1
|
Willer T, Han Z, Pielsticker C, Rautenschlein S. In vitro investigations on interference of selected probiotic candidates with Campylobacter jejuni adhesion and invasion of primary chicken derived cecal and Caco-2 cells. Gut Pathog 2024; 16:30. [PMID: 38907359 PMCID: PMC11191211 DOI: 10.1186/s13099-024-00623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Campylobacter (C.) jejuni is one of the most important bacterial foodborne pathogens worldwide. Probiotics such as Lactobacillus or Bacillus species are considered one option for reducing the colonization rate and magnitude in poultry, the most frequent source of human infections. Due to the lack of suitable avian in vitro models such as chicken intestinal cell lines, especially those derived from the cecum, most in vitro studies on C. jejuni host interaction have been conducted with human intestinal cell lines. In this study, we compared C. jejuni-cell interactions between primary chicken cecal cells and the human intestinal cell line Caco-2, which is derived from colorectal adenocarcinoma, and investigated possible interfering effects of selected probiotic candidates. RESULTS We detected differences in adhesion and invasion between the two tested gut cell types and between different C. jejuni strains. The probiotic inhibition of C. jejuni adhesion and invasion of human and avian gut cells was affected by host cell type, investigated C. jejuni strain and time points of probiotic treatment. Additionally, our results suggest a possible correlation between C. jejuni invasion and the detected increase in IL-6 mRNA expression. CONCLUSIONS Our results indicate distinct differences between avian and human gut cells in their interaction with C. jejuni. Therefore, data obtained in one host species on C. jejuni-host interaction may not easily be transferrable to another one. The factors influencing the variable efficacy of probiotic intervention in chicken and human derived cells should be investigated further.
Collapse
Affiliation(s)
- Thomas Willer
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Zifeng Han
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Colin Pielsticker
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
2
|
Ee HW, Ramiah SK, Mookiah S, Idrus Z. Effects of medium-chain fatty acids on growth performance, microbial attributes, and fat deposition in broiler chicken. CZECH JOURNAL OF ANIMAL SCIENCE 2024; 69:119-128. [DOI: 10.17221/175/2023-cjas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
4
|
Murshed M, Aljawdah HMA, Mares M, Al-Quraishy S. In Vitro: The Effects of the Anticoccidial Activities of Calotropis procera Leaf Extracts on Eimeria stiedae Oocysts Isolated from Rabbits. Molecules 2023; 28:molecules28083352. [PMID: 37110585 PMCID: PMC10141090 DOI: 10.3390/molecules28083352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatic coccidiosis is an infectious and mortal disease that causes global economic losses in rabbits. The research aimed to assess the efficacy of Calotropis procure leaf extracts on the inhibition of Eimeria stiedae oocysts and to determine the optimal dosage for suppressing the parasite's infective phase. In this experiment, oocyst samples per milliliter were tested, and 6-well plates (2 mL) of 2.5% potassium dichromate solution containing 102 non-sporulated oocysts on Calotropis procera leaf extracts were exposed after 24, 48, 72, and 96 h, and the treatments were as follows: a nontreated control, 25%, 50%, 100%, and 150% of C. procera for oocyst activities. In addition, amprolium was utilized as a reference drug. The Calotropis procera was analyzed by GC-Mass, and results showed that the botanical extract contained 9 chemical components that were able to inhibit the oocysts of E. stiedae at 100% and 150% concentrations by about 78% and 93%, respectively. In general, an increase in the incubation period and a greater dose resulted in a decrease in the inhibition rate. The results showed that C. procera has an effective ability, inhibitory potential, and protective effect on the coccidian oocyst sporulation of E. stiedae. It can be used in the disinfection and sterilization of poultry and rabbit houses to get rid of Eimeria oocysts.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hossam M A Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Mares
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Murshed M, Al-Quraishy S, Alghamdi J, Aljawdah HMA, Mares MM. The Anticoccidial Effect of Alcoholic Vitis vinifera Leaf Extracts on Eimeria papillate Oocysts Isolated in Mice In Vitro and In Vivo. Vet Sci 2023; 10:vetsci10020097. [PMID: 36851401 PMCID: PMC9966314 DOI: 10.3390/vetsci10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Eimeria spp. causes eimeriosis in the guts of numerous domestic mammals and poultry, and the employment of medication and the effects of certain aspects of synthetic anticoccidials in the treatment of eimeriosis have given rise to the appearance of resistant parasites that require the search for alternate remedies. Natural products, which are safe and have no negative impact on the environment, may be utilized in the therapy of an enormous range of parasitic infections. This research aimed to assess the effectiveness of VVLE on the oocyst sporulation of an E. papillate infection in the mouse jejunum. In addition, obtaining the ideal concentration will interrupt the parasite's life cycle and limit infection. In vitro: Collected unsporulated oocysts (1 × 103) of E. papillata were given six different concentrations (w/v) of Vitis vinifera leaf extract (10, 25, 50, 100, 150, and 200 mg/mL) and toltrazuril (25 mg/mL), three replicates per group, whereas the control group received 2.5% potassium dichromate solution. In vivo: The mice were separated into six groups; the first and second groups did not receive infection, whilst the third, fourth, fifth, and sixth groups were each given 1 × 103 sporulated oocysts of E. papillate in the experiment. In addition, an oral dosage of 100 and 200 mg/kg VVLE were given to the fourth and fifth groups, while the sixth group was given toltrazuril at 25 mg/kg. On the fifth day, unpopulated oocysts were collected from each mouse separately. The incubation period and treatments had considerable impacts on the rate of sporulation. The infrared spectroscopy of V. vinifera extract revealed many expected active classes of chemical compounds. Further, the infection of mice with E. papillata caused an oocyst output of nearly 2 × 104 oocysts/g of faeces. VVLE significantly decreased the oocyst output to nearly 88%. In addition, we detected an inhibitory effect on the sporulation (%) and harm (%) of E. papillata oocysts in a dosage-dependent modality compared with the control group. Furthermore, they destroyed the oocyst morphology in terms of the shape, size, and quantity of sporocysts. The results indicate that grape vines have powerful activity as anticoccidials.
