1
|
Chen P, Rehman MU, He Y, Li A, Jian F, Zhang L, Huang S. Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function. Vet Q 2025; 45:1-22. [PMID: 39831548 PMCID: PMC11749151 DOI: 10.1080/01652176.2025.2452169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/23/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Coccidiosis is a global disease caused by protozoans, typically including Eimeria spp., which pose a significant threat to the normal growth and development of young animals. Coccidiosis affects mainly the gut, where parasite proliferation occurs. The intestinal barrier, which consists of chemical, mechanical, biological, and immune defences, plays a crucial role in protecting the host against pathogens, xenobiotics, and toxins present in the gastrointestinal tract. When animals ingest sporulated Eimeria spp. oocysts, these parasites primarily reproduce in the intestinal tract, causing damage to the structure and function of the intestine. This disruption of intestinal homeostasis adversely affects animal health. Numerous studies have also revealed that Eimeria-infected animals experience slower bone growth rates, inferior meat quality, reduced egg production and quality, as well as impaired growth and development. Therefore, the purpose of this review is to examine the underlying mechanisms through which Eimeria spp. regulate intestinal damage and disturb the balance of the internal environment. Specifically, this review will focus on their effects on the structural basis of the host intestine's chemical, mechanical, biological and immune barriers. This understanding is crucial for the development of effective drugs to prevent the invasion of Eimeria spp. into the intestine, which is of paramount importance for maintaining host health.
Collapse
Affiliation(s)
- Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department Balochistan, Quetta, Pakistan
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
El-Saadony MT, Salem HM, Attia MM, Yehia N, Abdelkader AH, Mawgod SA, Kamel NM, Alkafaas SS, Alsulami MN, Ahmed AE, Mohammed DM, Saad AM, Mosa WF, Elnesr SS, Farag MR, Alagawany M. Alternatives to antibiotics against coccidiosis for poultry production: the relationship between immunity and coccidiosis management – a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Avian coccidiosis is a protozoan infection caused by numerous Eimeria parasitic species and mainly affects the bird’s gastrointestinal tract and results in a reduction of the bird ‘ability to absorb nutrients, slower growth, with a higher mortality rate. According to recent research, immune-based treatments, such as dietary immunomodulating feed additives and recombinant vaccines, can help the hosts protect themselves from intracellular parasites and reduce inflammatory reactions caused by parasites. Coccidiosis control in the post-antiparasitic stage requires thoroughly investigation of the intricate relationships between the parasites, host defense system, enteroendocrine system, and gut microbiome contributing to coccidian infections. To produce a vaccine, it is crucial to explore the defense mechanism of the intestine’s immune machinery and to identify many effector molecules that act against intracellular parasites. Due to the massive usage of chemical anticoccidial drugs, coccidiosis developed resistant against most commonly used anticoccidials; therefore, numerous researches focused on the usage of safe natural anticoccidials such as probiotics, prebiotics, organic acids, and essential oils to counteract such resistance problem. This review describes how host immunity responds to coccidial infection in chickens and the use of some nonantiparasitic safe natural alternative controls to counter the disease. It would throw the light on the possibility of developing effective therapies against Eimeria to alleviate the detrimental effects of avian coccidiosis.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo, 11829 , Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute, Agriculture Research Center , Dokki, Giza, 12618 , Egypt
| | - Ahmed H. Abdelkader
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Sara Abdel Mawgod
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Nesma Mohamed Kamel
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry , Department of Chemistry, Faculty of Science, Tanta University , , Egypt
| | - Muslimah N. Alsulami
- Department of Biology, College of Science , University of Jeddah , Jeddah , , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science , King Khalid University , Abha , , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture , Fayoum University , Fayoum , Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| |
Collapse
|
3
|
Sosinski O, Pruszynska-Oszmalek E, Leciejewska N, Sassek M, Kolodziejski PA. LEAP2 in Physiology-A Narrative Review. Int J Mol Sci 2025; 26:377. [PMID: 39796232 PMCID: PMC11722547 DOI: 10.3390/ijms26010377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Liver Enriched Antimicrobial Peptide 2 (LEAP2) is a fascinating peptide that has gained significant attention since its discovery in 2003. Initially identified as an antimicrobial peptide, LEAP2 has more recently been found to play a key role in the regulation of energy metabolism. One of the most notable functions of LEAP2 is its interaction with the ghrelin hormone, which is known for stimulating hunger. LEAP2 acts as an inhibitor of ghrelin, thereby reducing food intake and influencing energy balance. The physiological roles of LEAP2 extend beyond appetite suppression. Studies have shown that LEAP2 has an impact on insulin secretion, suggesting its potential involvement in glucose metabolism and possibly insulin sensitivity, which is crucial in managing conditions like type 2 diabetes. Moreover, LEAP2 levels appear to fluctuate based on factors such as gender, developmental stage, and even interventions like bariatric surgery, which is known for its role in managing obesity and diabetes. Given these findings, LEAP2 shows potential as a therapeutic target, particularly for addressing obesity and metabolic diseases such as type 2 diabetes. Its ability to influence food intake and energy balance makes it a promising candidate for further research into therapies aimed at weight regulation and glycemic control. In the future, LEAP2 could become an important agent in the development of treatments aimed at curbing obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
| | - Ewa Pruszynska-Oszmalek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35 Street, 60-637 Poznan, Poland; (O.S.); (N.L.); (M.S.)
| | | | | | - Pawel Antoni Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35 Street, 60-637 Poznan, Poland; (O.S.); (N.L.); (M.S.)
| |
Collapse
|
4
|
Froebel LE, Calik A, Emami NK, Blue CEC, Dalloul RA. Evaluating performance, intestinal lesions, and immunity related genes in heritage and modern broiler breeds during a necrotic enteritis challenge. Poult Sci 2024; 103:104339. [PMID: 39366291 PMCID: PMC11489053 DOI: 10.1016/j.psj.2024.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024] Open
Abstract
In this comparative study, the differential responses of heritage (ACRB; Athens Canadian Random Bred) and modern (Cobb) broilers to a necrotic enteritis (NE) challenge were evaluated. The design was a 2×2 factorial with breed (ACRB and Cobb) and challenge (non-challenged and NE-challenged) as main factors. On day (d) of hatch, 96 male chicks (48 ACRB and 48 Cobb) were allocated to 4 experimental groups with 8 replicate cages and 3 birds/cage. On d 14, birds in the NE-challenged groups were orally gavaged with 3,000 Eimeria maxima sporulated oocysts followed by 2 doses of ∼1×108 CFU of Clostridium perfringens on d 19 and 20. On d 21, 2 birds/cage were necropsied to score NE lesions, and spleen and cecal tonsils (CT) samples were collected from 1 bird/cage for assessing mRNA abundance. Challenged ACRB birds exhibited reduced growth performance and relative growth performance compared to challenged Cobb birds. There was no significant interaction between breed and challenge during the challenge period (d 14-21) for mortality. However, there was a challenge main effect (P ≤ 0.05) on mortality as manifested by greater NE-associated mortality compared to non-challenged birds. No significant breed × challenge interaction or breed main effect on lesion scores were observed in the duodenum, jejunum, and ileum. NE-challenged Cobb birds exhibited greater mRNA abundance of IL-18, TNFα, TLR1.2, TLR2.1, CCR5, CCR6, CCL20, and AvBD1 in CT compared to NE challenged ACRB birds. There was a significant breed × challenge interaction effect on mRNA abundance of IL-10, AvBD13, NK-Lysin, and LEAP2 in the spleen. Moreover, a main effect of breed was observed in IL-1β, IL-18, TNFα, TLR2.1, CCR5, CCL20, and NK-Lysin where ACRB birds had higher mRNA abundance than Cobb birds (P ≤ 0.05). The observed differences in performance, pathology, and mRNA abundance between ACRB and Cobb broilers during the NE challenge highlight the distinct immune response profiles of heritage and modern breeds, emphasizing the need for breed-specific nutritional, managerial, and genetic selection programs for modulating immune responses during enteric disease challenges.
