.1016/j.bcp.2020.114393] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Purinergic signaling, a concept originally formulated by the late Geoffrey Burnstock (1929-2020), was found to modulate pathways in every physiological system. In metabolic disorders there is a role for both adenosine receptors and P2 (nucleotide) receptors, of which there are two classes, i.e. P2Y metabotropic and P2X ionotropic receptors. The individual roles of the 19 receptors encompassed by this family have been dissected - and in many cases the effects associated with specific cell types, including adipocytes, skeletal muscle, liver cells and immune cells. It is suggested that ligands selective for each of the four adenosine receptors (A1, A2A, A2B and A3), and several of the P2 subtypes (e.g. P2Y6 or P2X7 antagonists) might have therapeutic potential for treating diabetes and obesity. This is a developing story with some conflicting conclusions relevant to drug discovery, which we summarize here.
Collapse
Affiliation(s)
- Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Bouzakri K, Veyrat-Durebex C, Holterman C, Arous C, Barbieux C, Bosco D, Altirriba J, Alibashe M, Tournier BB, Gunton JE, Mouche S, Bietiger W, Forterre A, Berney T, Pinget M, Christofori G, Kennedy C, Szanto I. Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxid Redox Signal 2020; 32:618-635. [PMID: 31931619 DOI: 10.1089/ars.2018.7579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate β-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, β-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (β) cells. In vivo, mice with β-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in β-cell failure in diabetic conditions.
Collapse
Affiliation(s)
- Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Chet Holterman
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Charlotte Barbieux
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mohamed Alibashe
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Vulnerability Biomarkers Unit, Division of General Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Millennium Institute, The University of Sydney, Sydney, Australia.,Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, Australia
| | - Sarah Mouche
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Thierry Berney
- Division of Transplantation, Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Pinget
- Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Christopher Kennedy
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ildiko Szanto
- Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine at the University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Yu H, Wang X, Kang F, Chen Z, Meng Y, Dai M. Propofol attenuates inflammatory damage on neurons following cerebral infarction by inhibiting excessive activation of microglia. Int J Mol Med 2018; 43:452-460. [PMID: 30431058 DOI: 10.3892/ijmm.2018.3974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/02/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hang Yu
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaozhi Wang
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fuxin Kang
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Zhile Chen
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yunxia Meng
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Mingming Dai
- Department of Internal Neurology, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
6
|
Singh A, Gibert Y, Dwyer KM. The adenosine, adrenergic and opioid pathways in the regulation of insulin secretion, beta cell proliferation and regeneration. Pancreatology 2018; 18:615-623. [PMID: 29937364 DOI: 10.1016/j.pan.2018.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Insulin, a key hormone produced by pancreatic beta cells precisely regulates glucose metabolism in vertebrates. In type 1 diabetes, the beta cell mass is destroyed, a process triggered by a combination of environmental and genetic factors. This ultimately results in absolute insulin deficiency and dysregulated glucose metabolism resulting in a number of detrimental pathophysiological effects. The traditional focus of treating type 1 diabetes has been to control blood sugar levels through the administration of exogenous insulin. Newer approaches aim to replace the beta cell mass through pancreatic or islet transplantation. Type 2 diabetes results from a relative insulin deficiency for the prevailing insulin resistance. Treatments are generally aimed at reducing insulin resistance and/or augmenting insulin secretion and the use of insulin itself is often required. It is increasingly being recognized that the beta cell mass is dynamic and increases insulin secretion in response to beta cell mitogens and stress signals to maintain glycemia within a very narrow physiological range. This review critically discusses the role of adrenergic, adenosine and opioid pathways and their interrelationship in insulin secretion, beta cell proliferation and regeneration.
Collapse
Affiliation(s)
- Amitoj Singh
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Yann Gibert
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Karen M Dwyer
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
7
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
8
|
Jiménez-Maldonado A, de Álvarez-Buylla ER, Montero S, Melnikov V, Castro-Rodríguez E, Gamboa-Domínguez A, Rodríguez-Hernández A, Lemus M, Murguía JM. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. PLoS One 2014; 9:e115177. [PMID: 25531651 PMCID: PMC4274083 DOI: 10.1371/journal.pone.0115177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. METHODS Wistar rats were divided into five groups: control (sedentary, C); moderate- intensity training (MIT); MIT plus K252A TrkB blocker (MITK); high-intensity training (HIT); and HIT plus K252a (HITK). Training comprised 8 weeks of treadmill running. Plasma BDNF levels (ELISA assay), glucose tolerance, insulin tolerance, and immunohistochemistry for insulin and the pancreatic islet area were evaluated in all groups. In addition, Bdnf mRNA expression in the skeletal muscle was measured. PRINCIPAL FINDINGS Chronic treadmill exercise significantly increased plasma BDNF levels and insulin tolerance, and both effects were attenuated by TrkB blocking. In the MIT and HIT groups, a significant TrkB-dependent pancreatic islet enlargement was observed. MIT rats exhibited increased liver glycogen levels following insulin administration in a TrkB-independent manner. CONCLUSIONS/SIGNIFICANCE Chronic physical exercise exerted remarkable effects on insulin regulation by inducing significant increases in the pancreatic islet size and insulin sensitivity in a TrkB-dependent manner. A threshold for the induction of BNDF in response to physical exercise exists in certain muscle groups. To the best of our knowledge, these are the first results to reveal a role for TrkB in the chronic exercise-mediated insulin regulation in healthy rats.
