1
|
Abstract
This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.
Collapse
Affiliation(s)
- Roy Curtiss
- College of Veterinary Medicine, University of Florida, Gainesville, Florida,
| |
Collapse
|
2
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
3
|
Vaccinating Meat Chickens against Campylobacter and Salmonella: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:vaccines10111936. [PMID: 36423031 PMCID: PMC9692956 DOI: 10.3390/vaccines10111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Foodborne enteritis is a major disease burden globally. Two of the most common causative bacterial enteropathogens in humans are Campylobacter and Salmonella species which are strongly associated with the consumption of raw or contaminated chicken. The poultry industry has approached this issue by use of a multi-hurdle method across the production chain to reduce or eliminate this risk. The use of poultry vaccines is one of these control methods. A systematic review and meta-analysis of vaccination effects against caecal Campylobacter and Salmonella were performed on primary research published between 2009 and 2022. Screening was conducted by three reviewers with one reviewer performing subsequent data extraction and one reviewer performing the risk of bias assessment. The confidence in cumulative evidence was evaluated based on the GRADE method. Meta-analyses were performed using standardised mean differences (SMDs) with additional analyses and random effects regression models on intervention effects grouped by the vaccine type. A total of 13 Campylobacter and 19 Salmonella studies satisfied the eligibility criteria for this review. Many studies included multi-arm interventions, resulting in a total of 25 Campylobacter and 34 Salmonella comparators which were synthesised. The analyses revealed a large reduction in pathogen levels; however, many effects required statistical adjustment due to unit of analysis errors. There was a moderate level of confidence in the reduction of Campylobacter by 0.93 SMD units (95% CI: −1.275 to −0.585; p value < 0.001) and a very low level of confidence in the reduction of Salmonella by 1.10 SMD units (95% CI: −1.419 to −0.776; p value < 0.001). The Chi2 test for heterogeneity (p value 0.001 and <0.001 for Campylobacter and Salmonella, respectively) and the I2 statistic (52.4% and 77.5% for Campylobacter and Salmonella, respectively) indicated high levels of heterogeneity in the SMDs across the comparators. The certainty of gathered evidence was also affected by a high risk of study bias mostly due to a lack of detailed reporting and, additionally for Salmonella, the presence of publication bias. Further research is recommended to source areas of heterogeneity, and a conscious effort to follow reporting guidelines and consider units of analysis can improve the strength of evidence gathered to provide recommendations to the industry.
Collapse
|
4
|
Stable Recombinant-Gene Expression from a Ligilactobacillus Live Bacterial Vector via Chromosomal Integration. Appl Environ Microbiol 2021; 87:AEM.00392-21. [PMID: 33741626 DOI: 10.1128/aem.00392-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Disease control in animal production systems requires constant vigilance. Historically, the application of in-feed antibiotics to control bacteria and improve performance has been a much-used approach to maintain animal health and welfare. However, the widespread use of in-feed antibiotics is thought to increase the risk of antibiotic resistance developing. Alternative methods to control disease and maintain productivity need to be developed. Live vaccination is useful in preventing colonization of mucosa-dwelling pathogens by inducing a mucosal immune response. Native poultry isolate Ligilactobacillus agilis La3 (previously Lactobacillus agilis) has been identified as a candidate for use as a live vector to deliver therapeutic proteins such as bacteriocins, phage endolysins, or vaccine antigens to the gastrointestinal tract of chickens. In this study, the complete genome sequence of L. agilis La3 was determined and transcriptome analysis was undertaken to identify highly expressed genes. Predicted promoter regions and ribosomal binding sites from constitutively expressed genes were used to construct recombinant protein expression cassettes. A series of double-crossover shuttle plasmids were constructed to facilitate rapid selectable integration of expression cassettes into the L agilis La3 chromosome via homologous recombination. Inserts showed 100% stable integration over 100 generations without selection. A positive relationship was found between protein expression levels and the predicted strength of the promoters. Using this system, stable chromosomal expression of a Clostridium perfringens antigen, rNetB, was demonstrated without selection. Finally, two recombinant strains, L agilis La3::P eft -rnetB and L agilis La3::P cwah -rnetB, were constructed and characterized, and they showed potential for future application as live vaccines in chickens.IMPORTANCE Therapeutic proteins such as antigens can be used to prevent infectious diseases in poultry. However, traditional vaccine delivery by intramuscular or subcutaneous injection generally has not proven effective for mucosa-dwelling microorganisms that live within the gastrointestinal tract. Utilizing live bacteria to deliver vaccine antigens directly to the gut immune system can overcome some of the limitations of conventional vaccination. In this work, Ligilactobacillus agilis La3, an especially effective gut colonizer, has been analyzed and engineered with modular and stable expression systems to produce recombinant proteins. To demonstrate the effectiveness of the system, expression of a vaccine antigen from poultry pathogen Clostridium perfringens was monitored over 100 generations without selection and found to be completely stable. This study demonstrates the development of genetic tools and novel constitutive expression systems and further development of L. agilis La3 as a live delivery vehicle for recombinant proteins.
