1
|
Xu M, Tian N, Liu Y, Qian K, Shao H, Ye J, Qin A. Identification of host factors affecting Chicken Infectious Anemia Virus infection and pathogenicity through RNA-seq and LC-MS. Vet Microbiol 2025; 305:110524. [PMID: 40279723 DOI: 10.1016/j.vetmic.2025.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Chicken Infectious Anemia Virus (CIAV) infection causes severe anemia, hematopoietic disorders, and immunosuppression in poultry. However, the mechanisms underlying its pathogenicity remain poorly understood. In this study, RNA sequencing (RNA-seq) was employed to investigate the transcriptional response of MSB1 cells to CIAV infection at 12, 24, and 48 hours post-infection. The results revealed differential gene expression associated with immune response, inflammatory response, apoptosis, and metabolic pathways. Several immune-related factors, including IL18, TRAF1, MYD88, IRF2, and CD28, were found to be downregulated. VP1, the capsid protein of CIAV, plays a significant role in viral pathogenicity. To explore how VP1 affects CIAV replication and pathogenicity, co-immunoprecipitation (Co-IP) was used to identify host proteins interacting with VP1. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that VP1 interacts with a range of host proteins involved in metabolic pathways, the PI3K-AKT signaling pathway, and ribosomal functions. Based on RNA-seq and LC-MS findings, ANXA6 and HSP90aa1 were identified as key interacting partners, which co-localize in the cytoplasm of infected cells. Both proteins are involved in immune responses and metabolic regulation and were found to be downregulated in CIAV-infected cells. Notably, overexpression of ANXA6 or HSP90aa1 inhibited CIAV infection during the early stages of the viral lifecycle. These findings enhance our understanding of the host factors influencing CIAV infection and provide new insights into potential therapeutic targets for managing CIAV-induced diseases.
Collapse
Affiliation(s)
- Moru Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| | - Nana Tian
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| | - Yupeng Liu
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
2
|
Chu PP, Chen SN, Zhou X, Wei ZZ, Zhai SL. Getah Virus: A New Contaminant in Veterinary Vaccines. Vet Sci 2025; 12:82. [PMID: 40005842 PMCID: PMC11860580 DOI: 10.3390/vetsci12020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Mycoplasma, reticuloendotheliosis virus (REV), avian leukosis virus (ALV), chicken infectious anemia virus (CIAV), bovine polyomavirus (BPV), bovine viral diarrhea virus (BVDV), and porcine circovirus (PCV) are considered common contaminants in live veterinary vaccines against Newcastle disease virus (NDV), fowlpox virus (FPV), infectious bursal disease virus (IBDV), classical swine fever virus (CSFV), pseudorabies virus (PRV), and porcine reproductive and respiratory syndrome virus (PRRSV). In the past five years, Getah virus (GETV), an arbovirus affecting many farming mammals, was reported as a new contaminant in live PRRSV vaccines in two previous studies, which arouses our considerable interest. Therefore, in this paper, we aim to analyze and discuss the source, biological hazard, and genomic characteristics of these contaminating GETV strains further.
Collapse
Affiliation(s)
- Pin-Pin Chu
- Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (P.-P.C.); (X.Z.)
| | - Sheng-Nan Chen
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (S.-N.C.)
- Guangzhou Sino-Science Gene Testing Service Co., Ltd., Guangzhou 510700, China
| | - Xia Zhou
- Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (P.-P.C.); (X.Z.)
| | - Zu-Zhang Wei
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (S.-N.C.)
| | - Shao-Lun Zhai
- Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (P.-P.C.); (X.Z.)
| |
Collapse
|
3
|
Ge C, Lu H, Han J, Sun G, Li S, Lan X, Liu Y, Yu M, Hu X, Hu M, Qi X, Cui H, Duan Y, Wang S, Chen Y, Wang X, Zhang Y, Gao Y, Liu C. Recombinant Marek's disease virus expressing VP1 and VP2 proteins provides robust immune protection against chicken infectious anemia virus. Front Microbiol 2025; 15:1515415. [PMID: 39834361 PMCID: PMC11743625 DOI: 10.3389/fmicb.2024.1515415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 01/22/2025] Open
Abstract
Chicken infectious anemia (CIA) is a highly contagious disease caused by the chicken infectious anemia virus (CIAV), and it poses a serious threat to the poultry industry. However, effective control measures and strategies have not been identified. In this study, a recombinant Marek's disease virus (rMDV) expressing the VP1 and VP2 proteins of CIAV was successfully constructed using CRISPR/Cas9, and a commercial Marek's disease virus (MDV) vaccine strain was used as the vector. VP1 and VP2 expression by rMDV was confirmed by immunofluorescence assay and western blot analysis, which revealed robust in vitro expression. Further analysis showed that the VP1 and VP2 genes integrated into the MDV genome did not alter the growth kinetics of the virus and remained stable even after 20 passages, indicating the genetic stability of the recombinant virus. In animal studies, vaccination of one-day-old specific-pathogen-free chickens with rMDV induced high levels of CIAV-specific antibodies (1 × 105) and neutralizing antibodies (1:25) and a potent cellular immune response. Moreover, rMDV vaccination conferred an 85% protective index against challenge with a highly virulent strain of CIAV, significantly reducing the occurrence of anemia and thymic atrophy caused by CIAV infection and dramatically suppressing CIAV replication in the thymus. Collectively, these results highlight the potential of rMDV as a vaccine candidate for preventing and controlling CIAV infection, thus offering a new avenue for mitigating the impact of CIA on the poultry industry.