Collapse
|
6
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Greene G, Koolman L, Whyte P, Burgess CM, Lynch H, Coffey A, Lucey B, O’Connor L, Bolton D. An Investigation of the Effect of Water Additives on Broiler Growth and the Caecal Microbiota at Harvest. Pathogens 2022; 11:pathogens11080932. [PMID: 36015051 PMCID: PMC9412471 DOI: 10.3390/pathogens11080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter is the most common foodborne pathogen in developed countries and most cases are associated with poultry. This study investigated the effect of three anti-Campylobacter water additives on broiler growth and on the caecal microbiota at harvest using 16S rRNA amplicon sequencing. Mixtures of organic acids (OA) and essential oils (EO) were administered to broilers for the entirety of the production cycle (35 d) and medium-chain fatty acids (MCFA) for 5 d immediately before harvest, under commercial conditions. Bird weight gain was significantly (p < 0.001) reduced in broilers receiving the OA and EO treatments. While this was most likely due to reduced water intake and corresponding lower feed consumption, changes to the caecal microbiota may also have contributed. Firmicutes made up over 75% of the bacteria regardless of sample type, while the minor phyla included Bacteroidetes, Actinobacteria, Melainabacteria, and Proteobacteria. There were no significant (p > 0.05) differences in the alpha diversity as measured using ACE, Chao1, and Shannon indices, except for control (water) versus MCFA and OA versus MCFA, using the Wilcox test. In contrast, there was a significant (p < 0.05) difference in beta diversity when the treated were compared to the untreated control and main flock samples, while linear discriminant analysis effect size (LeFSe) identified three OTUs that were present in the control but absent in the treated birds. It was concluded that the water additives tested adversely affected broiler performance, which may, at least in part, be due to changes in the caecal microbiota, assuming that the altered microbiota at day 35 is indicative of a change throughout the production cycle.
Collapse
Affiliation(s)
- Genevieve Greene
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Leonard Koolman
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | | | - Helen Lynch
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Lisa O’Connor
- Food Safety Authority of Ireland, George’s Dock, Dublin 1, D01 P2V6 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Correspondence: ; Tel.: +353-(1)-8059539
| |
Collapse
|
8
|
The Role of Nutraceuticals and Phytonutrients in Chickens’ Gastrointestinal Diseases. Animals (Basel) 2022; 12:ani12070892. [PMID: 35405880 PMCID: PMC8997120 DOI: 10.3390/ani12070892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The use of nutraceuticals and phytonutrients in poultry nutrition has been extensively explored over the past decade. The interest in these substances is linked to the search for natural compounds that can be effectively used to prevent and treat some of the main diseases of the chicken. The serious problem of antibiotic resistance and the consequent legislative constraints on their use required the search for alternatives. The purpose of this review is to describe the current status of the effects of some substances, such as probiotics and prebiotics, organic acids, vitamins and phytogenic feed additives, focusing specifically on studies concerning the prevention and treatment of four main gastrointestinal diseases in chicken: salmonellosis, necrotic enteritis (caused by Clostridium perfringens), campylobacteriosis, and coccidiosis. A brief description of these diseases and the effects of the main bioactive principles of the nutraceutical or phytonutrient groups will be provided. Although there are conflicting results, some works show very promising effects, with a reduction in the bacterial or protozoan load following treatment. Further studies are needed to verify the real effectiveness of these compounds and make them applicable in the field. Abstract In poultry, severe gastrointestinal diseases are caused by bacteria and coccidia, with important economic losses in the poultry industry and requirement of treatments which, for years, were based on the use of antibiotics and chemotherapies. Furthermore, Salmonella spp., Clostridium perfringens, and Campylobacter jejuni can cause serious foodborne diseases in people, resulting from consumption of poultry meat, eggs, and derived products. With the spread of antibiotic resistance, which affects both animals and humans, the restriction of antibiotic use in livestock production and the identification of a list of “critically important antimicrobials” became necessary. For this reason, researchers focused on natural compounds and effective alternatives to prevent gastrointestinal disease in poultry. This review summarizes the results of several studies published in the last decade, describing the use of different nutraceutical or phytonutrients in poultry industry. The results of the use of these products are not always encouraging. While some of the alternatives have proven to be very promising, further studies will be needed to verify the efficacy and practical applicability of other compounds.
Collapse
|
9
|
Farinacci P, Mevissen M, Ayrle H, Maurer V, Sørensen Dalgaard T, Melzig MF, Walkenhorst M. Medicinal Plants for Prophylaxis and Therapy of Common Infectious Diseases In Poultry-A Systematic Review of In Vivo Studies. PLANTA MEDICA 2022; 88:200-217. [PMID: 34359086 DOI: 10.1055/a-1543-5502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants for prophylaxis and therapy of common infectious diseases in poultry have been studied for several years. The goal of this review was to systematically identify plant species and evaluate their potential in prophylaxis and therapy of common diseases in poultry caused by bacteria and gastrointestinal protozoa. The procedure followed the recommendations of the PRISMA statement and the AMSTAR measurement tool. The PICOS scheme was used to design the research questions. Two databases were consulted, and publications were manually selected, according to predefined in- and exclusion criteria. A scoring system was established to evaluate the remaining publications. Initially, 4197 identified publications were found, and 77 publications remained after manual sorting, including 38 publications with 70 experiments on bacterial infections and 39 publications with 78 experiments on gastrointestinal protozoa. In total, 83 plant species from 42 families were identified. Asteraceae and Lamiaceae were the most frequently found families with Artemisia annua being the most frequently found plant, followed by Origanum vulgare. As compared to placebo and positive or negative control groups, antimicrobial effects were found in 46 experiments, prebiotic effects in 19 experiments, and antiprotozoal effects in 47 experiments. In summary, a total of 274 positive effects predominated over 241 zero effects and 37 negative effects. Data indicate that O. vulgare, Coriandrum sativum, A. annua, and Bidens pilosa are promising plant species for prophylaxis and therapy of bacterial and protozoal diseases in poultry.
Collapse
Affiliation(s)
- Patricia Farinacci
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Meike Mevissen
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hannah Ayrle
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Veronika Maurer
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | | | | | - Michael Walkenhorst
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
10
|
Bacillus subtilis PS-216 Antagonistic Activities against Campylobacter jejuni NCTC 11168 Are Modulated by Temperature, Oxygen, and Growth Medium. Microorganisms 2022; 10:microorganisms10020289. [PMID: 35208741 PMCID: PMC8875091 DOI: 10.3390/microorganisms10020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
As the incidence of Campylobacter jejuni and campylobacteriosis grows, so does the need for a better understanding and control of this pathogen. We studied the interactions of C. jejuni NCTC 11168 and a potential probiotic, Bacillus subtilis PS-216, in cocultures at different starting ratios and temperatures (20 °C, 37 °C, 42 °C), under different atmospheres (aerobic, microaerobic), and in different growth media (Mueller–Hinton, chicken litter medium, chicken intestinal-content medium). Under microaerobic conditions, B. subtilis effectively inhibited the growth of C. jejuni at 42 °C (log reduction, 4.19), even when C. jejuni counts surpassed B. subtilis by 1000-fold in the starting inoculum. This inhibition was weaker at 37 °C (log reduction, 1.63), while no impact on CFUs was noted at 20 °C, which is a temperature nonpermissive of C. jejuni growth. Under aerobic conditions, B. subtilis supported C. jejuni survival. B. subtilis PS-216 inhibited the growth of C. jejuni in sterile chicken litter (4.07 log reduction) and in sterile intestinal content (2.26 log reduction). In nonsterile intestinal content, B. subtilis PS-216 was able to grow, to a lesser extent, compared to Mueller–Hinton media, still showing potential as a chicken probiotic that could be integrated into the chicken intestinal microbiota. This study showed the strong influence of environmental parameters on the variability of C. jejuni and B. subtilis interactions. Furthermore, B. subtilis PS-216 antagonism was strongest against C. jejuni NCTC 11168 under conditions that might represent conditions in the chicken environment (42 °C, microaerobic atmosphere, chicken litter medium).