Collapse
Affiliation(s)
- Laney E Froebel
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ali Calik
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | - Nima K Emami
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Candice E C Blue
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Choi J, Lee J, Kim WK. Alterations in the gut microbiota of Eimeria infected broiler chickens fed diets supplemented with varying levels of dietary calcium and phosphorus, along with 25-hydroxycholecalciferol. Poult Sci 2024; 103:104223. [PMID: 39216268 PMCID: PMC11402547 DOI: 10.1016/j.psj.2024.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The purpose of the study was to investigate the effects of the reduced dietary calcium (Ca) and phosphorus (P) level and supplementation of 25-hydroxycholecalciferol (25-OHD3) on the expression of vitamin D receptor (VDR) and antimicrobial peptides and gut microbiota of broiler chickens with/without Eimeria challenge. A total of 576 fourteen-day-old broiler chicks were randomly allocated according to a 2 × 2 × 2 factorial design with main effects including Eimeria challenging (125,000 Eimeria acervulina, 25,000 Eimeria maxima, and 25,000 Eimeria tenella), dietary Ca and P levels (0.84% Ca and 0.42% available P or 0.64% Ca and 0.22% available P), and supplementation of 25-OHD3 (3,000 IU/kg) of 6 replicates. Three-way ANOVA was performed, and the effects of 3 main factors and their interactions were investigated. The reduced dietary Ca and P level downregulated cathelicidins 3 (CATH3) in the upper jejunum in the Eimeria challenging condition (interaction; P < 0.05). The reduced dietary Ca and P level decreased the relative mRNA expression of jejunal avian beta defensin 5 (AvBD5) in the Eimeria challenging condition (interaction; P < 0.05). The reduced dietary Ca and P level tended to decrease the relative mRNA expression of jejunal AvBD9 in the Eimeria challenging condition (interaction; P = 0.051). The reduced dietary Ca and P level decreased observed features (alpha diversity parameter for richness) in the upper jejunal microbiota in the Eimeria challenging condition (interaction; P < 0.05). The supplementation of 25-OHD3 decreased the relative abundance of the phylum Bacteroidetes (P < 0.05) and increased the relative abundance of the family Ruminococcaceae (P < 0.05) in the cecal digesta. The supplementation of 25-OHD3 decreased the serum endotoxin level in the Eimeria challenging condition (interaction; P < 0.05). Therefore, the reduced dietary Ca and P level modulated the upper jejunal microbiota via modulating the expression of antimicrobial peptides, and the supplementation of 25-OHD3 favorably modulated the cecal microbiota in broiler chickens with/without Eimeria challenge.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Shu X, Chen Z, Zheng X, Hua G, Zhuang W, Zhang J, Chen J. Quail GHRL and LEAP2 gene cloning, polymorphism detection, phylogenetic analysis, tissue expression profiling and its association analysis with feed intake. Gene 2024; 918:148479. [PMID: 38636815 DOI: 10.1016/j.gene.2024.148479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The GHRL, LEAP2, and GHSR system have recently been identified as important regulators of feed intake in mammals and chickens. However, the complete cloning of the quail GHRL (qGHRL) and quail LEAP2 (qLEAP2) genes, as well as their association with feed intake, remains unclear. This study cloned the entire qGHRL and qLEAP2 cDNA sequence in Chinese yellow quail (Coturnix japonica), including the 5' and 3' untranslated regions. Sanger sequencing analysis revealed no missense mutations in the coding region of qGHRL and qLEAP2. Subsequently, phylogenetic analysis and protein homology alignment were conducted on the qGHRL and qLEAP2 in major poultry species. The findings of this research indicated that the qGHRL and qLEAP2 sequences exhibit a high degree of similarity with those of chicken and turkey. Specifically, the N-terminal 6 amino acids of GHRL mature peptides and all the mature peptide sequence of LEAP2 exhibited consistent patterns across all species examined. The analysis of tissue gene expression profiles indicated that qGHRL was primarily expressed in the proventriculus and brain tissue, whereas qLEAP2 exhibited higher expression levels in the intestinal tissue, kidney, and liver tissue, differing slightly from previous studies conducted on chicken. It is necessary to investigate the significance of elevated expression of qGHRL in brain and qLEAP2 in kidney in the future. Further research has shown that the expression of qLEAP2 can quickly respond to changes in different energy states, whereas qGHRL does not exhibit the same capability. Overall, this study successfully cloned the complete cDNA sequences of qGHRL and qLEAP2, and conducted a comprehensive examination of their tissue expression profiles and gene expression levels in the main expressing organs across different energy states. Our current findings suggested that qLEAP2 is highly expressed in the liver, intestine, and kidney, and its expression level is regulated by feed intake.
Collapse
Affiliation(s)
- Xin Shu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China.
| |
Collapse
|
7
|
Jebessa E, Bello SF, Xu Y, Cai B, Tuli MD, Girma M, Bordbar F, Hanotte O, Nie Q. Comprehensive analysis of differentially expressed mRNA profiles in chicken jejunum and cecum following Eimeria maxima infection. Poult Sci 2024; 103:103716. [PMID: 38703453 PMCID: PMC11087723 DOI: 10.1016/j.psj.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidiosis, a protozoan disease that substantially impacts poultry production, is characterized by an intracellular parasite. The study utilized 48 one-day-old Horro chickens, randomly divided into the infected (I) and control (C) groups. The challenge group of chickens were administered Eimeria maxima oocysts via oral gavage at 21-days-old, and each chicken received 2 mL containing 7×104 sporulated oocysts. The total RNAs of chicken jejunum and cecum tissues were isolated from three samples, each from I and C groups. Our study aimed to understand the host immune-parasite interactions and compare immune response mRNA profiles in chicken jejunum and cecum tissues at 4 and 7 days postinfection with Eimeria maxima. The results showed that 823 up- and 737 down-regulated differentially expressed mRNAs (DEmRNAs) in jejunum at 4 d infection and control (J4I vs. J4C), and 710 up- and 368 down-regulated DEmRNAs in jejunum at 7 days infection and control (J7I vs. J7C) were identified. In addition, DEmRNAs in cecum tissue, 1424 up- and 1930 down-regulated genes in cecum at 4 days infection and control (C4I vs. C4C), and 77 up- and 191 down-regulated genes in cecum at 7 days infection and control (C7I vs. C7C) were detected. The crucial DEmRNAs, including SLC7A5, IL1R2, GLDC, ITGB6, ADAMTS4, IL1RAP, TNFRSF11B, IMPG2, WNT9A, and FOXF1, played pivotal roles in the immune response during Eimeria maxima infection of chicken jejunum. In addition, the potential detection of FSTL3, RBP7, CCL20, DPP4, PRKG2, TFPI2, and CDKN1A in the cecum during the host immune response against Eimeria maxima infection is particularly noteworthy. Furthermore, our functional enrichment analysis revealed the primary involvement of DEmRNAs in small molecule metabolic process, immune response function, inflammatory response, and toll-like receptor 10 signaling pathway in the jejunum at 4 and 7 days postinfection. Similarly, in the cecum, DEmRNAs at 4 and 7 days postinfection were enriched in processes related to oxidative stress response and immune responses. Our findings provide new insights and contribute significantly to the field of poultry production and parasitology.