Collapse
Affiliation(s)
- Chengfei Ge
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hangqiong Lu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinze Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guorong Sun
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shihao Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xingge Lan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyun Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxue Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Zhang F, Xie Q, Yang Q, Luo Y, Wan P, Wu C, Tu L, Chen J, Kang Z. Prevalence and phylogenetic analysis of Gyrovirus galga 1 in southern China from 2020 to 2022. Poult Sci 2024; 103:103397. [PMID: 38295496 PMCID: PMC10846400 DOI: 10.1016/j.psj.2023.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
Since 2011, the Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2) strain has extensively been detected worldwide. However, because there are no up-to-date reports of examining the distribution of GyVg1 in flocks in southern China, the epidemiology of this virus is unknown. To investigate the prevalence and genetic evolution of GyVg1, a total of 2,077 field samples collected from 113 chicken farms in 6 provinces in southern China during 2020 to 2022 were tested. Among them, 315 samples (315/2,077, 15.17%) were positive for GyVg1 by PCR. The positive rate of GyVg1 detection between different regions of southern China ranged from 11.69% (Guangdong) to 22.46% (Yunnan). The correlation between GyVg1 prevalence and sample source groups was analyzed, the results showing that the highest seroprevalence of GyVg1 was observed in visceral tissues (27.34%, 187/684), significantly higher (P < 0.05) than that of feather shafts (17.22%, 31/180), serums (8.85%, 78/881), and fecal (5.72%, 19/332). Additionally, the complete genomes of 10 GyVg1 strains were sequenced and analyzed, which showed nucleotide identities of 96.2 to 99.9%, 97.0 to 100.0%, 95.2 to 100.0%, and 95.7 to 99.8% in the complete genome, ORF1, ORF2, and ORF3, respectively, and 94.4 to 100.0%, 91.3 to 100.0%, and 98.7 to 100.0% amino acid similarity in the VP2, VP3, and VP1 proteins, respectively. Phylogenetic analysis of the whole genome showed that 10 GyVg1 strains belong to genotype I, and one strain belongs to genotype III. Sequence analysis showed several amino acid substitutions in both the VP1, VP2, and VP3 proteins. Our results enhance the understanding of the molecular characterization of GyVg1 infection in southern China. In conclusion, this study reveals the high prevalence and high genetic differentiation of GyVg1 in Chinese chickens and suggests that the potential impact of GyVg1 on the chicken industry may be of concern.
Collapse
Affiliation(s)
- Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yangyang Luo
- Wen's Foodstuff Group Co., Ltd., Wen's Group Research Institute, YunFu, Guangdong 527400, China
| | - Peiwei Wan
- Jiangxi Biological Vocational College, Nanchang, Jiangxi 330200, China
| | - Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Lingyun Tu
- Nanchang Animal Disease Control Center, Nanchang, Jiangxi 330008, China
| | - Jiajia Chen
- Jiangxi Biological Vocational College, Nanchang, Jiangxi 330200, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
5
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
6
|
Zeng Y, Zhang H, Zhang H. Isolation, Identification, and Whole Genome Analysis of Chicken Infectious Anemia Virus in an Outbreak of Disease in Adult Layer Hens. Vet Sci 2023; 10:481. [PMID: 37505885 PMCID: PMC10386238 DOI: 10.3390/vetsci10070481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Chicken infectious anemia (CIA) poses a significant threat to the chicken industry in China. Due to its non-specific symptoms, the disease is often overlooked. This study aimed to conduct a comprehensive analysis of the etiology and pathology of CIA in Guangxi Province, China. Three strains of the chicken infectious anemia virus (CIAV) were isolated from liver samples of diseased 20-week-old chickens. The complete genomes of these strains were sequenced, and experiments on specific pathogen-free (SPF) chicks revealed that the GX21121 strain exhibited high virulence. Histopathological examination of the deceased chickens showed liver cell necrosis, fibrous serous exudation, inflammatory cell infiltration, hemorrhage in liver tissues, and congestion in lung and renal tissues. Phylogenetic analysis of the genome revealed that the three strains had a close genetic relationship to the Heilongjiang wild-type strain (GenBank KY486144). The genetic evolution of their VP1 genes indicated that all three CIAV isolates belonged to genotype IIIc. In summary, this study demonstrated the genomic diversity of three CIAV strains in adult layer hens. The isolation and characterization of the GX21121 strain as a highly virulent isolate provide valuable information for further investigations into the etiology, molecular epidemiology, and viral evolution of CIAV.
Collapse
Affiliation(s)
- Yueyan Zeng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Hui Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Veterinary Medicine, Universities in Sichuan, Chengdu 610093, China
| | - Huanrong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Veterinary Medicine, Universities in Sichuan, Chengdu 610093, China
| |
Collapse
|
7
|
Fan Q, Xie Z, Zhang Y, Xie Z, Xie L, Huang J, Zeng T, Wang S, Luo S, Li M. A multiplex fluorescence-based loop-mediated isothermal amplification assay for identifying chicken parvovirus, chicken infectious anaemia virus, and fowl aviadenovirus serotype 4. Avian Pathol 2023; 52:128-136. [PMID: 36622371 DOI: 10.1080/03079457.2022.2159326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chicken parvovirus (ChPV), chicken infectious anaemia virus (CIAV) and fowl adenovirus serotype 4 (FAdV-4) are avian viruses that have emerged in recent years and have endangered the global poultry industry, causing great economic loss. In this study, a multiplex fluorescence-based loop-mediated isothermal amplification (mLAMP) assay for detecting ChPV, CIAV and FAdV-4 was developed to simultaneously diagnose single and mixed infections in chickens. Three primer sets and composite probes were designed according to the conserved regions of the NS gene of ChPV, VP1 gene of CIAV and hexon gene of FAdV-4. Each composite probe was labelled with a different fluorophore, which was detached to release the fluorescence signal after amplification. The target viruses were distinguished based on the colour of the mLAMP products. The mLAMP assay was shown to be sensitive, with detection limits of 307 copies of recombinant plasmids containing the ChPV target genes, 749 copies of CIAV and 648 copies of FAdV-4. The assay exhibited good specificity and no cross-reactivity with other symptomatically related avian viruses. When used on field materials, the results of the mLAMP assay were in 100% agreement with those of the previously published PCR assay. The mLAMP assay is rapid, economical, sensitive and specific, and the results of amplification are directly observable by eye. Therefore, the mLAMP assay is a useful tool for the clinical detection of ChPV, CIAV and FAdV-4 and can be applied in rural areas.