Collapse
|
11
|
Testing barrier materials in the development of a biosecurity pen to protect broilers against Campylobacter. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Greene G, Koolman L, Whyte P, Lynch H, Coffey A, Lucey B, Egan J, O'Connor L, Bolton D. The efficacy of organic acid, medium chain fatty acid and essential oil based broiler treatments; in vitro anti-Campylobacter jejuni activity and the effect of these chemical-based treatments on broiler performance. J Appl Microbiol 2021; 132:687-695. [PMID: 34218482 DOI: 10.1111/jam.15204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/01/2022]
Abstract
AIMS This research tested the anti-Campylobacter properties of organic acids (OA), medium chain fatty acids (MCFA) and essential oils (EO) in vitro and commenced in vivo suitability testing focused on broiler performance. METHODS AND RESULTS Nine active compounds were tested at different concentrations and times against Campylobacter jejuni in sterile distilled water, Mueller Hinton broth and grower feed digestate (GFD). Sodium caprate (1.5%, v/v), thymol (0.25% and 2.5%, v/v), carvacrol (1.25%, v/v) and potassium sorbate (1.5%, v/v) each achieved C. jejuni reductions of ≥4.5 log10 CFU per ml in GFD, the matrix most representative of the broiler gut, after 60 s. Similar reductions were achieved after 60 min with lactic acid (1.25%, v/v), formic acid (3.1%, v/v), sodium caprylate (1.5%, v/v) and carvacrol (1.25%, v/v). However, in vivo these compounds adversely affected broiler performance, resulting in dimished water intake and reduced weight. CONCLUSIONS OA, MFCA and EO based compounds are effective anti-Campylobacter treatments in laboratory model studies but cannot be applied in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY This study illustrates that OAs, MCFAs and EOs can achieve significant reductions in Campylobacter in vitro but identifies a major issue, inhibition of broiler performance, preventing their use in practice.
Collapse
Affiliation(s)
- Genevieve Greene
- Teagasc Food Research Centre, Dublin, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | | | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Helen Lynch
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland.,Department of Agriculture, Food and the Marine, Kildare, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - John Egan
- Department of Agriculture, Food and the Marine, Kildare, Ireland
| | | | | |
Collapse
|
13
|
Heimesaat MM, Mousavi S, Weschka D, Bereswill S. Garlic Essential Oil as Promising Option for the Treatment of Acute Campylobacteriosis-Results from a Preclinical Placebo-Controlled Intervention Study. Microorganisms 2021; 9:microorganisms9061140. [PMID: 34070612 PMCID: PMC8227651 DOI: 10.3390/microorganisms9061140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since human infections with Campylobacter jejuni including antibiotic-resistant strains are rising worldwide, natural compounds might constitute promising antibiotics-independent treatment options for campylobacteriosis. Since the health-beneficial properties of garlic have been known for centuries, we here surveyed the antimicrobial and immune-modulatory effects of garlic essential oil (EO) in acute experimental campylobacteriosis. Therefore, secondary abiotic IL-10-/- mice were orally infected with C. jejuni strain 81-176 and garlic-EO treatment via the drinking water was initiated on day 2 post-infection. Mice from the garlic-EO group displayed less severe clinical signs of acute campylobacteriosis as compared to placebo counterparts that were associated with lower ileal C. jejuni burdens on day 6 post-infection. Furthermore, when compared to placebo application, garlic-EO treatment resulted in alleviated colonic epithelia cell apoptosis, in less pronounced C. jejuni induced immune cell responses in the large intestines, in dampened pro-inflammatory mediator secretion in intestinal and extra-intestinal compartments, and, finally, in less frequent translocation of viable pathogens from the intestines to distinct organs. Given its potent immune-modulatory and disease-alleviating effects as shown in our actual preclinical placebo-controlled intervention study, we conclude that garlic-EO may be considered as promising adjunct treatment option for acute campylobacteriosis in humans.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Correspondence: (M.M.H.); (S.M.); Tel.: +49-30-450524318 (M.M.H); +49-30-450524315 (S.M.)
| | - Soraya Mousavi
- Correspondence: (M.M.H.); (S.M.); Tel.: +49-30-450524318 (M.M.H); +49-30-450524315 (S.M.)
| | | | | |
Collapse
|
14
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
15
|
Obajuluwa O, Sanwo K, Egbeyale L, Fafiolu A. Performance, blood profile and gut morphometry of broiler chickens fed diets supplemented with Yohimbe (Pausynistalia yohimbe) and Larvacide. Vet Anim Sci 2020; 10:100127. [PMID: 32734027 PMCID: PMC7386635 DOI: 10.1016/j.vas.2020.100127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The need for making livestock products free from antibiotics residue and other synthetic chemicals has resulted to the use of herbal products in livestock production. A 42-day study was conducted to compare the influence of Yohimbe (Pausynistalia yohimbe) and Larvacide on the growth performance, blood profile and gut morphometry of broiler chickens. Two hundred and twenty five 14-day old broiler chickens were randomly allotted into five treatment groups comprising of forty five chicks each. The groups were triplicates of fifteen birds. The five treatment groups consist of Basal (control), Larvacide (5 mg/Kg), three levels of Yohimbe supplementation (60 mg, 120 mg, and 180 mg/Kg) diets. Each supplement was supplied with the specified diets for the two phases of feeding [starter diet (3-4weeks) and the finisher diet (5-8weeks)]. Data collected were subjected to One-way analysis of variance. Results show insignificant effect (p>0.05) on the growth performance parameters at the starter phase. However, at the finisher phase, supplementation of Yohimbe resulted to a progressive reduction in the feed intake (p<0.05) without consequential reduction in the body weights. The chickens fed Basal diet+180 mg Yohimbe had the best Feed Conversion Ratio (FCR). Furthermore, chickens fed basal starter diet+180 mg Yohimbe had the highest (p<0.05) total protein, globulin, Red Blood Cell (RBC), White Blood Cell (WBC), and Eosinophil counts while it had the least (p<0.05) Alanine Transaminase (ALT), uric acid and creatinine. Also, chickens fed basal starter diet + 60 mg Yohimbe had the highest (p<0.05) Mean Corpuscular Volume (MCV) and Mean Corpuscular Haemoglobin (MCH) while chickens fed basal starter diet+120 mg Yohimbe had highest (p<0.05) High Density Lipoprotein (HDL), but lower Very Low Density Lipoprotein (VLDL) and triglyceride. At the finisher phase, chickens fed basal diet+180 mg Yohimbe had the highest (p<0.05) Pack Cell Volume (PCV), haemoglobin and basophils while chickens fed basal diet+60 mg Yohimbe had the highest WBC. Chickens fed basal diet+120 mg Yohimbe had the least ALT and uric acid. Triglyceride, and cholesterol, HDL and VLDL, were lowered (p<0.05) in chickens fed basal diet+Larcacide. Also, chickens fed basal diet+180 mg Yohimbe had the highest (p<0.05) villi height. The study concluded that feeding broiler chickens basal diet+180 mg Yohimbe improved optimum growth performance, blood profile and gut morphology.