Collapse
Affiliation(s)
- Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China; LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Merga Daba Tuli
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Mekonnen Girma
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Farhad Bordbar
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Olivier Hanotte
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
8
|
Wang S, Wang D, Bai Y, Zheng G, Han Y, Wang L, Hu J, Zhu H, Bai Y. Expression of Toll-like receptors and host defence peptides in the cecum of chicken challenged with Eimeria tenella. Parasite Immunol 2024; 46:e13022. [PMID: 38384176 DOI: 10.1111/pim.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.
Collapse
Affiliation(s)
- Song Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Danni Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yilin Bai
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Guijie Zheng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yanhui Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
9
|
Mahmoud MM, Al-Hejin AM, Abujamel TS, Ghetas AM, Yacoub HA. Chicken β-defensin-1 peptide as a candidate anticoccidial agent in broiler chickens. Anim Biotechnol 2023; 34:3108-3125. [PMID: 36309816 DOI: 10.1080/10495398.2022.2136677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The current study aimed to investigate the potentiality of using avian β-defensin-1 peptide as a candidate agent against coccidiosis infection in broiler chicken.We employed an in-silico analysis to study the primary structure of β-defensin-1 peptide as well as its 3-D and molecular dynamic structures. This will also enable obtaining adequate information about the mode of action of these peptides and the intra-cellular transduction pathways. The results revealed no significant difference among groups of broiler chicken in terms of body weight before the Eimeria challenge.The results of our study indicated a significant reduction in oocyst count in birds administered β-defensin-1 peptide treatment, vis-a-vis healthy birds. The treated group showed a 2-3 times reduction in oocyst count, compared to the positive control group. The Eimeria oocysts count evaluated for birds administered with β-defensin-1 after the Eimeria challenge showed a significant difference. The study indicated significant reduction and down-regulation in the level of expression of β-defensin 1 and 4 in the control and treatment groups.This electrostatic profile and hydrophobicity regulate the functioning of this peptide. The results may help in the development of novel approaches that could be used as alternatives or adjunct to the existing means of coccidiosis control in broilers.
Collapse
Affiliation(s)
- Maged M Mahmoud
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research institute, National Research Centre, Cairo, Egypt
| | - Ahmed M Al-Hejin
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Aly M Ghetas
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Haitham A Yacoub
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
10
|
Munoz LR, Krehling JT, Bailey MA, Bourassa DV, Pacheco WJ, Chaves-Cordoba B, Escobar C, Orellana-Galindo L, Adhikari Y, Macklin KS. The Role of Dietary Supplementation of Yeast Cell Walls in Response to a Campylobacter jejuni Inoculation in Broiler Chickens. Avian Dis 2023; 67:245-253. [PMID: 39126411 DOI: 10.1637/aviandiseases-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2024]
Abstract
Controlling Campylobacter jejuni during broiler production is a topic of interest from a public health standpoint, as colonized birds can contaminate poultry products during processing and sicken humans if not properly cooked or handled before consumption. The aim of this study was to evaluate dietary yeast cell wall (YCW) as a potential alternative to antibiotic growth promoters with or without a C. jejuni challenge. A total of 2240 day-old Ross 708 males were randomly assigned within 8 experimental groups with a 4 × 2 factorial design, with 4 diets (negative control [CTL-], positive control [CTL+, bacitracin, 50 g/ ton], YCW constant dose [400 g/ton], and YCW step-down dose [SD, 800, 400, and 200 g/ton in the starter, grower, and finisher periods, respectively]) and with or without a Day-16 C. jejuni oral gavage challenge at a 103-colony-forming-units (CFU)/ml dose. Body weights and feed consumption were measured on Days 0, 14, 28, and 41 to determine broiler performance. Ileum tissue samples were collected from 24 birds per treatment on Days 17 and 24 (1 and 8 days postinoculation [PI]) for relative gene expression (RGE) analysis. Cecal content samples were collected from 24 birds per treatment on Days 24, 34, and 42 for C. jejuni enumeration and prevalence calculation. A total of 80 birds per treatment were processed to determine carcass yield on Day 44, and on Day 45, 16 carcass rinsates per treatment were collected for C. jejuni enumeration and prevalence calculation. The interaction between diet and inoculation did not influence growth performance (P > 0.05). However, a diet effect was observed in the starter period where birds fed SD diet had a lower feed conversion ratio than birds fed CTL- diet (P = 0.0165). Additionally, the treatment of birds inoculated with C. jejuni fed with SD had a trend to a lower feed conversion ratio during the grower period (P = 0.0550). The RGE of interleukin 1β and interleukin 10 was similar in all treatments 1 and 8 days PI. The RGE of avian beta defensin 10 was similar in all treatments on Day 1 PI, but different on Day 8 PI (P = 0.0476). All birds inoculated with C. jejuni had similar CFU per milliliter counts in the cecal contents at Days 24, 34, and 42 (P > 0.05), and all birds inoculated with phosphate-buffered saline were negative for C. jejuni after prevalence testing. After processing 1) carcass yield was similar in all treatments (P > 0.05); 2) C. jejuni-inoculated birds fed CTL- had lower CFU per milliliter counts than birds provided CTL+ and constant-dose diets (P = 0.0383); and 3) all birds inoculated with PBS were negative for Campylobacter. Overall, under the conditions of this study, the addition of YCW during a C. jejuni challenge did not have an impact on growth performance, innate immune response, cecal colonization, carcass yield, or carcass colonization after processing.