Collapse
Affiliation(s)
- Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, People's Republic of China
- Key Laboratory of China-ASEAN (Guangxi) Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Nanning, People's Republic of China
| |
Collapse
|
8
|
Li J, Lou Y, Li P, Wang T, Lv Z, Guo Z, Geng N, Meng F, Liu S, Li N. Retrospective Investigation and Genetic Variation Analysis of Chicken Infectious Anemia in Shandong Province, 2020-2022. Vet Sci 2023; 10:vetsci10040263. [PMID: 37104419 PMCID: PMC10142966 DOI: 10.3390/vetsci10040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Chicken infectious anemia (CIA) is a vertical transmission infectious chicken disease caused by the chicken infectious anemia virus (CAV). The disease can induce stunting and immunosuppression in chicks by infecting bone marrow-derived stem cells, causing huge economic losses for the poultry industry. To determine the prevalence of CIA in Shandong Province, China, 854 suspected CIA samples were collected and analyzed in 13 cities in Shandong from 2020 to 2022. The PCR results showed that a total of 115 CAV were isolated. The CAV-positive rates were 17.21% (26/151) in 2020, 12.23% (35/286) in 2021, and 12.94% (54/417) in 2022, with severe mixed infections. Among them, CAV and fowl adenovirus (FAdV) were the most common, accounting for 40.86%. VP1 gene homology analysis showed that isolated strains shared 96.1-100% homology with the previously reported CAV strains. Genetic variation analysis showed that most of the isolated CAV strains were located in genotype A. These results indicate that CIA infection in Shandong chickens in recent years has been prevalent and mixed infections are common, but there were no significant genetic variations. Our results extend the understanding of the prevalence and genetic evolution of CIA in Shandong Province. They will offer new references for further study of the epidemiology and virus variation and the prevention and control of this disease.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Yufei Lou
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Peixun Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Tailong Wang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Zehao Lv
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Zhiyun Guo
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Ningwei Geng
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Fanliang Meng
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Sidang Liu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian 271000, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian 271000, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, 61 Daizong Street, Taian 271000, China
| |
Collapse
|
9
|
Wu X, Kong J, Yao Z, Sun H, Liu Y, Wu Z, Liu J, Zhang H, Huang H, Wang J, Chen M, Zeng Y, Huang Y, Chen F, Xie Q, Zhang X. A new rapid and sensitive method for detecting chicken infectious anemia virus. Front Microbiol 2022; 13:994651. [PMID: 36246275 PMCID: PMC9558101 DOI: 10.3389/fmicb.2022.994651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Since the chicken infectious anemia virus (CIAV) was discovered in 1979, which has been reported as an economically significant and immunosuppressive poultry disease in the world. A novel clinical detection method for the prevention and control of CIAV in the poultry sector is urgently needed. Here, we established a real-time recombinase-aided amplification assay (RAA) for CIAV on-site with a rapid, highly sensitive, strongly specific, low-cost, and simple operational molecular diagnosis detection method. The primers and probe were developed using the CIAV VP2 gene sequence, which has a 117-bp specific band. This assay, which could be carried out at 41°C and completed in 30 min without cross-reactivity with other viruses, had the lowest detection limit of 10 copies of CIAV DNA molecules per reaction. Furthermore, the kappa value of this assay was 0.947, the sensitivity was 93.33%, and the specificity was 100% when compared to the real-time quantitative polymerase chain reaction assay (real-time qPCR). These results indicate that using a real-time RAA assay to detect CIAV on-site could be beneficial. In the future, the real-time RAA test may be a regular assay for the prevention and control of CIAV, as well as help the reduction of economic losses in the poultry business.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Hejing Sun
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Yuanjia Liu
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhiqiang Wu
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd, Yunfu, Xinxing, China
| | - Jiajia Liu
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd, Yunfu, Xinxing, China
| | - Hao Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Haohua Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Jin Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Mengjun Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Yichen Zeng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Yinpeng Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- *Correspondence: Qingmei Xie,
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Xinheng Zhang,
| |
Collapse
|
10
|
Wang J, Li Y, Zhang Y, Chen L, Fang L, Chang S, Wang Y, Zhao P. Construction of chicken infectious anemia virus infectious clone and study on its pathogenicity. Front Microbiol 2022; 13:1016784. [PMID: 36212822 PMCID: PMC9539448 DOI: 10.3389/fmicb.2022.1016784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Chicken infectious anemia virus (CIAV) can be transmitted through contaminated live poultry vaccine. However, the pathogenicity of contaminated CIAV strains is rarely reported. Previously, the chickens showed the typical symptoms of anemia after using the attenuated live fowl pox virus (FPV) vaccine. Therefore, exogenous CIAV contamination was suspected. We detected anti-CIAV antibodies in SPF chicks vaccinated with the FPV vaccine. CIAV contamination was confirmed in the FPV vaccine, and the CIAV strain was named JS2020-FPV. This study aims to rescue JS2020-FPV by reverse genetic assays and investigate its pathogenicity. Firstly, double-copies infectious clone of JS2020-FPV was constructed. For the pathogenicity study, infectious clone of JS2020-FPV was used to inoculate 1-day-old SPF chicks. The typical symptoms of anemia were observed in the JS2020-PFV group 14 days post inoculation. The hematocrit and body weight of chicks in the JS2020-PFV group were significantly lower than those in the mock group. Notably, the thymus development index and antibody levels of NDV were lower in chicks in the JS2020-PFV group than those in the mock group. Different degrees of apoptosis of MSB1 and DF-1 were observed after inoculated with the JS2020-FPV VP3 recombinant fusion protein expressed by E. coli system, indicating that VP3 induced apoptosis in the transformed cells. Overall, the pathogenicity of the CIAV detected in the contaminated vaccine was confirmed by inoculating SPF chicks with the double-copies infectious DNA clone in this study. Our findings indicate that the dangers of vaccine contamination cannot be ignored.