Collapse
Affiliation(s)
- O.V. Obajuluwa
- Livestock Science and Sustainable Environment, Centre of Excellence in Agricultural Development and Sustainable Environment, Federal University of Agriculture, Abeokuta, Nigeria
| | - K.A. Sanwo
- Department of Animal Production and Health, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - L.T. Egbeyale
- Department of Animal Production and Health, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.O. Fafiolu
- Department of Animal Nutrition, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
16
|
Thagfan FA, Al-Megrin WA, Al-Quraishy S, Dkhil MAM. Mulberry extract as an ecofriendly anticoccidial agent: in vitro and in vivo application. ACTA ACUST UNITED AC 2020; 29:e009820. [PMID: 33111843 DOI: 10.1590/s1984-29612020072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
Natural products are ecofriendly agents that can be used against parasitic diseases. Eimeria species cause eimeriosis in many birds and mammals and resistance to available medications used in the treatment of eimeriosis is emerging. We investigated the in vitro and in vivo activity of Morus nigra leaf extracts (MNLE) against sporulation of oocysts and infection of mice with Eimeria papillata. Phytochemical analysis of MNLE showed the presence of seven compounds and the in vitro effects of MNLE, amprolium, DettolTM, formalin, ethanol, and phenol were studied after incubation with oocysts before sporulation. Furthermore, infection of mice with E. papillata induced an oocyst output of approximately 12 × 105 oocysts/g of feces. MNLE significantly decreased oocyst output to approximately 86% and the total number of parasitic stages in the jejunum by approximately 87%. In addition, the reduction in the number of goblet cells in the jejuna of mice was increased after treatment. These findings suggest that mulberry exhibited powerful anticoccidial activity.
Collapse
Affiliation(s)
- Felwa Abdullah Thagfan
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wafa Abdullah Al-Megrin
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Abdel Monem Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
17
|
Lu T, Marmion M, Ferone M, Wall P, Scannell AGM. On farm interventions to minimise Campylobacter spp. contamination in chicken. Br Poult Sci 2020; 62:53-67. [PMID: 32835499 DOI: 10.1080/00071668.2020.1813253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This review explores current and proposed on-farm interventions and assess the potential of these interventions against Campylobacter spp. 2. Interventions such as vaccination, feed/water-additives and, most importantly, consistent biosecurity, exhibit potential for the effective control of this pathogen and its dissemination within the food chain. 3. Due to the extensive diversity in the Campylobacter spp. genome and surface-expressed proteins, vaccination of poultry is not yet regarded as a completely effective strategy. 4. The acidification of drinking water through the addition of organic acids has been reported to decrease the risk of Campylobacter spp. colonisation in broiler flocks. Whilst this treatment alone will not completely protect birds, use of water acidification in combination with in-feed measures to further reduce the level of Campylobacter spp. colonisation in poultry may be an option meriting further exploration. 5. The use of varied types of feed supplements to reduce the intestinal population and shedding rate of Campylobacter spp. in poultry is an area of growing interest in the poultry industry. Such supplements include pro - and pre-biotics, organic acids, bacteriocins and bacteriophage, which may be added to feed and water. 6. From the literature, it is clear that a distinct, albeit not unexpected, difference between the performance of in-feed interventions exists when examined in vitro compared to those determined in in vivo studies. It is much more likely that pooling some of the discussed approaches in the in-feed tool kit will provide an answer. 7. Whilst on-farm biosecurity is essential to maintain a healthy flock and reduce disease transmission, even the most stringent biosecurity measures may not have sufficient, consistent and predictable effects in controlling Campylobacter spp. Furthermore, the combination of varied dietary approaches and improved biosecurity measures may synergistically improve control.
Collapse
Affiliation(s)
- T Lu
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Marmion
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Ferone
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - P Wall
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| | - A G M Scannell
- UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| |
Collapse
|
18
|
van Wagenberg CPA, van Horne PLM, van Asseldonk MAPM. Cost-effectiveness analysis of using probiotics, prebiotics, or synbiotics to control Campylobacter in broilers. Poult Sci 2020; 99:4077-4084. [PMID: 32731995 PMCID: PMC7598006 DOI: 10.1016/j.psj.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/16/2023] Open
Abstract
Campylobacter is a food safety hazard, which causes a substantial human disease burden. Infected broiler meat is a common source of campylobacteriosis. The use of probiotics, prebiotics, or synbiotics has been associated with controlling Campylobacter infections in broilers, although efficacy remains a contentiously debated issue. On-farm use of probiotics, prebiotics, or synbiotics is gaining momentum. Therefore, it is interesting to analyze the economic viability of this potential intervention to reduce Campylobacter prevalence in broilers. A normative cost-effectiveness analysis was conducted to estimate the cost-effectiveness ratio of using probiotics, prebiotics, or synbiotics in broiler production in Denmark, the Netherlands, Poland, and Spain. The cost-effectiveness ratio was defined as the estimated costs of probiotics, prebiotics, or synbiotics use divided by the estimated public health benefits expressed in euro (€) per avoided disability-adjusted life year (DALY). The model considered differences between the countries in zootechnical and economic farm performance, in import, export, and transit of live broilers, broiler meat and meat products, and in disease burden of Campylobacter-related human illness. Simulation results revealed that the costs per avoided DALY were lowest in Poland and Spain (€4,000-€30,000 per avoided DALY) and highest in the Netherlands and Denmark (€70,000-€340,000 per avoided DALY) at an efficacy ranging from 10 to 20%. In Poland and Spain, using probiotics can be classified as a moderately expensive intervention if efficacy is more than 10%, otherwise it is relatively expensive. In the Netherlands and Denmark, using probiotics is a relatively expensive intervention irrespective of efficacy. However, if probiotics, prebiotics, or synbiotics were assumed to enhance broiler performance, it would become a relatively cost-effective intervention for Campylobacter even at low efficacy levels of 1 to 10%.