Collapse
Affiliation(s)
- Luis R Munoz
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - James T Krehling
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | | | - Wilmer J Pacheco
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | | | - Cesar Escobar
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | | | - Yagya Adhikari
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Ken S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762,
| |
Collapse
|
11
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
12
|
Munoz LR, Bailey MA, Krehling JT, Bourassa DV, Hauck R, Pacheco WJ, Chaves-Cordoba B, Chasteen KS, Talorico AA, Escobar C, Pietruska A, Macklin KS. Effects of dietary yeast cell wall supplementation on growth performance, intestinal Campylobacter jejuni colonization, innate immune response, villus height, crypt depth, and slaughter characteristics of broiler chickens inoculated with Campylobacter jejuni at d 21. Poult Sci 2023; 102:102609. [PMID: 36963334 PMCID: PMC10060741 DOI: 10.1016/j.psj.2023.102609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
A study was conducted to assess the effects of a dietary yeast cell wall (YCW) with and without a Campylobacter jejuni (CJ) challenge. A total of 2,240-day-old Ross 708 males were randomly assigned within 8 treatments with a 4 × 2 factorial design, with 4 diets (negative control, positive control, YCW constant dose (400 g/ton), and YCW step-down dose (800/400/200 g/ton in the starter/grower/finisher diets, respectively) and with and without d 21 CJ oral gavage challenge at 5.2 × 107 CFU/mL. At d 0, 14, 28, and 41 body weights and feed consumption were measured to determine performance. At d 14, 28, and 42, 8 jejunal and ileal histology samples per treatment were collected for villi morphology measurements. At d 22 and 28 (1- and 7-days postinoculation), 24 ileal tissue samples per treatment were collected for relative gene expression analysis. At d 42, 24 cecal content samples per treatment were collected for CJ enumeration. Finally, on d 44, 96 birds per treatment were processed to determine carcass yield and 16 carcass rinses per treatment were collected to determine CJ prevalence after processing. Diet or inoculation did not impact broiler performance (P > 0.05). Limited differences were observed in intestinal morphology, and villus height and crypt depth were different only in the ileum at d 42 (P = 0.0280 and P = 0.0162, respectively). At d 1 postinoculation, differences between treatments inoculated with CJ and PBS were observed in the expression of avian beta defensin 10 (AvBD10), interleukin 1ß (IL-1ß), and interleukin 10 (IL-10) (P < 0.05). At d 7 postinoculation, expression of AvBD10, IL-1ß, and IL-10 was similar among all treatments (P > 0.05). At d 42, all birds, regardless the inoculation, had similar levels of CJ recovered from cecal contents (P > 0.05). After processing, carcass yield and CJ prevalence postchilling was similar in all treatments (P > 0.05). Overall, under the conditions of this study, the addition of YCW during a CJ challenge did not have an impact in growth performance, innate immune response, cecal colonization, carcass yield, or CJ prevalence after processing.
Collapse
Affiliation(s)
- Luis R Munoz
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - James T Krehling
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Dianna V Bourassa
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Wilmer J Pacheco
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | | | - Kaicie S Chasteen
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Aidan A Talorico
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Cesar Escobar
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Andrea Pietruska
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Ken S Macklin
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
13
|
Temporal changes of genes associated with intestinal homeostasis in broiler chickens following a single infection with Eimeria acervulina. Poult Sci 2023; 102:102537. [PMID: 36867919 PMCID: PMC10011500 DOI: 10.1016/j.psj.2023.102537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Infection with the protozoan parasite Eimeria can cause the economically devastating disease coccidiosis, which is characterized by gross tissue damage and inflammation resulting in blunted villi and altered intestinal homeostasis. Male broiler chickens at 21 d of age were given a single challenge with Eimeria acervulina. Temporal changes in intestinal morphology and gene expression were investigated at 0, 3, 5, 7, 10, and 14 d postinfection (dpi). There were increased crypt depths for chickens infected with E. acervulina starting at 3 dpi and continuing to 14 dpi. At 5 and 7 dpi, infected chickens had decreased Mucin2 (Muc2), and Avian beta defensin (AvBD) 6 mRNA at 5 and 7 dpi and decreased AvBD10 mRNA at 7 dpi compared to uninfected chickens. Liver-enriched antimicrobial peptide 2 (LEAP2) mRNA was decreased at 3, 5, 7, and 14 dpi compared to uninfected chickens. After 7 dpi, there was increased Collagen 3a1 and Notch 1 mRNA compared to uninfected chickens. Marker of proliferation Ki67 mRNA was increased in infected chickens from 3 to 10 dpi. In addition, the presence of E. acervulina was visualized by in situ hybridization (ISH) with an E. acervulina sporozoite surface antigen (Ea-SAG) probe. In E. acervulina infected chickens, Ea-SAG mRNA was only detectable on 5 and 7 dpi by both ISH and qPCR. To further investigate the site of E. acervulina infection, Ea-SAG and Muc2 probes were examined on serial sections. The Muc2 ISH signal was decreased in regions where the Ea-SAG ISH signal was present, suggesting that the decrease in Muc2 by qPCR may be caused by the loss of Muc2 in the localized regions where the E. acervulina had invaded the tissue. Eimeria acervulina appears to manipulate host cells by decreasing their defensive capabilities and thereby allows the infection to propagate freely. Following infection, the intestinal cells upregulate genes that may support regeneration of damaged intestinal tissue.
Collapse
|
14
|
Palamidi I, Paraskeuas VV, Mountzouris KC. Dietary and phytogenic inclusion effects on the broiler chicken cecal ecosystem. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1094314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dietary modulation in broilers is crucial for the establishment of beneficial microbiota and, subsequently, the promotion of intestinal health. In this trial, a 2 × 2 factorial design was used with two different specifications with respect to dietary metabolizable energy (ME) and crude protein (CP) levels (i.e., 95% and 100% of recommendations) and phytogenic levels (0 and 150 mg/kg). Levels of total bacteria, Bacteroides spp., Lactobacillus spp., and Clostridium cluster XIVa attached to the cecal mucosa and in the cecal digesta were lower in broilers fed the 95% ME and CP specification diets, as was the molar ratio of butyric acid. In addition, the relative activity of autoinducers-2 (AI-2) and the expression levels of TLR4 and AvBD6 were increased. Phytogenic supplementation reduced cecal digesta levels of Escherichia coli and Clostridium cluster I levels, and increased Clostridium cluster IV levels. Moreover, the butyric acid molar ratio and the relative activity of AI-2 were increased, whereas the concentration of branched VFAs and the expression of AvBD6 and LEAP2 were reduced by phytogenic administration. Dietary specifications and phytogenic interactions were shown for the cecal-attached microbiota composition, metabolic activity of digesta microbiota, relative expression of autoinducers-2, and relative expression of toll-like signaling molecules and host antimicrobial peptides. In conclusion, it has been shown that ME and CP dietary specifications, combined or not with phytogenics, modulate multilevel gut biomarkers ranging from microbiota composition and metabolic activity to microbial communications and host signaling, inflammation, and defense.
Collapse
|
15
|
Chicken LEAP2 Level Substantially Changes with Feed Intake and May Be Regulated by CDX4 in Small Intestine. Animals (Basel) 2022; 12:ani12243496. [PMID: 36552416 PMCID: PMC9774203 DOI: 10.3390/ani12243496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ghrelin O-acyltransferase (GOAT), ghrelin, and GHSR have been reported to play important roles that influence feed intake in mammals. LEAP2, an endogenous antagonist of GHSR, plays an important role in the regulation of feed intake. However, chicken ghrelin has also been reported to have an inhibitory effect on feed intake. The role of the GOAT-Ghrelin-GHSR-LEAP2 axis in chicken-feed intake remains unclear. Therefore, it is necessary to systematically evaluate the changes in the tissue expression levels of these genes under different energy states. In this study, broiler chicks in different energy states were subjected to starvation and feeding, and relevant gene expression levels were measured using quantitative real-time PCR. Different energy states significantly modulated the expression levels of LEAP2 and GHSR but did not significantly affect the expression levels of GOAT and ghrelin. A high expression level of LEAP2 was detected in the liver and the whole small intestine. Compared to the fed group, the fasted chicks showed significantly reduced LEAP2 expression levels in the liver and the small intestine; 2 h after being refed, the LEAP2 expression of the fasted chicks returned to the level of the fed group. Transcription factor prediction and results of a dual luciferase assay indicated that the transcription factor CDX4 binds to the LEAP2 promoter region and positively regulates its expression. High expression levels of GHSR were detected in the hypothalamus and pituitary. Moreover, we detected GHSR highly expressed in the jejunum-this finding has not been previously reported. Thus, GHSR may regulate intestinal motility, and this aspect needs further investigation. In conclusion, this study revealed the function of chicken LEAP2 as a potential feed-intake regulator and identified the potential mechanism governing its intestine-specific expression. Our study lays the foundations for future studies on avian feed-intake regulation.