Collapse
Affiliation(s)
- Jinjin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yan Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yawen Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Longfei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Lichun Fang
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Yixin Wang, ; Peng Zhao,
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Yixin Wang, ; Peng Zhao,
| |
Collapse
|
11
|
Li Y, Wang J, Chen L, Wang Q, Zhou M, Zhao H, Chi Z, Wang Y, Chang S, Zhao P. Genomic Characterization of CIAV Detected in Contaminated Attenuated NDV Vaccine: Epidemiological Evidence of Source and Vertical Transmission From SPF Chicken Embryos in China. Front Vet Sci 2022; 9:930887. [PMID: 35873689 PMCID: PMC9298830 DOI: 10.3389/fvets.2022.930887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Live attenuated vaccines have been extensively used to prevent infectious disease in poultry flocks. Freedom from exogenous virus is a high priority for any veterinary vaccines. Recently, attenuated Newcastle disease virus (NDV) vaccines were detected to be contaminated with chicken infectious anemia virus (CIAV) in a routine screening for exogenous viruses. To investigate the possible source of the contamination, we conducted virological tests on a specific-pathogen-free (SPF) layer breeder flock that provide the raw materials for vaccines in this manufacturer. Firstly, CIAV antibodies in serum and egg yolks samples of the SPF laying hens were detected by ELISA assays. The results showed that CIAV antibodies in serum and egg yolks were 62% positive and 57% positive, respectively. Then, DNA was extracted from the NDV vaccines and SPF chicken embryonated eggs, and detected by molecular virology assays. The results showed that three assays for pathogens in embryonated eggs had similar positive rates (35.8%). And the sequences of CIAV from SPF embryos and NDV vaccines consisted of 2,298 nucleotides (nt) with 100% homology. The new full-length genome of CIAV was designated SDSPF2020 (Genbank accession number: MW660821). Data showed SDSPF2020 had the sequence similarities of 95.8–99.6% with reference strains, and shared the highest homology with the Chinese strain HLJ15125. These results strongly suggested that exogenous CIAV contamination is most likely caused by wild virus infection in SPF flocks and vertical transmission to chicken embryos. Collectively, this study illustrated that vertical transmission of CIAV from a SPF layer breeder flock to embryos was a non-neglible way for exogenous virus contamination in vaccine production.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jinjin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Longfei Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qun Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Meng Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hui Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zengna Chi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
12
|
Chen L, Su Q, Li Y, Wang J, Zhang Y, Chang S, Wang Y, Zhao P. Genomic Characteristics of a Chicken Infectious Anemia Virus in Contaminated Attenuated Vaccine. Front Vet Sci 2022; 9:925935. [PMID: 35782569 PMCID: PMC9244546 DOI: 10.3389/fvets.2022.925935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Chicken infectious anemia virus (CIAV) can be transmitted by contaminated live vaccines, and causes huge economic losses. This study evaluated the contamination status of CIAV in 24 batches of vaccines by recombinase-aided amplification assay (RAA), fluorescence quantitative PCR and dot blot assay, and then found a contaminated attenuated vaccine. The whole genome of the CIAV contaminant was then sequenced and named JS2020-PFV (Genbank accession number: MW234428, 2296bp). It showed 94.5 to 99.9% identities with reference strains and shared the closest evolution relationship with AB1K strain which was isolated from a chicken farm in Turkey. All of these suggested that the use of CIAV contaminated live vaccine may be one of the reason for its epidemic in poultry.
Collapse
Affiliation(s)
- Longfei Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yan Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Jinjin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
- *Correspondence: Peng Zhao
| |
Collapse
|
13
|
Liu L, Li Y, Yin M, Zhao P, Guo L, Wang Y. Genomic Characterization of Chicken Anemia Virus in Broilers in Shandong Province, China, 2020–2021. Front Vet Sci 2022; 9:816860. [PMID: 35372548 PMCID: PMC8968957 DOI: 10.3389/fvets.2022.816860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chicken infectious anemia (CIA), caused by chicken anemia virus (CAV), is an immunosuppressive disease characterized by growth retardation, aplastic anemia, lymphoid depletion, and immunodepression in young chickens. In this study, 33 CAV strains were isolated from broilers in Shandong Province during 2020–2021. Phylogenetic analysis of full-length genome sequences showed that most CAV strains isolated in this study were scattered across different branches, but mainly clustered in two genotypes, indicating a certain regional characteristic. Analysis of VP1 protein identified several amino acid substitutions which were relevant with the virulence and virus spread efficiency. Interestingly, four putative DNA recombination events were detected in the genomes of novel isolated CAV strains. In summary, this study demonstrated a genomic diversity of CAV in broilers isolated in Shandong Province during 2020–2021, and provided information for the further study of CAV molecular epidemiology and viral evolution.
Collapse
Affiliation(s)
- Ling Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Yuyan Li
- Shandong Yisheng Livestock and Poultry Breeding Co., Ltd., Yantai, China
| | - Mingrong Yin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Longzong Guo
- Shandong Yisheng Livestock and Poultry Breeding Co., Ltd., Yantai, China
- *Correspondence: Longzong Guo
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Yixin Wang
| |
Collapse
|
14
|
Whole genome analysis and molecular characterization of chicken infectious anemia virus from an outbreak in a layer flock reveals circulation of genogroup IIIb in South India. Virus Res 2022; 308:198649. [PMID: 34861312 DOI: 10.1016/j.virusres.2021.198649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The complete genome (2298 nucleotides) of the economically important and immunosuppressive, chicken infectious anemia virus (CAV), from a disease outbreak in a layer flock is discussed. This is the first report of a complete genome sequence of CAV from India. The phylogenetic analyses grouped this isolate with CAV genogroup IIIb based on both complete genome and capsid protein (VP1) sequences. The analyses further revealed the presence of CAV genogroups II, IIIa and IIIb in India. The VP1 sequence identity ranged between 84.4 to 99.3% with that of the Indian isolates and carried a unique substitution at position 447 (serine instead of threonine). Two novel amino acid substitutions were observed at position 52 of VP1 (serine instead of proline) and at position 26 of VP2 (asparagine instead of serine). Sequence analyses of VP1, VP2 and VP3 suggested that the isolate could be attenuated. Comparison with CAV variants, isolated from mammalian species, showed similarities in the numbers of certain transcription factor binding sites in the non-coding regions. Recombination analysis detected no recombination events in this isolate. Further investigations are needed to understand the implications of the unique features of this isolate on viral virulence.