Collapse
Affiliation(s)
| | - P L M van Horne
- Wageningen Economic Research, 2502 LS Den Haag, The Netherlands
| | | |
Collapse
|
19
|
Thépault A, Roulleau X, Loiseau P, Cauquil L, Poezevara T, Hyronimus B, Quesne S, Souchaud F, Keita A, Chemaly M, Guyard-Nicodème M. Effect of Litter Treatment on Campylobacter jejuni in Broilers and on Cecal Microbiota. Pathogens 2020; 9:E333. [PMID: 32365731 PMCID: PMC7281257 DOI: 10.3390/pathogens9050333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/23/2023] Open
Abstract
Since 2018, when a process hygiene criterion for Campylobacter in broilers at the slaughterhouse was implemented across Europe, efforts to reduce Campylobacter at farm level have increased. Despite numerous studies aiming to reduce Campylobacter colonization in broilers, no efficient control strategy has been identified so far. The present work assessed first the efficacy of a commercial litter treatment to reduce Campylobacter colonization in broilers during two in-vivo trials and second, its impact on cecal microbiota. The treatment does not affect broiler growth and no effect on Campylobacter counts was observed during the in-vivo trials. Nevertheless, cecal microbiota were affected by the treatment. Alpha and beta diversity were significantly different for the control and litter-treated groups on day 35. In addition, several taxa were identified as significantly associated with the different experimental groups. Further work is needed to find a suitable control measure combining different strategies in order to reduce Campylobacter.
Collapse
Affiliation(s)
- Amandine Thépault
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP53, 22440 Ploufragan, France; (A.T.); (T.P.); (S.Q.); (F.S.); (M.C.)
| | - Xavier Roulleau
- Laboratoire COBIOTEX/TERAXION, 44430 Le Loroux Bottereau, France; (X.R.); (B.H.)
| | | | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France;
| | - Typhaine Poezevara
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP53, 22440 Ploufragan, France; (A.T.); (T.P.); (S.Q.); (F.S.); (M.C.)
| | - Bertrand Hyronimus
- Laboratoire COBIOTEX/TERAXION, 44430 Le Loroux Bottereau, France; (X.R.); (B.H.)
| | - Ségolène Quesne
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP53, 22440 Ploufragan, France; (A.T.); (T.P.); (S.Q.); (F.S.); (M.C.)
| | - Florent Souchaud
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP53, 22440 Ploufragan, France; (A.T.); (T.P.); (S.Q.); (F.S.); (M.C.)
| | - Alassane Keita
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Unit, BP53, 22440 Ploufragan, France;
| | - Marianne Chemaly
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP53, 22440 Ploufragan, France; (A.T.); (T.P.); (S.Q.); (F.S.); (M.C.)
| | - Muriel Guyard-Nicodème
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP53, 22440 Ploufragan, France; (A.T.); (T.P.); (S.Q.); (F.S.); (M.C.)
| |
Collapse
|
20
|
Çenesiz AA, Çiftci İ. Modulatory effects of medium chain fatty acids in poultry nutrition and health. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1739595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- A. A. Çenesiz
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - İ. Çiftci
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
21
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Alter T, Crotta M, Ellis‐Iversen J, Hempen M, Messens W, Chemaly M. Update and review of control options for Campylobacter in broilers at primary production. EFSA J 2020; 18:e06090. [PMID: 32874298 PMCID: PMC7448041 DOI: 10.2903/j.efsa.2020.6090] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The 2011 EFSA opinion on Campylobacter was updated using more recent scientific data. The relative risk reduction in EU human campylobacteriosis attributable to broiler meat was estimated for on-farm control options using Population Attributable Fractions (PAF) for interventions that reduce Campylobacter flock prevalence, updating the modelling approach for interventions that reduce caecal concentrations and reviewing scientific literature. According to the PAF analyses calculated for six control options, the mean relative risk reductions that could be achieved by adoption of each of these six control options individually are estimated to be substantial but the width of the confidence intervals of all control options indicates a high degree of uncertainty in the specific risk reduction potentials. The updated model resulted in lower estimates of impact than the model used in the previous opinion. A 3-log10 reduction in broiler caecal concentrations was estimated to reduce the relative EU risk of human campylobacteriosis attributable to broiler meat by 58% compared to an estimate larger than 90% in the previous opinion. Expert Knowledge Elicitation was used to rank control options, for weighting and integrating different evidence streams and assess uncertainties. Medians of the relative risk reductions of selected control options had largely overlapping probability intervals, so the rank order was uncertain: vaccination 27% (90% probability interval (PI) 4-74%); feed and water additives 24% (90% PI 4-60%); discontinued thinning 18% (90% PI 5-65%); employing few and well-trained staff 16% (90% PI 5-45%); avoiding drinkers that allow standing water 15% (90% PI 4-53%); addition of disinfectants to drinking water 14% (90% PI 3-36%); hygienic anterooms 12% (90% PI 3-50%); designated tools per broiler house 7% (90% PI 1-18%). It is not possible to quantify the effects of combined control activities because the evidence-derived estimates are inter-dependent and there is a high level of uncertainty associated with each.
Collapse
|
22
|
Yang H, Sun Y, Cai R, Chen Y, Gu B. The impact of dietary fiber and probiotics in infectious diseases. Microb Pathog 2019; 140:103931. [PMID: 31846741 DOI: 10.1016/j.micpath.2019.103931] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
Although antibiotics are commonly used to treat infectious diseases, emergence of antibiotic resistant strains highlights the necessity for developing novel alternative approaches. Meanwhile, clinically, antibiotics can destroy the gut microbes balance, which is not conducive to the recovery of infectious disorders. As a result, recent studies have begun to explore potential prevention and treatment methods for infectious diseases, starting with more readily available dietary fiber and probiotics. Moreover, researches have shown the personalized nature of host responses to dietary fiber intervention, with outcomes being dependent on individual pre-treatment gut microbes. In this review, we will focus on the roles of dietary fiber and probiotics on infectious diseases, how probiotics and dietary fiber work on infectious diseases and then explore their mechanisms, so as to guide clinical consideration of new therapies for infectious diseases.