Collapse
|
16
|
Interactions of Microbiota and Mucosal Immunity in the Ceca of Broiler Chickens Infected with Eimeria tenella. Vaccines (Basel) 2022; 10:vaccines10111941. [PMID: 36423036 PMCID: PMC9693493 DOI: 10.3390/vaccines10111941] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of the study was to investigate the effects of Eimeria tenella infection on the cecal microbiome, the protein concentration of cecal content, cecal mucosal immunity, and serum endotoxin levels in broilers. Three hundred sixty 14-day-old broilers were allocated to five infection doses with six replicates. The five infection doses were: ID0: 0, ID1: 6250, ID2: 12,500, ID3: 25,000, and ID4: 50,000 Eimeria tenella oocysts. Eimeria tenella infection significantly increased the relative abundance of the phylum Proteobacteria, which includes diverse pathogenic bacteria, and significantly decreased the relative abundance of the phylum Firmicutes. Protein concentration of the cecal content was linearly increased (p < 0.05), and the concentration of secretory immunoglobulin A (sIgA) in the cecal content was linearly decreased by Eimeria tenella infection (p < 0.05). Goblet cell density was linearly reduced in the ceca by Eimeria tenella infection (p < 0.05). Eimeria tenella infection tended to linearly decrease the relative mRNA expression of antimicrobial peptide genes such as avian beta-defensin 9 (AvBD9; p = 0.10) and liver-expressed antimicrobial peptide 2 (LEAP2; p = 0.08) in the cecal tissue. Therefore, Eimeria tenella infection negatively modulated cecal microbiota via impairing cecal mucosal immunity and increasing protein concentration in the cecal content in broilers.
Collapse
|
17
|
Fu Y, Zhang S, Zhao N, Xing L, Li T, Liu X, Bao J, Li J. Effect of mild intermittent cold stimulation on thymus immune function in broilers. Poult Sci 2022; 101:102073. [PMID: 36058173 PMCID: PMC9450148 DOI: 10.1016/j.psj.2022.102073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
This study aims to assess the effect of intermittent and mild cold stimulation (IMCS) on thymus function and the ability of 1-day-old male Ross 308 broilers to withstand cold. Four hundred broilers were reared under normal and mild cold temperatures at 3°C below the normal feeding temperature and were subjected to acute cold stress (ACS) at 10°C on d 50 at 7 am for 6 h, 12 h, and 24 h. We determined the expression levels of toll-like receptors (TLRs), cytokines and avian β-defencins (AvBDs), encoding genes in thymus of broilers at 22, 36, 43, and 50 d of age, and the serum ACTH and cortisol (CORT) levels at 50 d of age. At D22 and D36, the mRNA expression levels of TLRs and AvBDs genes in CS groups were generally significantly decreased (P < 0.05). The lowest expression levels were found in birds submitted to intermittent and mild cold stimulation training for 5 h (CS5 group) on d 22 and 36 of development (P < 0.05). At D43 and D49 after IMCS, mRNA expression levels of most TLRs and AvBDs were significantly lower than those in CC group (P < 0.05), and that mRNA expression levels of all TLRs and most AvBDs in CS5 group had the same change trend with age as those in CC group (P > 0.05). At D22 and D36, mRNA expression levels of different cytokines in each CS groups were different (P < 0.05). mRNA expression levels of IL-2, IL-4, IL-6, IL-8, IL-17, and IFN-α all reached the highest values in the CS5 group at D36 (P < 0.05). The levels of ACTH and CORT in all IMCS-treated birds changed in varying degrees after ACS, but there was no significant change in CS5 group (P > 0.05). Collectively, different cold stimulation schemes could modulate thymus immune function of broilers by maintaining homeostasis and enhancing cold resistance. In particular, the optimal cold adaptation scheme was at 3°C below the conventional feeding temperature for 5 h.
Collapse
|
18
|
Gloanec N, Dory D, Quesne S, Béven V, Poezevara T, Keita A, Chemaly M, Guyard-Nicodème M. Impact of DNA Prime/Protein Boost Vaccination against Campylobacter jejuni on Immune Responses and Gut Microbiota in Chickens. Vaccines (Basel) 2022; 10:vaccines10060981. [PMID: 35746589 PMCID: PMC9231206 DOI: 10.3390/vaccines10060981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/15/2023] Open
Abstract
Campylobacteriosis is reported to be the leading zoonosis in Europe, and poultry is the main reservoir of Campylobacter. Despite all the efforts made, there is still no efficient vaccine to fight this bacterium directly in poultry. Recent studies have reported interactions between the chicken immune system and gut microbiota in response to Campylobacter colonisation. The present study was designed to analyse in more depth the immune responses and caecal microbiota following vaccination with a DNA prime/protein boost flagellin-based vaccine that induces some protection in specific-pathogen-free White Leghorn chickens, as shown previously. These data may help to improve future vaccination protocols against Campylobacter in poultry. Here a vaccinated and a placebo group were challenged by C. jejuni at the age of 19 days. A partial reduction in Campylobacter loads was observed in the vaccinated group. This was accompanied by the production of specific systemic and mucosal antibodies. Transient relatively higher levels of Interleukin-10 and antimicrobial peptide avian β-defensin 10 gene expressions were observed in the vaccinated and placebo groups respectively. The analysis of caecal microbiota revealed the vaccination's impact on its structure and composition. Specifically, levels of operational taxonomic units classified as Ruminococcaceae and Bacillaceae increased on day 40.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
- UFR of Life Sciences Environment, University of Rennes 1, 35700 Rennes, France
| | - Daniel Dory
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
- Correspondence: ; Tel.: +33-(0)2-96-31-64-42
| | - Ségolène Quesne
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Véronique Béven
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
| | - Typhaine Poezevara
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Alassane Keita
- SELEAC–Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Marianne Chemaly
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Muriel Guyard-Nicodème
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| |
Collapse
|
19
|
Abstract
Clostridium perfringens, a prevalent Gram-positive bacterium, causes necrotic diseases associated with abundant life loss and economic burdens of billions of USD. The mechanism of C. perfringens-induced necrotic diseases remains largely unknown, in part, because of the lack of effective animal models and the presence of a large array of exotoxins and diverse disease manifestations from the skin and deep tissues to the gastrointestinal tract. In the light of the advancement of medical and veterinary research, a large body of knowledge is accumulating on the factors influencing C. perfringens-induced necrotic disease onset, development, and outcomes. Here, we present an overview of the key virulence factors of C. perfringens exotoxins. Subsequently, we focus on comprehensively reviewing C. perfringens-induced necrotic diseases such as myonecrosis, acute watery diarrhea, enteritis necroticans, preterm infant necrotizing enterocolitis, and chicken necrotic enteritis. We then review the current understanding on the mechanisms of myonecrosis and enteritis in relation to the immune system and intestinal microbiome. Based on these discussions, we then review current preventions and treatments of the necrotic diseases and propose potential new intervention options. The purpose of this review is to provide an updated and comprehensive knowledge on the role of the host–microbe interaction to develop new interventions against C. perfringens-induced necrotic diseases.