Collapse
|
15
|
Kaffashi A, Mahmoudzadeh M, Ataei Kachooei S. Development of TaqMan Real-Time Polymerase Chain Reaction Assay for Detection of Chicken Anemia Virus in Newcastle Disease Vaccines. ARCHIVES OF RAZI INSTITUTE 2021; 76:421-427. [PMID: 34824735 DOI: 10.22092/ari.2020.342677.1474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/27/2020] [Indexed: 10/14/2022]
Abstract
Exogenous chicken anemia virus (CAV) has been detected in commercial poultry vaccines in various countries of the world. The presence of unwanted CAV in vaccines not only influences the epidemiology of chicken infectious anemia disease, but may also lead to vaccine failure and confusing results when vaccine responses are monitored. To detect CAV in contaminated vaccines, nucleic acid testing (unlike conventional testing) has a shorter processing time and does not require cell culture or live animals. The aim of the current study was to develop a TaqMan real-time polymerase chain reaction (PCR) assay to detect and quantify CAV in poultry vaccines and investigate CAV contamination in Razi live Newcastle disease vaccines. The TaqMan real-time PCR assay was set up, optimized, and validated in successive experiments. A standard plasmid pUC-VP2 containing viral protein 2 of CAV was constructed and used in the assay to generate a standard curve to quantify CAV genomes. A clear linear correlation was observed between threshold cycle (Ct) values and plasmid copy numbers in the amplification plots of 10-fold serial dilution of the plasmid. Total DNA of three samples of each of four different Razi live Newcastle disease vaccines, namely LaSota, B1, clone.12IR, and thermo-resistant strains, were extracted and subjected to real-time PCR assay. No CAV contamination was detected in the Razi Live Newcastle vaccines. The developed TaqMan real-time PCR assay provides a quick, specific, and sensitive method for use in detecting CAV in quality control vaccine testing and viral load studies.
Collapse
Affiliation(s)
- A Kaffashi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - M Mahmoudzadeh
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S Ataei Kachooei
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
16
|
Kannaki TR, Priyanka E, Subbiah M, Haunshi S. Development and validation of high throughput real-time polymerase chain reaction assay for quantitative detection of chicken infectious anemia virus. Virusdisease 2021; 32:343-346. [PMID: 34423101 DOI: 10.1007/s13337-020-00648-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
A real time polymerase chain reaction (real-time PCR) assay was developed to detect and quantify the chicken infectious anemia virus (CIAV). The two sets of primers specific to VP1 region of CIAV were designed and their sensitivity and efficacy were studied. Both the primers designed in this study were highly sensitive and were able to detect upto 0.01 fg/μl or 82 × 102 copy number of plasmid DNA. The efficiency of the real time PCR was 100.9%. The results have also shown that the present qPCR assay is 100 times more sensitive than regular qualitative PCR. Both primer sets were validated using 28 field poultry samples and showed good results. The optimized real-time quantitative PCR will be useful in quick detection of field outbreaks, sub-clinical infection in poultry flocks, virus pathogenesis studies and for detecting vaccine contamination.
Collapse
Affiliation(s)
- T R Kannaki
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500030 India
- Avian Health Lab, ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500030 India
| | - E Priyanka
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500030 India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, Telangana 500 032 India
| | - Santosh Haunshi
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500030 India
| |
Collapse
|
17
|
Molecular evolution and pathogenicity of chicken anemia virus isolates in China. Arch Virol 2021; 166:439-449. [PMID: 33389105 DOI: 10.1007/s00705-020-04909-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
Chicken infectious anemia (CIA), caused by chicken anemia virus (CAV), is an important immunosuppressive disease that seriously threatens the global poultry industry. Here, we isolated and identified 30 new CAV strains from CAV-positive flocks. The VP1 genes of these strains were sequenced and analyzed at the nucleotide and amino acid levels and were found to have very similar nucleotide sequences (> 97% identity); however, they showed 93.9-100.0% sequence identity to the VP1 genes of 55 reference strains. Furthermore, alignment of the deduced amino acid sequences revealed some unique mutations. Phylogenetic analysis indicated the division of VP1 amino acid sequences into two groups (A and B) and four subgroups (A1, A2, A3 and A4). Interestingly, 22 of the newly isolated strains and some Asian reference strains belonged to the A1 group, whereas the remaining eight new isolates belonged to the A3 group. To evaluate the pathogenicity of the epidemic CAV strains from China, the representative strains CAV-JL16/8901 and CAV-HeN19/3001 and the reference strain Cux-1 were selected for animal experiments. Chickens infected with the isolates and reference strain all showed thymus atrophy and bone marrow yellowing. The mortality rates for CAV-JL16/8901, CAV-HeN19/3001, and the reference strain was 30%, 20%, and 0%, respectively, indicating that the epidemic strains pose a more serious threat to chickens. We not only analyzed the molecular evolution of the epidemic strains but also showed for the first time that the epidemic strains in China are more pathogenic than reference strain Cux-1. Effective measures should be established to prevent the spread of CIA in China.
Collapse
|
18
|
Mao Y, Su Q, Li J, Jiang T, Wang Y. Avian leukosis virus contamination in live vaccines: A retrospective investigation in China. Vet Microbiol 2020; 246:108712. [PMID: 32605749 DOI: 10.1016/j.vetmic.2020.108712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Avian leukosis (AL) is one of the most pandemic immunosuppressive diseases and has been widely spread between 2006 and 2009 in China. The contamination of avian leukosis virus (ALV) in attenuated vaccine is considered as one of the possible transmission routes of this disease. Based on a retrospective survey of 918 batches of attenuated vaccine produced before 2010, three of them were identified as ALV-positive and corresponding ALV strains were successfully isolated from a live Fowlpox virus vaccine, a live Newcastle disease virus vaccine and a live Infectious Bursal Disease virus vaccine, respectively, and whole-genome sequencing showed that these three isolates shared the highest homology with ALV-A wild strains isolated in China (97.7%) over the same period, and the phylogenetic analysis based on their gp85 genes further confirmed that they belong to subgroup A. Meanwhile, although these three ALV-A strains isolated from contaminated vaccines shared a close genetic relationship, their U3 region of genome have a relatively low identity, suggesting that these three strains may have different sources. This study reminds us once again that the possibility of ALV infecting chickens through contaminated live vaccines, requiring us to carry out stricter exogenous virus monitoring in vaccines.