Collapse
Affiliation(s)
- Huan Yang
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yiran Sun
- Clinical School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Rui Cai
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Chen
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
23
|
Yang Y, Ashworth AJ, Willett C, Cook K, Upadhyay A, Owens PR, Ricke SC, DeBruyn JM, Moore Jr. PA. Review of Antibiotic Resistance, Ecology, Dissemination, and Mitigation in U.S. Broiler Poultry Systems. Front Microbiol 2019; 10:2639. [PMID: 31803164 PMCID: PMC6872647 DOI: 10.3389/fmicb.2019.02639] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Since the onset of land application of poultry litter, transportation of microorganisms, antibiotics, and disinfectants to new locations has occurred. While some studies provide evidence that antimicrobial resistance (AMR), an evolutionary phenomenon, could be influenced by animal production systems, other research suggests AMR originates in the environment from non-anthropogenic sources. In addition, AMR impacts the effective prevention and treatment of poultry illnesses and is increasingly a threat to global public health. Therefore, there is a need to understand the dissemination of AMR genes to the environment, particularly those directly relevant to animal health using the One Health Approach. This review focuses on the potential movement of resistance genes to the soil via land application of poultry litter. Additionally, we highlight impacts of AMR on microbial ecology and explore hypotheses explaining gene movement pathways from U.S. broiler operations to the environment. Current approaches for decreasing antibiotic use in U.S. poultry operations are also described in this review.
Collapse
Affiliation(s)
- Yichao Yang
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Amanda J. Ashworth
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Fayetteville, AR, United States
| | - Cammy Willett
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Abhinav Upadhyay
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Phillip R. Owens
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Dale Bumpers Small Farms Research Center, Booneville, AR, United States
| | - Steven C. Ricke
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Philip A. Moore Jr.
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Fayetteville, AR, United States
| |
Collapse
|
24
|
Wagle BR, Arsi K, Shrestha S, Upadhyay A, Upadhyaya I, Bhargava K, Donoghue A, Donoghue DJ. Eugenol as an antimicrobial wash treatment reducesCampylobacter jejuniin postharvest poultry. J Food Saf 2019. [DOI: 10.1111/jfs.12704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Basanta R. Wagle
- Department of Poultry ScienceUniversity of Arkansas Fayetteville Arkansas
| | - Komala Arsi
- Department of Poultry ScienceUniversity of Arkansas Fayetteville Arkansas
| | - Sandip Shrestha
- Department of Poultry ScienceUniversity of Arkansas Fayetteville Arkansas
| | - Abhinav Upadhyay
- Department of Animal ScienceUniversity of Connecticut Storrs Connecticut
| | - Indu Upadhyaya
- School of AgricultureTennessee Tech University Cookeville Tennessee
| | - Kanika Bhargava
- Department of Human Environmental SciencesUniversity of Central Oklahoma Edmond Oklahoma
| | - Annie Donoghue
- Poultry Production and Product Safety Research UnitARS, USDA Fayetteville Arkansas
| | - Dan J. Donoghue
- Department of Poultry ScienceUniversity of Arkansas Fayetteville Arkansas
| |
Collapse
|
25
|
|
26
|
Micciche A, Rothrock MJ, Yang Y, Ricke SC. Essential Oils as an Intervention Strategy to Reduce Campylobacter in Poultry Production: A Review. Front Microbiol 2019; 10:1058. [PMID: 31139172 PMCID: PMC6527745 DOI: 10.3389/fmicb.2019.01058] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Campylobacter is a major foodborne pathogen and can be acquired through consumption of poultry products. With 1.3 million United States cases a year, the high prevalence of Campylobacter within the poultry gastrointestinal tract is a public health concern and thus a target for the development of intervention strategies. Increasing demand for antibiotic-free products has led to the promotion of various alternative pathogen control measures both at the farm and processing level. One such measure includes utilizing essential oils in both pre- and post-harvest settings. Essential oils are derived from plant-based extracts, and there are currently over 300 commercially available compounds. They have been proposed to control Campylobacter in the gastrointestinal tract of broilers. When used in concentrations low enough to not influence sensory characteristics, essential oils have also been proposed to decrease bacterial contamination of the poultry product during processing. This review explores the use of essential oils, particularly thymol, carvacrol, and cinnamaldehyde, and their role in reducing Campylobacter concentrations both pre- and post-harvest. This review also details the suggested mechanisms of action of essential oils on Campylobacter.
Collapse
Affiliation(s)
- Andrew Micciche
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
27
|
Skoufos I, Tzora A, Giannenas I, Bonos E, Tsinas A, ΜcCartney Ε, Lester H, Christaki E, Florou-Paneri P, Mahdavi J, Soultanas P. Evaluation of in-field efficacy of dietary ferric tyrosine on performance, intestinal health and meat quality of broiler chickens exposed to natural Campylobacter jejuni challenge. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Tsiouris V, Economou E, Lazou T, Georgopoulou I, Sossidou E. The role of whey on the performance and campylobacteriosis in broiler chicks. Poult Sci 2019; 98:236-243. [PMID: 30165581 DOI: 10.3382/ps/pey388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
The objective of the present study was to investigate the effect of the whey on broiler chicks' performance, welfare, and caecal Campylobacter counts under experimental and field conditions. In the experimental study, 120-d-old broiler chicks were randomly allocated to four treatment groups, as described below: group A, which served as negative control; group B, fed with a diet supplemented with 1% whey; group C, challenged with Campylobacter jejuni; and group D, supplemented with 1% whey and challenged with C. jejuni, respectively. Performance indexes and caecal C. jejuni counts were calculated. In addition to the performance indexes, the hock burn and the foot pad dermatitis lesions score were measured to assess the welfare status of broiler chicks. In order to evaluate the use of whey under field conditions, a second study was performed in a broiler farm with two identical houses. The evaluation of the experimental data revealed that the use of whey did not affect significantly the performance (P ≤ 0.05) and the caecal C. jejuni counts (P ≤ 0.05). There were neither footpad dermatitis lesions nor hock burn lesions in any of the experimental groups. In the field study, the use of whey had no effect on the performance indexes (P ≤ 0.05). It can be concluded that the addition of whey has no negative effect on poultry and may provide an alternative natural feed additive for the broiler feed industry.
Collapse
Affiliation(s)
- V Tsiouris
- Unit of Avian Medicine, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54627, Greece
| | - E Economou
- Laboratory of Hygiene of Foods of Animals Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - T Lazou
- Laboratory of Hygiene of Foods of Animals Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - I Georgopoulou
- Unit of Avian Medicine, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54627, Greece
| | - E Sossidou
- Veterinary Research Institute, Hellenic Agricultural Organization-DEMETER, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
29
|
Wales AD, Vidal AB, Davies RH, Rodgers JD. Field Interventions Against Colonization of Broilers by Campylobacter. Compr Rev Food Sci Food Saf 2018; 18:167-188. [PMID: 33337018 DOI: 10.1111/1541-4337.12397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
Abstract
Poultry accounts for a high proportion of human campylobacteriosis cases, and the problem of Campylobacter colonization of broiler flocks has proven to be intractable. Owing to their broad host range and genetic instability, Campylobacter organisms are ubiquitous and adaptable in the broiler farm environment, colonizing birds heavily and spreading rapidly after introduction into a flock. This review examines strategies to prevent or suppress such colonization, with a heavy emphasis on field investigations. Attempts to exclude Campylobacter via enhanced biosecurity and hygiene measures have met with mixed success. Reasons for this are becoming better understood as investigations focus on houses, ventilation, biosecurity practices, external operators, and compliance, among other factors. It is evident that piecemeal approaches are likely to fail. Complementary measures include feed and drinking water treatments applied in either preventive or suppressive modes using agents including organic acids and their derivatives, also litter treatments, probiotics, prebiotics, and alterations to diet. Some treatments aim to reduce the number of Campylobacter organisms entering abattoirs by suppressing intestinal colonization just before slaughter; these include acid water treatment or administration of bacteriophages or bacteriocins. Experimental vaccines historically have had little success, but some recent subunit vaccines show promise. Overall, there is wide variation in the control achieved, and consistency and harmonization of trials is needed to enable robust evaluation. There is also some potential to breed for resistance to Campylobacter. Good and consistent control of flock colonization by Campylobacter may require an as-yet undetermined combination of excellent biosecurity plus complementary measures.