Collapse
Affiliation(s)
| | | | - Sergio Montero
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | | | - Elena Castro-Rodríguez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Armando Gamboa-Domínguez
- Depto de Patología, Instituto Nacional de Nutrición y Ciencias Médicas "Salvador Zubirán,” México City, México D.F.
| | | | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Jesús Muñiz Murguía
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| |
Collapse
|
9
|
Szkudelski T, Szkudelska K. Regulatory role of adenosine in insulin secretion from pancreatic β-cells--action via adenosine A₁ receptor and beyond. J Physiol Biochem 2014; 71:133-40. [PMID: 25432862 DOI: 10.1007/s13105-014-0371-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Under physiological conditions, insulin secretion from pancreatic β-cells is tightly regulated by different factors, including nutrients, nervous system, and other hormones. Pancreatic β-cells are also influenced by paracrine and autocrine interactions. The results of rodent studies indicate that adenosine is present within pancreatic islets and is implicated in the regulation of insulin secretion; however, effects depend on adenosine and glucose concentrations. Moreover, species differences in adenosine action were found. In rat islets, low adenosine was demonstrated to decrease glucose-induced insulin secretion and this effect is mediated via adenosine A1 receptor. In the presence of high adenosine concentrations, other mechanisms are activated and glucose-induced insulin secretion is increased. It is also well established that suppression of adenosine action increases insulin-secretory response of β-cells to glucose. In mouse islets, low adenosine concentrations do not significantly affect insulin secretion. However, in the presence of higher adenosine concentrations, potentiation of glucose-induced insulin secretion was demonstrated. It is also known that upon stimulation of insulin secretion, both rat and mouse islets release ATP. In rat islets, ATP undergoes extracellular conversion to adenosine. However, mouse islets are unable to convert extracellularly ATP to adenosine and adenosine arises from intracellular ATP degradation.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland,
| | | |
Collapse
|
10
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
11
|
Szkudelski T, Zywert A, Szkudelska K. Metabolic disturbances and defects in insulin secretion in rats with streptozotocin-nicotinamide-induced diabetes. Physiol Res 2013; 62:663-70. [PMID: 23869889 DOI: 10.33549/physiolres.932509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rats with diabetes induced by streptozotocin (STZ) and nicotinamide (NA) are often used in animal studies concerning various aspects of diabetes. In this experimental model, the severity of diabetes is different depending on doses of STZ and NA. Moreover, diabetic changes in rats with STZ-NA-induced diabetes are not fully characterized. In our present study, metabolic changes and insulin secretion were investigated in rats with diabetes induced by administration of 60 mg of STZ and 90 mg of NA per kg body weight. Four to six weeks after diabetes induction, insulin, glucagon and some metabolic parameters were determined to evaluate the severity of diabetes. Moreover, insulin secretory capacity of pancreatic islets isolated from control and diabetic rats was compared. It was demonstrated that administration of 60 mg of STZ and 90 mg of NA per kg body weight induced relatively mild diabetes, since insulin, glucagon and other analyzed parameters were only slightly affected in diabetic rats compared with control animals. In vitro studies revealed that insulin secretory response was preserved in pancreatic islets of diabetic rats, however, was lower than in islets of control animals. This effect was observed in the presence of different stimuli. Insulin secretion induced by 6.7 and 16.7 mmol/l glucose was moderately reduced in islets of diabetic rats compared with control islets. In the presence of leucine with glutamine, insulin secretion appeared to be also decreased in islets of rats with STZ-NA-induced diabetes. Insulinotropic action of 6.7 mmol/l glucose with forskolin was also deteriorated in diabetic islets. Moreover, it was demonstrated that at a non-stimulatory glucose, pharmacological depolarization of plasma membrane with a concomitant activation of protein kinase C evoked significant rise in insulin release in islets of control and diabetic rats. However, in diabetic islets, this effect was attenuated. These results indicate that impairment in insulin secretion in pancreatic islets of rats with mild diabetes induced by STZ and NA results from both metabolic and nonmetabolic disturbances in these islets.
Collapse
Affiliation(s)
- T Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland.
| | | | | |
Collapse
|
12
|
Ohtani M, Oka T, Ohura K. Possible involvement of A₂A and A₃ receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets. Gen Comp Endocrinol 2013; 187:86-94. [PMID: 23453966 DOI: 10.1016/j.ygcen.2013.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Adenosine A1, A₂A, A₂B and A₃ receptor mRNAs were found to be expressed in mouse pancreatic islets and Beta-TC6 cells but their physiological or pharmacological actions are not fully clarified. We showed that adenosine (100 μM) augmented insulin secretion by islets in the presence of either normal (5.5 mM) or a high concentration of glucose (20 mM). The augmentation of insulin secretion in the presence of high glucose was blocked by an A₂A antagonist, but not by A₂B and A₃ antagonists, while an A₁ antagonist potentiated the adenosine effect. An adenosine analogue 5'-N-ethylcarboxamidoadenosine (NECA) as well as A₁, A₂A and A₃ receptor agonists also produced stimulation. On the other hand, an A₃ agonist markedly reduced Beta-TC6 cell proliferation and the islet cell viability, while adenosine and NECA did not. The effect of A₃ agonist was partially blocked by the A₃ antagonist. In addition, treatment with the A₃ agonist produced a small but significant extent of apoptosis in Beta-TC6 cells as judged by terminal transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay. These results combined together suggested that like the A₁ receptor, activation of A₂A receptors by adenosine results in augmented insulin secretion, while the A₃ receptor is involved in modulation of the survival of pancreatic β-cells.
Collapse
Affiliation(s)
- M Ohtani
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan.
| | | | | |
Collapse
|