Collapse
Affiliation(s)
- Yaqing Mao
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Junping Li
- China Institute of Veterinary Drug Control, Beijing 100081, China.
| | - Taozhen Jiang
- China Institute of Veterinary Drug Control, Beijing 100081, China.
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
19
|
Epidemiology, molecular characterization, and recombination analysis of chicken anemia virus in Guangdong province, China. Arch Virol 2020; 165:1409-1417. [PMID: 32318833 DOI: 10.1007/s00705-020-04604-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/02/2020] [Indexed: 01/25/2023]
Abstract
Chicken anemia virus (CAV) causes severe anemia and immunosuppression in young chickens and a compromised immune response in older birds, resulting in great economic losses to the poultry industry worldwide. Here, we report the molecular epidemiology and characterization of CAV circulating in poultry in Guangdong province, China. Ninety-one of 277 chickens collected from 2016 to 2017 were CAV positive. Full-genome sequencing revealed the presence of eight separate strains. Phylogenetic analysis based on the genome sequences obtained in this study and related sequences available in the GenBank database showed that all of the CAV isolates exhibit a close relationship to each other and belong to the same genotypic group. Putative recombination events were also detected in the genomes of the newly isolated CAVs. Collectively, our findings underscore the importance of CAV surveillance and provide information that will lead to a better understanding of the evolution of CAV.
Collapse
|
20
|
Wang P, Lin L, Shi M, Li H, Gu Z, Li M, Gao Y, Teng H, Mo M, Wei T, Wei P. Vertical transmission of ALV from ALV-J positive parents caused severe immunosuppression and significantly reduced marek's disease vaccine efficacy in three-yellow chickens. Vet Microbiol 2020; 244:108683. [PMID: 32402336 DOI: 10.1016/j.vetmic.2020.108683] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
In order to evaluate the influence of the vertical transmission of avian leukosis virus (ALV) from J subgroup (ALV-J) positive parents on the vaccine efficacy of Marek's disease virus (MDV), ALV-J positive male breeders × female breeders of Three-yellow chickens and the ALV negative male breeder × the negative female breeders were used respectively for crossbreeding to produce eggs and the hatching offspring. The commercial CVI988/Rispens vaccine was used to vaccinate the crossbred offspring at 1-day-old. At 7-days-old, the birds were inoculated with the inactivated oil-emulsion vaccines (OEVs) AIV-H5 monovalent and NDV + AIV-H9 bivalent, respectively. Then the birds were challenged with a Chinese very virulent (vv) MDV field strain GXY2 at 14-day-old. The results showed that the viral load of the challenged GXY2 in the offspring from the ALV-J positive breeders was significantly higher than that from the ALV-negative breeders' (P < 0.05), and the mortality and tumor incidence of offspring from the ALV-J positive breeders were higher than those of the ALV-negative breeders. Also the offspring of the ALV-J positive breeders exhibited a significant negative effect on the development of the immune organs (P < 0.05) and lower antibody responses to the vaccinations with the commercial OEVs (P<0.05). The MD vaccine protective index in the offspring from the ALV-J positive breeders was lower than that from the ALV-negative breeders. The results of the study demonstrated that the vertical transmission of ALV from the ALV-J positive parents caused severe immunosuppression and significantly reduced the Marek's disease vaccine efficacy in Three-yellow chickens.
Collapse
Affiliation(s)
- Peikun Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China; Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276005, China
| | - Lulu Lin
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Haijuan Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhanming Gu
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanli Gao
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Huang Teng
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Meilan Mo
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
21
|
Jamshidian-Mojaver M, Tabatabaeizadeh SE, Naeemipour M, R. Farzin H, R. Bassami M. Use of degenerate oligonucleotide primed polymerase chain reaction for detection of chicken anaemia virus contamination in avian viral vaccines. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For quality control of biologicals of veterinary use, the absence of extraneous agents needs to be certified. One of the requirements for quality control of avian viral vaccines is to demonstrate freedom from extraneous and adventitious pathogenic agents, like chicken anaemia virus (CAV). In this study, a degenerate oligonucleotide primed PCR (DOP-PCR) for the detection of CAV was developed. Degenerate oligonucleotide primers were selected based on sequences corresponding to conserved regions of VP1 gene. After spiking of CAV genomic DNA to an infectious laryngotracheitis virus (ILTV) vaccine, detection limit for the test was 3.056×10-9 ng/µl. To evaluate the performance of the test, 11 avian viral vaccines including infectious bronchitis virus (IBV), newcastle disease virus (NDV), infectious bursal disease virus (IBDV) and ILTV vaccines from 5 manufacturers were screened for CAV and no contamination was detected. The test described here may provide a rapid, sensitive and specific method for contamination detection of avian viral vaccines with CAV, and may be applied for quality control of live and killed commercial vaccines.
Collapse
|
22
|
A New Strategy for the Detection of Chicken Infectious Anemia Virus Contamination in Attenuated Live Vaccine by Droplet Digital PCR. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2750472. [PMID: 31223613 PMCID: PMC6541982 DOI: 10.1155/2019/2750472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/07/2019] [Indexed: 12/19/2022]
Abstract
Chicken infectious anemia virus (CIAV) causes the atrophy of bone marrow hematopoietic and lymphoid tissues in chicks, leading to huge economic losses all over the world. The using of attenuated vaccine contaminated with CIAV increased the mortality and the pathogenicity of other diseases in many farms. However, it is difficult to detect the CIAV contamination by general detection technology due to the extremely low dose of CIAV in vaccines. In this study, we established a new method called droplet digital Polymerase Chain Reaction (ddPCR) to detect CIAV contamination of vaccines more sensitively and accurately. The lowest detection limitation of this method is 2.4 copies of CIAV plasmid or CIAV contamination at 0.1 EID50/1000 feathers in vaccines without any positive signals of other viruses. Besides, the sensitivity of ddPCR is 100 times greater than that of conventional PCR and 10 times greater than that of real-time PCR. The ddPCR technique is more sensitive and more intuitive. Therefore, it could be valuable for the detection of CIAV contamination in vaccines.