Collapse
|
20
|
Santos CE, de Oliveira Peixoto J, Fernandes LT, Marcelino DEP, Kawski VL, Neis FT, Ledur MC, Ibelli AMG. Upregulated genes in articular cartilage may help to counteract femoral head separation in broilers with 21 days of age. Res Vet Sci 2022; 147:92-95. [DOI: 10.1016/j.rvsc.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
|
21
|
Coccidiosis: Recent Progress in Host Immunity and Alternatives to Antibiotic Strategies. Vaccines (Basel) 2022; 10:vaccines10020215. [PMID: 35214673 PMCID: PMC8879868 DOI: 10.3390/vaccines10020215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Coccidiosis is an avian intestinal disease caused by several distinct species of Eimeria parasites that damage the host’s intestinal system, resulting in poor nutrition absorption, reduced growth, and often death. Increasing evidence from recent studies indicates that immune-based strategies such as the use of recombinant vaccines and various dietary immunomodulating feed additives can improve host defense against intracellular parasitism and reduce intestinal damage due to inflammatory responses induced by parasites. Therefore, a comprehensive understanding of the complex interactions between the host immune system, gut microbiota, enteroendocrine system, and parasites that contribute to the outcome of coccidiosis is necessary to develop logical strategies to control coccidiosis in the post-antibiotic era. Most important for vaccine development is the need to understand the protective role of the local intestinal immune response and the identification of various effector molecules which mediate anti-coccidial activity against intracellular parasites. This review summarizes the current understanding of the host immune response to coccidiosis in poultry and discusses various non-antibiotic strategies which are being developed for coccidiosis control. A better understanding of the basic immunobiology of pertinent host–parasite interactions in avian coccidiosis will facilitate the development of effective anti-Eimeria strategies to mitigate the negative effects of coccidiosis.
Collapse
|
22
|
Saidi A, Gaboriaud P, Lalmanach AC, Vanderlynden L, Fessard A, Vettori P, Fort G, Guabiraba R, Schouler C, Laurent F, Guitton E, Lecaille F, Bussière FI, Lalmanach G. Upregulation of gut cathepsin L during Eimeria tenella infection. Res Vet Sci 2021; 140:109-116. [PMID: 34419895 DOI: 10.1016/j.rvsc.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Coccidiosis is a disease caused by Eimeria, which represents the first parasitic disease in poultry farming. Among them, E. tenella is a virulent species which specifically colonizes the caecum. The inflammatory response to infection is associated to numerous host proteases including cysteine cathepsins that can be deleterious for tissue and innate immunity integrity. Here, germ-free and conventional chickens were used as models to find out whether the microbiota could modify the intestinal expression of host cysteine cathepsins during coccidiosis. The basal caecal peptidase activity primarily relies on host proteases rather than proteases from the commensal flora. While mRNA levels of E. tenella cathepsins B and L remained unchanged in germ-free and conventional broilers, an overall increase in endopeptidase activity of cysteine cathepsins was found in E. tenella-infected caeca in both experimental models (P < 0.005). A significant decrease in avian cystatin C transcription was also observed in infected conventional, but not in infected germ-free broilers. Despite an unchanged mRNA level of avian cathepsin L (CatL), its protein expression raised following infection, in parallel with an increased transcription of antimicrobial β-defensins (AvBD1, AvBD2, AvBD4, AvBD6, and AvBD7). Taken together, data support that host CatL is post-translationally upregulated during E. tenella infection, and thus may be involved in the alteration of the gut proteolytic balance. Furthermore, CatL may participate to inflammation occurring during coccidiosis through its known ability to proteolytically inactivates up-regulated avian β-defensins that are key molecules of innate immunity.
Collapse
Affiliation(s)
- Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France.
| | - Pauline Gaboriaud
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | - Lise Vanderlynden
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Aurélie Fessard
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Pauline Vettori
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Geneviève Fort
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Rodrigo Guabiraba
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Catherine Schouler
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Fabrice Laurent
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Edouard Guitton
- INRAE, UE Plate-forme d'Infectiologie Expérimentale, F-37380 Nouzilly, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Françoise I Bussière
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| |
Collapse
|
23
|
Hansen VL, Kahl S, Proszkowiec-Weglarz M, Jiménez SC, Vaessen SFC, Schreier LL, Jenkins MC, Russell B, Miska KB. The effects of tributyrin supplementation on weight gain and intestinal gene expression in broiler chickens during Eimeria maxima-induced coccidiosis. Poult Sci 2021; 100:100984. [PMID: 33652244 PMCID: PMC7921011 DOI: 10.1016/j.psj.2021.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
Butyrate is a feed additive that has been shown to have antibacterial properties and improve gut health in broilers. Here, we examined the performance and gene expression changes in the ileum of tributyrin–supplemented broilers infected with coccidia. Ninety-six, Ross 708 broilers were fed either a control corn–soybean–based diet (−BE) or a diet supplemented with 0.25% (w/w) tributyrin (+BE). Birds were further divided into groups that were inoculated with Eimeria maxima oocysts (EM) or sham-inoculated (C) on day 21 posthatch. At 7 d postinfection (7 d PI), the peak of pathology in E. maxima infection, tributyrin-supplemented birds had significantly improved feed conversion ratios (FCR, P < 0.05) and body weight gain (BWG, P < 0.05) compared with -BE-infected birds, despite both groups having similar feed intake (FI, P > 0.05). However, at 10 d post-infection (10 d PI) no significant effects of feed type or infection were observed. Gene expression in the ileum was examined for insights into possible effects of infection and tributyrin supplementation on genes encoding proteins related to immunity, digestion, and gut barrier integrity. Among immune-related genes examined, IL-1B and LEAP2 were only significantly affected at 7 d PI. Transcription of genes related to digestion (APN, MCT1, FABP2, and MUC2) were primarily influenced by infection at 7 d PI and tributyrin supplementation (FABP2 and MUC2) at 10 d PI. With exception of ZO1, tight junction genes were affected by either infection or feed type at 7 d PI. At 10 d PI, only CLDN1 was not affected by either infection or feed type. Overall tributyrin shows promise as a supplement to improve performance during coccidiosis in broiler chickens; however, its effect on gene expression and mode of action requires further research.