Collapse
Affiliation(s)
- Andrew D Wales
- Dept. of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, Univ. of Surrey, Vet School Main Building, Daphne Jackson Road, Guildford, GU2 7AL, U.K
| | - Ana B Vidal
- Veterinary Medicines Directorate, Antimicrobial Resistance Policy and Surveillance Team, Woodham Lane, New Haw, Addlestone, KT15 3LS, U.K
| | - Robert H Davies
- Dept. of Bacteriology and Food Safety, Animal and Plant Health Agency (APHA - Weybridge), Woodham Lane, New Haw, Addlestone, KT15 3NB, U.K
| | - John D Rodgers
- Dept. of Bacteriology and Food Safety, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, KT15 3NB, Surrey, U.K
| |
Collapse
|
30
|
Visscher C, Klingenberg L, Hankel J, Brehm R, Langeheine M, Helmbrecht A. Influence of a specific amino acid pattern in the diet on the course of an experimental Campylobacter jejuni infection in broilers. Poult Sci 2018; 97:4020-4030. [PMID: 29982672 PMCID: PMC6162363 DOI: 10.3382/ps/pey276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most important zoonotic pathogens worldwide. In Europe, the majority of the cases are caused by consuming contaminated poultry meat. The objective of the present study was to investigate potential effects of different crude protein levels in complete diets for broilers on infection dynamics of C. jejuni after experimental infection. In total, 300 commercial broilers line Ross 308 were divided into 4 different groups, including 5 replications of 15 chickens each. The chickens were fed a conventional diet (212 g CP/kg DM) and a protein-reduced test diet (190 g CP/kg DM) supplemented with essential amino acids. This resulted simultaneously in lower amino-acid concentrations preferentially utilized by C. jejuni, such as aspartate, glutamate, proline, and serine. One group of each feeding concept was infected artificially with C. jejuni at day 21 by applying an oral C. jejuni inoculum containing 4.17 ± 0.09 log10 cfu of C. jejuni to 3 of 15 chickens, called "seeders." Feeding the test diet resulted in a significant reduction (P < 0.001) in CP intake (31.5 ± 1.20 g CP/broiler/day and 27.7 ± 0.71 g CP/broiler/day, respectively), a significant decrease (P < 0.05) in crude mucin in excreta (55.7 ± 8.23 g/kg DM and 51.9 ± 7.62 g/kg DM, respectively), and in goblet cell number in cecal crypts (P < 0.05; 15.1 ± 5.71 vs. 13.6 ± 5.91 goblet cells/crypt). In groups receiving the test diet, the excretion of C. jejuni was significantly reduced in seeders by 1.9 log10 cfu/g excreta at day 23 (3.38a ± 2.55 vs. 1.47b ± 2.20; P = 0.033). At day 25, prevalence of C. jejuni in cloacal swabs amounted to 53.3% in the group fed the test diet and 75.7% in the control group, respectively (P < 0.05). In summary, a definite amino acid pattern in the broiler diets could contribute to a development of an effective feeding strategy to reduce the prevalence of C. jejuni infection in chickens (Patent No 17187659.2-1106).
Collapse
Affiliation(s)
- C Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - L Klingenberg
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - J Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - R Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - M Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - A Helmbrecht
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang, Germany
| |
Collapse
|
31
|
Huneau-Salaün A, Guyard-Nicodème M, Benzoni G, Gautier X, Quesne S, Poëzevara T, Chemaly M. Randomized control trial to test the effect of a feed additive on Campylobacter contamination in commercial broiler flocks up to slaughter. Zoonoses Public Health 2018; 65:404-411. [PMID: 29399978 DOI: 10.1111/zph.12447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 12/12/2022]
Abstract
A randomized controlled trial (RCT) was carried to evaluate the effect of a feed additive on Campylobacter contamination of broilers reared in commercial conditions. Twenty-four broiler flocks naturally contaminated with Campylobacter were enrolled in the RCT: 12 were assigned to a control group (C) fed with a conventional finishing feed from 4 weeks of age to slaughter (around 35 days), and the other group of 12 flocks (S) was fed with a finishing feed supplemented with 250 ppm of a patented feed additive (an ion-exchanged clay compound) previously proven to reduce Campylobacter contamination in broiler caeca under experimental conditions. Enumeration of Campylobacter colonies in caeca (8 per flock) was carried out following ISO standards before feed distribution and at slaughter. Before treatment, the caecal Campylobacter load tended to be lower in C flocks (7.1 ± 1.9 log CFU/g, CI95% [6.6-7.5]) than in S flocks (7.7 ± 1.0 log UFC/g, CI95% [7.5-7.9]) (p = .05). At slaughter, the bacterial load was similar in the S (7.7 ± 1.0 log CFU/g, CI95% [7.5-7.9]) and C groups (7.5 ± 1.2 log CFU/g, CI95% [7.2-7.8]) (p = .73). Therefore, the feed additive had no significant effect on the caecal Campylobacter load at slaughter under the tested conditions. The logistical constraints inherent in field trials and the natural variability of Campylobacter contamination in naturally infected broiler flocks make it difficult to reproduce experimental results in in situ farm conditions. RCT testing of an intervention strategy in commercial situation is therefore a key step in evaluating pre-harvest interventions against food-borne pathogens.