Collapse
|
23
|
Su Q, Wang T, Meng F, Cui Z, Chang S, Zhao P. Synergetic pathogenicity of Newcastle disease vaccines LaSota strain and contaminated chicken infectious anemia virus. Poult Sci 2019; 98:1985-1992. [PMID: 30566627 DOI: 10.3382/ps/pey555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV)-attenuated vaccine has been widely used to prevent ND in poultry flocks, while many reports also mentioned the exogenous virus contamination in attenuated vaccines, which might be the reason for the widespread of some contagious diseases. Recently, the chicken infectious anemia virus (CIAV) contamination in the NDV-attenuated vaccine was also found in China, though no systemic study has studied the pathogenicity or infection mechanism of this special transmission route. Accordingly, simulation experiments were launched using CIAV isolated from a contaminated NDV-attenuated vaccine. Results showed that using NDV-attenuated vaccine contaminated with CIAV could cause CIA in chickens with obvious symptoms, including anemia, hemorrhage, lymphoatrophy, and growth retardation, while the synergistic reaction of CIAV and LaSota prompted their multiplication in vivo and disturbed the production of antibodies against each other. And CIAV could significantly reduce the NDV antibody titers and decrease the protective effectiveness. This study showed the synergetic pathogenicity of CIAV and LaSota strain after using contaminated NDV-attenuated vaccine, helping us to understand how the CIAV causes infection and induces severe diseases with a relatively low dose through the mouth, as well as reminding us that the damage of an attenuated vaccine contaminated with CIAV even in extremely low dose is not insignificant.
Collapse
Affiliation(s)
- Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taían, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 271018, Taían, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 271018, Taían, Shandong, China
| | - Tuanjie Wang
- China Institute of Veterinary Drug Control, Beijing, 102629, China
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taían, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 271018, Taían, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 271018, Taían, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taían, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 271018, Taían, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 271018, Taían, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taían, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 271018, Taían, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 271018, Taían, Shandong, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taían, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 271018, Taían, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 271018, Taían, Shandong, China
| |
Collapse
|
24
|
Su Q, Liu X, Li Y, Meng F, Cui Z, Chang S, Zhao P. The intracorporal interaction of fowl adenovirus type 4 and LaSota strain significantly aggravates the pathogenicity of one another after using contaminated Newcastle disease virus-attenuated vaccine. Poult Sci 2019; 98:613-620. [DOI: 10.3382/ps/pey129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
|
25
|
Su Q, Zhang Y, Li Y, Cui Z, Chang S, Zhao P. Epidemiological investigation of the novel genotype avian hepatitis E virus and co-infected immunosuppressive viruses in farms with hepatic rupture haemorrhage syndrome, recently emerged in China. Transbound Emerg Dis 2018; 66:776-784. [PMID: 30484967 DOI: 10.1111/tbed.13082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/24/2018] [Accepted: 11/20/2018] [Indexed: 01/25/2023]
Abstract
Since 2016, hepatic rupture haemorrhage syndrome (HRHS) appeared in chickens of China and caused huge economic loss. To assess the infection status of the avian hepatitis E virus (HEV) and co-infected viruses, including avian leukosis virus (ALV), reticuloendotheliosis virus (REV), fowl adenovirus (FAdV), and chicken infectious anaemia virus (CIAV), in farms with HRHS, 180 liver samples were collected from 24 farms in different provinces and detected by strict molecular virology methods. Results showed that the positive rates of HEV, ALV, REV, FAdV, and CIAV were 74.44%, 20.00%, 27.78%, 31.11%, and 12.22%, respectively, whereas there are also 112 samples with co-infection, for a rate of 58%. Meanwhile, the positive rate of HEV decreased gradually with age; the lowest positive rate of ALV (5.76%) and REV (19.23%) appeared in 25-35 weeks age, during which the positive rate of CIAV was the highest (19.23%); the positive rate of HEV in layers (64.00%) was lower than that of broilers (83.33%), but the positive rates of ALV (38.46%) and CIAV (15.38%) in layers were higher than that of broilers (5.88%, 9.80%); the positive rates of HEV (75.88%) and CIAV (15.60%) in parental generation (PG) were higher than that of commodity generation (CG, 64.10%, 0.00%), whereas the positive rate of ALV showed inverse relationship (PG: 14.89%; CG: 38.46%). Additionally, phylogenetic analysis showed that all the avian HEV identified this study belong to a novel genotype, and found the close relationship between the wild strains (REV and CIAV) and corresponding isolates from contaminated vaccine. The data presented in this report will enhance the current understanding of the epidemiology characteristics in farms with HRHS in China.
Collapse
Affiliation(s)
- Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Yang Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| |
Collapse
|
26
|
Shittu I, Adedeji AJ, Luka PD, Asala OO, Sati NM, Nwagbo IO, Chinyere CN, Arowolo OO, Adole JA, Emennaa P, Abdu PA, Joannis TM. Avian leukosis virus subgroup - J as a contaminant in live commercially available poultry vaccines distributed in Nigeria. Biologicals 2018; 57:29-33. [PMID: 30454953 DOI: 10.1016/j.biologicals.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022] Open
Abstract
Globally, vaccines are used to prevent and control the menace of infectious diseases in livestock with some reported to be inadvertently contaminated with extraneous agents (EAs). With the aim of screening and characterizing for some selected EAs, 44 live viral poultry vaccines were randomly selected based on availability. The vaccines comprised 14 manufacturers in 10 different countries including Nigeria were screened by Polymerase Chain Reaction. In 9% (4/44) of the vaccines, contamination with only avian leukosis virus (ALV) subgroup J (ALV-J) was recorded. Other exogenous ALV subgroups, chicken infectious anemia and infectious laryngotracheitis viruses were absent. The EAs was found in infectious bursal disease (n = 1), Fowlpox (n = 2) and Mareks disease (n = 1) vaccines. Phylogenetic analysis of the ALV-J env gene showed clustering with contemporary group I and II. The result underscores the importance of screening vaccines to avoid the introduction and spread of EAs that could pose a threat to poultry production.