Collapse
Affiliation(s)
- Victoria L Hansen
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Stephanie C Jiménez
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | | | - Lori L Schreier
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Mark C Jenkins
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Beverly Russell
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
24
|
Fries-Craft KA, Meyer MM, Lindblom SC, Kerr BJ, Bobeck EA. Lipid Source and Peroxidation Status Alter Immune Cell Recruitment in Broiler Chicken Ileum. J Nutr 2020; 151:223-234. [PMID: 33296473 PMCID: PMC7779234 DOI: 10.1093/jn/nxaa356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Restaurant oil in poultry diets increases energy content, reduces production costs, and promotes sustainability within the food supply chain. However, variable oil composition and heating temperatures among restaurant oil sources can impact broiler chicken health due to heat-induced lipid modifications. OBJECTIVES A 21-d experiment was conducted to evaluate ileal morphology, liver cytokine gene expression, and ileal immune cell populations in broilers fed control or peroxidized lipids with varying chain and saturation characteristics. METHODS Day-old broilers were housed in battery cages (5 birds per cage) and fed diets containing 5% control or peroxidized oils. Eight diets were randomly assigned in a 4 × 2 factorial arrangement consisting of oil source (palm, soybean, flaxseed, or fish) and peroxidation status (control or peroxidized). At day 21, samples were collected for ileal histomorphology [villus height (VH), crypt depth (CrD), and the VH:CrD ratio], and liver cytokine expression (qPCR). Ileum cytokine expression and T-cell markers were analyzed by RNAscope in situ hybridization (ISH). Data were analyzed as a mixed model (SAS 9.4) with fixed effects of lipid source, peroxidation, and lipid × peroxidation interaction. RESULTS CD3+ T-cells in the ileum decreased 16.2% due to peroxidation (P = 0.001) with 30.3% reductions observed in birds fed peroxidized flaxseed oil (P = 0.01). Peroxidation increased IL6+ and IL1B+ cells by 62.0% and 40.3%, respectively (P = 0.01). Soybean oil increased IFNG+ cells by 55.1% compared with palm oil, regardless of peroxidation status (P = 0.007). Lipid source and peroxidation did not alter ileal histomorphology or liver cytokine expression. CONCLUSIONS Lipid peroxidation increased ileal IL1B and IL6 in broiler chickens, whereas soybean oil diets increased IFNG. Generally, peroxidation decreased overall CD3+ T-cell populations, suggesting impaired T-cell presence or recruitment. These results identify potential immunomodulatory lipid profiles in restaurant oil while supporting RNAscope-ISH as a method to describe avian tissue-level immune responses.
Collapse
Affiliation(s)
| | - Meaghan M Meyer
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Brian J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA, USA
| | | |
Collapse
|
25
|
Mtshali SA, Adeleke MA. A review of adaptive immune responses to Eimeria tenella and Eimeria maxima challenge in chickens. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1833693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. A. Mtshali
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - M. A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| |
Collapse
|
26
|
Effects of Toll-like Receptor Ligands on the Expression of Proinflammatory Cytokines and Avian β-defensins in Cultured Chick Intestine. J Poult Sci 2020; 57:210-222. [PMID: 32733155 PMCID: PMC7387943 DOI: 10.2141/jpsa.0190086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Few studies have focused on the regulation of cytokine and avian β-defensin (AvBDs) expression for promoting immune defense in the avian intestine. The aim of this study was to investigate the effects of different Toll-like receptor (TLR) ligands (bacterial patterns) on the expression of proinflammatory cytokines (IL-1β and IL-6) and AvBDs (AvBD1, AvBD4, and AvBD7) in the chick intestine. The ileum and cecum of 3-day-old chicks were collected and examined histologically to identity the cells present in the intestinal mucosa. Other tissues were cultured with or without the TLR2, TLR4, and TLR21 ligands—Pam3CSK4, LPS, and CpG-ODN—for 1 or 3 h. The gene expression profiles of proinflammatory cytokines and AvBDs were determined in these tissues using real-time polymerase chain reaction (PCR). The mucosa of the ileum and cecum contained leukocytes, luminal and crypt epithelial cells, and other enterocytes. Pam3CSK4 tended to downregulate the expression of IL-1β, AvBD1, and AvBD7 in the ileum but upregulated their expression in the cecum. LPS downregulated the expression of IL-1β and IL-6 in both the ileum and the cecum, whereas it upregulated the expression of AvBD1, AvBD4, and AvBD7 in the cecum. CpG-ODN upregulated the expression of IL-6 and AvBD7 in the ileum and IL-1β in the cecum, and downregulated the expression of IL-1β and AvBDs in the ileum. We suggested that the expression levels of proinflammatory cytokines and AvBDs in the chick intestine are affected by TLR2, TLR4, and TLR21 ligands. Thus, these innate immune factors may be modulated by the luminal microbe complex in the intestine.
Collapse
|
27
|
Garcia JS, Byrd JA, Wong EA. Tissue-, age- and dose-dependent changes in avian β-defensin and LEAP2 mRNA abundance in the intestines of Salmonella Typhimurium challenged broilers. Anim Biotechnol 2020; 32:637-645. [PMID: 32186462 DOI: 10.1080/10495398.2020.1738449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Salmonella is a pathogen normally found in the gastrointestinal tract of poultry. The objective of this study was to determine changes in avian β-defensin (AvBD) and liver-enriched antimicrobial peptide 2 (LEAP2) mRNA following Salmonella challenge. Day of hatch chicks were challenged with 106, 107 or 108 colony-forming units (cfu) of Salmonella typhimurium. There were dose-, tissue- and age-specific changes in AvBD and LEAP2 mRNA. At 1-day post-infection (dpi) there was a transient upregulation of AvBD1, 8, 10 and 12 mRNA in the 108 cfu group. At 5 dpi, all seven AvBD mRNA were downregulated in the ileum, while only AvBD1, 6, 10 and 11 mRNA were downregulated in the jejunum and AvBD6, 8, 10, 12 and 13 were downregulated in the cecum. At 7 dpi, there was downregulation of all seven AvBD mRNA in the duodenum and downregulation of selected AvBD in the jejunum, ileum and cecum. LEAP2 mRNA was downregulated at all doses of Salmonella in the cecum at 1 dpi and in the ileum at 5 dpi. In summary, Salmonella infection caused an initial upregulation followed by a downregulation of AvBD mRNA.
Collapse
Affiliation(s)
- Javier S Garcia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Eric A Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
28
|
Gupta A, Lee MS, Gupta K, Kumar V, Reddy S. A Review of Antithrombotic Treatment in Critical Limb Ischemia After Endovascular Intervention. Cardiol Ther 2019; 8:193-209. [PMID: 31630320 PMCID: PMC6828854 DOI: 10.1007/s40119-019-00153-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Endovascular intervention is often used to treat critical limb ischemia (CLI). Post-intervention treatment with antiplatelet and/or anticoagulant therapy has reduced morbidity and mortality due to cardiovascular complications. The purpose of this review is to shed light on the various pharmacologic treatment protocols for treating CLI following endovascular procedures. We reviewed the literature comparing outcomes after antithrombotic treatment for patients with CLI. We characterized antithrombotic therapies into three categories: (1) mono-antiplatelet therapy (MAPT) vs. dual antiplatelet therapy (DAPT), (2) MAPT vs. antiplatelet (AP) + anticoagulant (AC) therapy, and (3) AC vs. AP + AC therapy. Relevant results and statistics were extracted to determine differences in the rates of the following outcomes: (1) re-stenosis, (2) occlusion, (3) target limb revascularization (TLR), (4) major amputation, (5) major adverse cardiac events, (6) all-cause death, and (7) bleeding. Studies suggest that DAPT reduces post-surgical restenosis, TLR, and amputation for diabetic patients, without increasing major bleeding incidences, compared to MAPT. Also, AP + AC therapy provides overall superior efficacy, with no difference in bleeding incidences, compared to antiplatelet alone. Additionally, the effects were significant for restenosis, limb salvage, survival rates, and cumulative rate of above ankle amputation or death. These results suggest that treatment with DAPT and AP + AC might provide better outcomes than MAPT following the endovascular intervention for CLI, and that the ideal treatment may be related to the condition of the individual patient. However, the studies were few and heterogenous with small patient populations. Therefore, further large controlled studies are warranted to confirm these outcomes.