Collapse
|
5
|
Han Y, Renu S, Schrock J, Acevedo-Villanuev KY, Lester B, Selvaraj RK, Renukaradhya GJ. Temporal dynamics of innate and adaptive immune responses in broiler birds to oral delivered chitosan nanoparticle-based Salmonella subunit antigens. Vet Immunol Immunopathol 2020; 228:110111. [PMID: 32846353 DOI: 10.1016/j.vetimm.2020.110111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) infection of poultry causes a significant risk to public health through contamination of meat and eggs. Current Salmonella vaccines have failed to provide strong mucosal immunity in the intestines to reduce Salmonella shedding and food contamination. Considering the short lifespan of broilers, an easy-to-deliver, safe and effective Salmonella vaccine is urgently needed. Our goal in this study was to demonstrate the ability of chitosan nanoparticle (CNP) vaccine delivery platform in activating immune response to Salmonella antigens in broilers inoculated orally. In an initial study, soluble whole antigen of SE entrapped in CNP was inoculated but the specific immune responses were poor. Therefore, the CNP entrapped immunogenic outer membrane proteins (OMP) and flagellin (FLA) of SE and surface conjugated with FLA [CNP-(OMP + FLA)] was developed. In broilers inoculated orally with CNP-(OMP + FLA) formulation once or twice, we monitored the temporal expression of innate immune molecules and antigen specific lymphocyte proliferation. In the cecal tonsils of CNP-(OMP + FLA) inoculated birds, we observed enhanced expression of mRNA coding Toll-like receptors (TLRs)- 1, 4, 5, and 7, especially at dpv 21. In addition, both OMP and FLA specific lymphocytes proliferation at dpv 7 and 21 by CNP-(OMP + FLA) were enhanced in the spleen. In conclusion, CNP-(OMP + FLA) formulation augmented both innate and lymphocyte responses in orally inoculated broilers. Further studies are needed to determine the candidate subunit CNP vaccine's efficacy in a challenge trial.
Collapse
Affiliation(s)
- Y Han
- Food Animal Health Research Program (FAHRP), Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA
| | - S Renu
- Food Animal Health Research Program (FAHRP), Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA
| | - J Schrock
- Food Animal Health Research Program (FAHRP), Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA
| | | | - B Lester
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - R K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - G J Renukaradhya
- Food Animal Health Research Program (FAHRP), Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
6
|
Effects of Lactobacillus acidophilus and natural antibacterials on growth performance and Salmonella colonization in broiler chickens challenged with Salmonella enteritidis. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Robé C, Blasse A, Merle R, Friese A, Roesler U, Guenther S. Low Dose Colonization of Broiler Chickens With ESBL-/AmpC- Producing Escherichia coli in a Seeder-Bird Model Independent of Antimicrobial Selection Pressure. Front Microbiol 2019; 10:2124. [PMID: 31572330 PMCID: PMC6753873 DOI: 10.3389/fmicb.2019.02124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
Extended-spectrum beta-lactamase- (ESBL-) and AmpC beta-lactamase- (AmpC-) producing Enterobacteriaceae pose a risk for both human and animal health. For livestock, highest prevalences have been reported in broiler chickens, which are therefore considered as a reservoir of multidrug-resistant bacteria. The possibility of transfer to humans either by a close contact to colonized broiler flocks or through contaminated retail meat results in the necessity to develop intervention measures for the entire broiler production chain. In this regard, a basic understanding of the colonization process is mandatory including the determination of the minimal bacterial load leading to a persistent colonization of broiler chickens. Therefore, we conducted a bivalent broiler colonization study close to real farming conditions without applying any antimicrobial selection pressure. ESBL- and AmpC- negative broiler chickens (Ross 308) were co- colonized on their third day of life with two strains: one CTX-M-15-producing Escherichia coli-ST410 and one CMY-2/mcr-1-positive E. coli-ST10. Colonization was assessed by cloacal swabs over the period of the trial, starting 24 h post inoculation. During the final necropsy, the contents of crop, jejunum, cecum, and colon were quantified for the occurrence of both bacterial strains. To define the minimal oral colonization dosage 104 to 101 colony forming units (cfu) were orally inoculated to four separately housed broiler groups (each n = 19, all animals inoculated) and a dosage of already 101 cfu E. coli led to a persistent colonization of all animals of the group after 3 days. To assure stable colonization, however, a dosage of 102 cfu E. coli was chosen for the subsequent seeder-bird trial. In the seeder-bird trial one fifth of the animals (seeder, n = 4) were orally inoculated and kept together with the non-inoculated animals (sentinel, n = 16) to mimic the route of natural infection. After 35 days of trial, all animals were colonized with both E. coli strains. Given the low colonization dosage and the low seeder/sentinel ratio, the rapid spread of ESBL- and AmpC- producing Enterobacteriaceae in conventional broiler farms currently seems inevitably resulting in an urgent need for the development of intervention strategies to reduce colonization of broilers during production.