Collapse
Affiliation(s)
- Ismaila Shittu
- National Veterinary Research Institute, PMB 01, Vom, Nigeria.
| | | | - Pam D Luka
- National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | | | - Nancy M Sati
- National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | - Ijeoma O Nwagbo
- National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | | | | | - Jolly A Adole
- National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | | | - Paul A Abdu
- Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Tony M Joannis
- National Veterinary Research Institute, PMB 01, Vom, Nigeria
| |
Collapse
|
27
|
Dong G, Meng F, Zhang Y, Cui Z, Lidan H, Chang S, Zhao P. Development and evaluation of a droplet digital PCR assay for the detection of fowl adenovirus serotypes 4 and 10 in attenuated vaccines. J Virol Methods 2018; 265:59-65. [PMID: 30222990 DOI: 10.1016/j.jviromet.2018.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/12/2018] [Indexed: 01/13/2023]
Abstract
In recent years, there has been an increase in reported cases of fowl adenovirus serotype 4 (FAdV-4) in chickens in China. The use of live attenuated vaccines contaminated with FAdV-4 has been proved to be one of the important causes of massive outbreaks of hydropericardium syndrome. To detect the contamination with FAdV-4 in attenuated vaccines more promptly and accurately, a droplet digital PCR (ddPCR) assay was developed for the rapid detection of FAdV-4 and FAdV-10. The ability of this assay to detect FAdV-4 contamination in attenuated Newcastle disease virus vaccines was assessed in comparison to a quantitative real-time PCR (qPCR) and a conventional PCR assay. The findings indicated that the ddPCR assay could detect FAdV-4 contamination at 0.1 EID50/1,000 feathers, while the qPCR could detect FAdV-4 contamination at 1 EID50/1,000 feathers with identical genomic targets, which was 1,000-fold more sensitive than conventional PCR detection with a sensitivity of 102 EID50/1,000 feathers. The ddPCR assay also showed high specificity for FAdV-4/10 and no positive signals were detected for other FAdVs. Consequently, the intuitive and rapid results were especially suitable for the detection of FAdV-4 contamination in vaccines. In this study, a ddPCR assay was developed to effectively detect and quantify low-dose FAdV-4 contamination, providing a new method for rapid detection of FAdV-4 contamination in various samples, especially vaccines.
Collapse
Affiliation(s)
- Guiwei Dong
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Beijing Dafaun Poultry Breeding Company Ltd., Beijing, China
| | - Yubiao Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Hou Lidan
- China Insititute of Veterinary Drug Control, Beijing, China.
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| |
Collapse
|
28
|
Su Q, Li Y, Zhang Y, Zhang Z, Meng F, Cui Z, Chang S, Zhao P. Newcastle disease virus-attenuated vaccine LaSota played a key role in the pathogenicity of contaminated exogenous virus. Vet Res 2018; 49:80. [PMID: 30081944 PMCID: PMC6080498 DOI: 10.1186/s13567-018-0577-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/26/2018] [Indexed: 12/01/2022] Open
Abstract
Newcastle disease virus (NDV)-attenuated vaccine has been widely used since the 1950s and made great progress in preventing and controlling Newcastle disease. However, many reports mention exogenous virus contamination in attenuated vaccines, while co-contamination with fowl adenovirus (FAdV) and chicken infectious anaemia virus (CIAV) in the NDV-attenuated vaccine also emerged in China recently, which proved to be an important reason for the outbreaks of inclusion body hepatitis–hydropericardium syndrome in some flocks. It is amazing that exogenous virus contamination at extremely low doses still infected chickens and induced severe disease; thus, we speculated that there must be some interaction between the NDV-attenuated vaccine and the contaminated exogenous viruses within. Accordingly, simulation experiments were launched using FAdV and CIAV isolated from the abovementioned vaccine. The results showed that the pathogenicity of FAdV and CIAV co-infection through the contaminated vaccine was significantly higher than that of direct oral infection, while the synergistic reaction of these viruses and LaSota prompted their multiplication in vivo and disturbed the production of antibodies against each other. This study showed the interactions of FAdV, CIAV and LaSota after using contaminated NDV-attenuated vaccine, helping us to understand how the contaminated exogenous viruses cause infection and induce severe disease at a relatively low dose through the oral route.
Collapse
Affiliation(s)
- Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Yang Li
- China Animal Health and Epidemiology Center, 369 Nanjing Street, Qingdao, 266000, Shandong, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Zhihui Zhang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an, 271018, Shandong, China.
| |
Collapse
|
29
|
Su Q, Li Y, Meng F, Cui Z, Chang S, Zhao P. Newcastle disease virus-attenuated vaccine co-contaminated with fowl adenovirus and chicken infectious anemia virus results in inclusion body hepatitis-hydropericardium syndrome in poultry. Vet Microbiol 2018; 218:52-59. [PMID: 29685221 DOI: 10.1016/j.vetmic.2018.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/22/2018] [Accepted: 03/16/2018] [Indexed: 01/24/2023]
Abstract
Inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) induced by fowl adenovirus type 4 (FAdV-4) has caused huge economic losses to the poultry industry of China, but the source of infection for different flocks, especially flocks with high biological safety conditions, has remained unclear. This study tested the pathogenicity of Newcastle disease virus (NDV)-attenuated vaccine from a large-scale poultry farm in China where IBH-HPS had appeared with high mortality. Analysis revealed that the NDV-attenuated vaccine in use from the abovementioned poultry farm was simultaneously contaminated with FAdV-4 and chicken infectious anemia virus (CIAV). The FAdV and CIAV isolated from the vaccine were purified for the artificial preparation of an NDV-attenuated vaccine singly contaminated with FAdV or CIAV, or simultaneously contaminated with both of them. Seven-day-old specific pathogen-free chicks were inoculated with the artificially prepared contaminated vaccines and tested for corresponding indices. The experiments showed that no hydropericardium syndrome (HPS) and corresponding death occurred after administering the NDV-attenuated vaccine singly contaminated with FAdV or CIAV, but a mortality of 75% with IBH-HPS was commonly found in birds after administering the NDV-attenuated vaccine co-contaminated with FAdV and CIAV. In conclusion, this study found the co-contamination of FAdV-4 and CIAV in the same attenuated vaccine and confirmed that such a contaminated attenuated vaccine was a significant source of infection for outbreaks of IBH-HPS in some flocks.
Collapse
Affiliation(s)
- Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Yang Li
- China Animal Health and Epidemiology Center, 369 Nanjing Street, Qingdao, Shandong, 266000, China
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|