Collapse
Affiliation(s)
| | | | - G Benzoni
- SA INVIVO NSA, Talhouët, Saint Nolff, France
| | - X Gautier
- Huttepain Aliment Groupe LDC, La Chapelle St Aubin, France
| | - S Quesne
- ANSES - Ploufragan-Plouzané Laboratory, Ploufragan, France
| | - T Poëzevara
- ANSES - Ploufragan-Plouzané Laboratory, Ploufragan, France
| | - M Chemaly
- ANSES - Ploufragan-Plouzané Laboratory, Ploufragan, France
| |
Collapse
|
32
|
Reis M, Fassani E, Júnior AG, Rodrigues P, Bertechini A, Barrett N, Persia M, Schmidt C. Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
33
|
Guyard-Nicodème M, Huneau-Salaün A, Tatone FA, Skiba F, Quentin M, Quesne S, Poezevara T, Chemaly M. Effect of Feed Additives on Productivity and Campylobacter spp. Loads in Broilers Reared under Free Range Conditions. Front Microbiol 2017; 8:828. [PMID: 28553267 PMCID: PMC5427123 DOI: 10.3389/fmicb.2017.00828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023] Open
Abstract
The poultry reservoir, especially broiler meat, is generally recognized as one of the most-important sources for human Campylobacteriosis. The measures to control Campylobacter targeted essentially the primary production level. The aim of this work was to evaluate the effectiveness of different treatments against natural Campylobacter colonization in a French experimental farm of free-range broilers during the whole rearing period. Five commercial products and a combination of two of them were tested and all the products were added to feed or to water at the dose recommended by the suppliers. Campylobacter loads in caeca and on carcasses of broilers at the slaughter were determined by culture methods. Natural contamination of the flock occurred at the end of the indoor rearing period between day 35 and day 42. At day 42, the multispecies probiotic added to the feed reduced the contamination of 0.55 log10 CFU/g (p = 0.02) but was not significant (p > 0.05) at the end of rearing at day 78. However, another treatment, a combination of a cation exchange clay-based product in feed and an organic acid mixture (formic acid, sodium formate, lactic acid, propionic acid) in water, led to a slight but significant reduction of 0.82 ± 0.25 log10 CFU/g (p = 0.02) compared to the control group at day 78. Testing this combination in field conditions in several flocks is needed to determine if it is biologically relevant and if it could be a valuable measure to reduce Campylobacter in broiler flocks.
Collapse
Affiliation(s)
- Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES – Ploufragan-Plouzané Laboratory, Université Bretagne LoirePloufragan, France
| | - Adeline Huneau-Salaün
- Avian and Rabbit Epidemiology and Welfare Unit, ANSES – Ploufragan-Plouzané Laboratory, Université Bretagne LoirePloufragan, France
| | - Fabrizio A. Tatone
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES – Ploufragan-Plouzané Laboratory, Université Bretagne LoirePloufragan, France
| | - Fabien Skiba
- NUTRICIA – Route de Saint-SeverHaut-Mauco, France
| | | | - Ségolène Quesne
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES – Ploufragan-Plouzané Laboratory, Université Bretagne LoirePloufragan, France
| | - Typhaine Poezevara
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES – Ploufragan-Plouzané Laboratory, Université Bretagne LoirePloufragan, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES – Ploufragan-Plouzané Laboratory, Université Bretagne LoirePloufragan, France
| |
Collapse
|
34
|
Quantitative risk assessment of Campylobacter in broiler chickens – Assessing interventions to reduce the level of contamination at the end of the rearing period. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Johnson TJ, Shank JM, Johnson JG. Current and Potential Treatments for Reducing Campylobacter Colonization in Animal Hosts and Disease in Humans. Front Microbiol 2017; 8:487. [PMID: 28386253 PMCID: PMC5362611 DOI: 10.3389/fmicb.2017.00487] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacteria-derived gastroenteritis worldwide. In the developed world, Campylobacter is usually acquired by consuming under-cooked poultry, while in the developing world it is often obtained through drinking contaminated water. Once consumed, the bacteria adhere to the intestinal epithelium or mucus layer, causing toxin-mediated inhibition of fluid reabsorption from the intestine and invasion-induced inflammation and diarrhea. Traditionally, severe or prolonged cases of campylobacteriosis have been treated with antibiotics; however, overuse of these antibiotics has led to the emergence of antibiotic-resistant strains. As the incidence of antibiotic resistance, emergence of post-infectious diseases, and economic burden associated with Campylobacter increases, it is becoming urgent that novel treatments are developed to reduce Campylobacter numbers in commercial poultry and campylobacteriosis in humans. The purpose of this review is to provide the current status of present and proposed treatments to combat Campylobacter infection in humans and colonization in animal reservoirs. These treatments include anti-Campylobacter compounds, probiotics, bacteriophage, vaccines, and anti-Campylobacter bacteriocins, all of which may be successful at reducing the incidence of campylobacteriosis in humans and/or colonization loads in poultry. In addition to reviewing treatments, we will also address several proposed targets that may be used in future development of novel anti-Campylobacter treatments.
Collapse
Affiliation(s)
- Tylor J Johnson
- Department of Microbiology, The University of Tennessee, Knoxville TN, USA
| | - Janette M Shank
- Department of Microbiology, The University of Tennessee, Knoxville TN, USA
| | - Jeremiah G Johnson
- Department of Microbiology, The University of Tennessee, Knoxville TN, USA
| |
Collapse
|
36
|
Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M, Daube G, Chemaly M, Dousset X, Guyard-Nicodème M. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 2016; 247:9-17. [PMID: 27432696 DOI: 10.1016/j.ijfoodmicro.2016.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 06/08/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
Abstract
Campylobacteriosis is the most frequently reported zoonotic disease in humans in the EU since 2005. As chicken meat is the main source of contamination, reducing the level of Campylobacter in broiler chicken will lower the risk to consumers. The aim of this project was to evaluate the ability of Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers and to investigate the mechanisms that could be involved. Thirty broilers artificially contaminated with C. jejuni were treated by oral gavage with MRS broth or a bacterial suspension (107CFU) of Lb. salivarius SMXD51 (SMXD51) in MRS broth. At 14 and 35days of age, Campylobacter and Lb. salivarius loads were assessed in cecal contents. The impact of the treatment on the avian gut microbiota at day 35 was also evaluated. At day 14, the comparison between the control and treated groups showed a significant reduction (P<0.05) of 0.82 log. After 35days, a significant reduction (P<0.001) of 2.81 log in Campylobacter loads was observed and 73% of chickens treated with the culture exhibited Campylobacter loads below 7log10CFU/g. Taxonomic analysis revealed that SMXD51 treatment induced significant changes (P<0.05) in a limited number of bacterial genera of the avian gut microbiota and partially limited the impact of Campylobacter on Anaerotruncus sp. decrease and Subdoligranulum sp. increase. Thus, SMXD51 exhibits an anti-Campylobacter activity in vivo and can partially prevent the impact of Campylobacter on the avian gut microbiota.
Collapse
Affiliation(s)
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne Loire, Nantes, France
| | - Bernard Taminiau
- FARAH, Department of Food Sciences, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Typhaine Poezevara
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Ségolène Quesne
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Michel Amelot
- Department of Poultry Experimentation, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Georges Daube
- FARAH, Department of Food Sciences, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne Loire, Nantes, France.
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France.
| |
Collapse
|
37
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|