Collapse
Affiliation(s)
- Caroline Robé
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Anja Blasse
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Guenther
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Institute of Pharmacy, Pharmaceutical Biology, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Buhr RJ, Bourassa DV, Hinton A, Fairchild BD, Ritz CW. Impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the broiler crop and ceca. Poult Sci 2017; 96:4361-4369. [DOI: 10.3382/ps/pex231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
|
9
|
Calderon-Nieva D, Goonewardene KB, Gomis S, Foldvari M. Veterinary vaccine nanotechnology: pulmonary and nasal delivery in livestock animals. Drug Deliv Transl Res 2017; 7:558-570. [PMID: 28639138 DOI: 10.1007/s13346-017-0400-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines administered via the respiratory mucosa could lower costs by removing the need of trained medical personnel, and lowering doses yet achieving similar or increased immune stimulation. The respiratory route often brings challenges in antigen delivery efficiency with enough potency to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune activation by producing higher antibody titers and protection. Although specific mechanisms between NPs and biological membranes are still under investigation, physical parameters such as particle size and shape, as well as biological tissue distribution including mucociliary clearance influence the protection and delivery of antigens to the site of action and uptake by target cells. For respiratory delivery, various biomaterials such as mucoadhesive polymers, lipids, and polysaccharides have shown enhanced antibody production or protection in comparison to antigen alone. This review presents promising NPs administered via the nasal or pulmonary routes for veterinary applications specifically focusing on livestock animals including poultry.
Collapse
Affiliation(s)
- Daniella Calderon-Nieva
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Kalhari Bandara Goonewardene
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
10
|
Varmuzova K, Faldynova M, Elsheimer-Matulova M, Sebkova A, Polansky O, Havlickova H, Sisak F, Rychlik I. Immune protection of chickens conferred by a vaccine consisting of attenuated strains of Salmonella Enteritidis, Typhimurium and Infantis. Vet Res 2016; 47:94. [PMID: 27741950 PMCID: PMC5065701 DOI: 10.1186/s13567-016-0371-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022] Open
Abstract
The colonization of poultry with different Salmonella enterica serovars poses an issue throughout the world. In this study we therefore tested the efficacy of a vaccine consisting of attenuated strains of Salmonella enterica serovars Enteritidis, Typhimurium and Infantis against challenge with the same serovars and with S. Agona, Dublin and Hadar. We tested oral and aerosol administration of the vaccine, with or without co-administration of cecal microbiota from adult hens. The protective effect was determined by bacterial counts of the challenge strains up to week 18 of life and by characterizing the immune response using real-time PCR specific for 16 different genes. We have shown that a vaccine consisting of attenuated S. Enteritidis, S. Typhimurium and S. Infantis protected chickens against challenge with the wild type strains of the same serovars and partially protected chickens also against challenge with isolates belonging to serovars Dublin or Hadar. Aerosol vaccination was more effective at inducing systemic immunity whilst oral vaccination stimulated a local immune response in the gut. Co-administration of cecal microbiota increased the protectiveness in the intestinal tract but slightly decreased the systemic immune response. Adjusting the vaccine composition and changing the administration route therefore affects vaccine efficacy.
Collapse
Affiliation(s)
| | - Marcela Faldynova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | | | - Alena Sebkova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Ondrej Polansky
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Hana Havlickova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Frantisek Sisak
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Makkar SK, Rath NC, Packialakshmi B, Zhou ZY, Huff GR, Donoghue AM. Nutritional Supplement of Hatchery Eggshell Membrane Improves Poultry Performance and Provides Resistance against Endotoxin Stress. PLoS One 2016; 11:e0159433. [PMID: 27463239 PMCID: PMC4963089 DOI: 10.1371/journal.pone.0159433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/01/2016] [Indexed: 12/02/2022] Open
Abstract
Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM) as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS) challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age following at 4 and 24 h of treatment where the HESM was also sterilized with ethanol to deplete bacterial factors. HESM supplement caused weight gain in 2 experiments and decreased blood corticosterone concentrations. While LPS caused a significant loss in body weight at 24 h following its administration, the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed diets with HESM supplement compared with control diet group. LPS challenge increased the expression of pro-inflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed, also, which also, favored the up-regulation of anti-inflammatory genes compared with control diet fed chickens. Post hatch supplementation of HESM appears to improve performance, modulate immunity, and increase resistance of chickens to endotoxin.
Collapse
Affiliation(s)
- S. K. Makkar
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - N. C. Rath
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
- * E-mail:
| | - B. Packialakshmi
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Z. Y. Zhou
- Department of Veterinary Medicine, Rongchang campus of Southwest University, Rongchang County, China
| | - G. R. Huff
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
| | - A. M. Donoghue
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
| |
Collapse
|