Collapse
Affiliation(s)
- Amol Gupta
- Heart, Vascular & Leg Center, Bakersfield, CA, USA.
| | - Michael S Lee
- Division of Cardiology, UCLA Medical Center, Los Angeles, CA, USA
| | - Kush Gupta
- Kasturba Medical College, Mangalore, India
| | - Vinod Kumar
- Heart, Vascular & Leg Center, Bakersfield, CA, USA
| | - Sarath Reddy
- Division of Cardiology, The Brooklyn Hospital Center, Brooklyn, NY, USA
| |
Collapse
|
29
|
Su S, Miska K, Fetterer R, Jenkins M, Lamont S, Wong E. Differential expression of intestinal nutrient transporters and host defense peptides in Eimeria maxima-infected Fayoumi and Ross chickens. Poult Sci 2018; 97:4392-4400. [DOI: 10.3382/ps/pey286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
|
30
|
Garcia JS, Byrd JA, Wong EA. Expression of nutrient transporters and host defense peptides in Campylobacter challenged broilers. Poult Sci 2018; 97:3671-3680. [PMID: 29931274 DOI: 10.3382/ps/pey228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Campylobacter is a bacterium that colonizes the lower gastrointestinal tract of poultry and may influence the intestinal environment to promote its survival. The objective of this study was to characterize the effects of Campylobacter challenge on the mRNA abundance of nutrient transporters and host defense peptides (HDP), such as the avian β-defensins (AvBD) and liver expressed antimicrobial peptide 2 (LEAP2). On the day of hatch, broiler chicks were challenged with one of three (106, 107, 108 colony-forming units, cfu) levels of Campylobacter jejuni. Quantitative PCR analysis revealed that there were dose-, tissue-, and age-specific changes in gene expression for both nutrient transporters and HDP. Expression of zinc transporter 1 (ZnT1) mRNA increased on d 7 in the duodenum, ileum, and cecum of birds challenged with 106 cfu of C. jejuni. At d 14, there was upregulation of the amino acid transporter bo,+AT mRNA in the duodenum, jejunum, and ileum of birds challenged with 106 cfu of C. jejuni. Other transporters such as EAAT3, GLUT2, SGLT1, and ZnT1 showed upregulation of mRNA in the ileum of the 106 cfu challenged group. There was a delayed response of the HDP to the C. jejuni challenge, with only a few HDP changed at d 7 but all HDP changed at d 14. At d 7, there was upregulation of AvBD10 mRNA in the duodenum of the 106 cfu challenged group but downregulation of AvBD10 in the ileum and AvBD12 and LEAP2 in the cecum of the 108 cfu challenged group. At d 14, there was upregulation of AvBD1, AvBD6, AvBD8, AvBD10, AvBD11, AvBD12, and AvBD13 mRNA in the ileum and cecum of the 106 cfu challenged group but not the 107 and 108 cfu challenged groups compared to control. These results indicated that at a low dose (106 cfu) of C. jejuni, intestinal cells increased nutrient transporter and AvBD mRNA abundance to try to counter the infection, but that at higher doses the cellular response was suppressed.
Collapse
Affiliation(s)
- J S Garcia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061
| | - J A Byrd
- USDA-ARS, Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, College Station, TX 77845
| | - E A Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061
| |
Collapse
|
31
|
Bar Shira E, Friedman A. Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS One 2018; 13:e0200393. [PMID: 29979771 PMCID: PMC6034880 DOI: 10.1371/journal.pone.0200393] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Intestinal epithelial cells are multi-tasked cells that participate in digestion and absorption as well as in protection of the digestive tract. While information on the physiology and immune functions of intestinal epithelial cells in mammals is abundant, little is known of their immune function in birds and other species. Our main objectives were to study the development of anti-bacterial innate immune functions in the rapidly developing gut of the pre- and post-hatch chick and to determine the functional diversity of epithelial cells. After establishing primary intestinal epithelial cell cultures, we demonstrated their capacity to uptake and process bacteria. The response to bacterial products, LPS and LTA, induced expression of pro-inflammatory cytokine genes (IL-6, IL-18) as well as the expression of the acute phase proteins avidin, lysozyme and the secretory component derived from the polymeric immunoglobulin receptor. These proteins were then localized in gut sections, and the goblet cell was shown to store avidin, lysozyme as well as secretory component. Lysozyme staining was also located in a novel rod-shaped intestinal cell, situated at different loci along the villus, thus deviating from the classical Paneth cell in the mammal, that is restricted to crypts. Thus, in the chicken, the intestinal epithelium, and particularly goblet cells, are committed to innate immune protection. The unique role of the goblet cell in chicken intestinal immunity, as well as the unique distribution of lysozyme-positive cells highlight alternative solutions of gut protection in the bird.
Collapse
Affiliation(s)
- Enav Bar Shira
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aharon Friedman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| |
Collapse
|
32
|
Changes in the Expression of Avian β-defensins (AvBDs) and Proinflammatory Cytokines and Localization of AvBD2 in the Intestine of Broiler Embryos and Chicks during Growth. J Poult Sci 2018; 55:280-287. [PMID: 32055187 PMCID: PMC6756410 DOI: 10.2141/jpsa.0180022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to determine the changes in the expression of avian β-defensins (AvBDs) and proinflammatory cytokines and localization of AvBD2 in the intestine of broiler embryos and chicks during growth. The ileum and cecum of embryonic day 19 (ED19) and of day-old (D0) and 7-day-old (D7) chicks were collected. Gene expression levels of 10 AvBDs (AvBD1-8, 10, and 12) and proinflammatory cytokines (IL-1β, -6, and -8) were analyzed using real-time PCR, and the localization of AvBD2 was examined by immunohistochemistry. Gene expression levels of AvBD1, 2, 6, and 7 in the ileum and of AvBD1 and 4 in the cecum were higher on ED19 than on D7. The expression of AvBD10 in the ileum was higher on D0 than on ED19, whereas the expression levels of AvBD8 and 10 in the cecum were higher on D0 than on ED19, and that of AvBD10 decreased on D7. The expression levels of IL-1β, -6, and -8 in the ileum were higher on D7 than on ED19. The expression levels of IL-1β, -6, and -8 in the cecum were higher on D0 than on ED19, and that of IL-1β and -6 declined on D7. AvBD2-positive cells were localized in the lamina propria beneath epithelial cells of villi and crypts. The number of positive cells in the cecum mucosa was greater on D0 than on ED19 and D7. In conclusion, we suggest that AvBDs are expressed in the ileum and cecum of embryos and chicks at high levels before or just after hatching and decrease by D7. The expression of proinflammatory cytokines in the ileum increases with growth until D7, but is the highest in the cecum around hatching. These AvBDs and proinflammatory cytokines may play roles in host defense in the intestinal mucosa of embryos and neonatal chicks.
Collapse
|
33
|
Rengaraj D, Truong AD, Lillehoj HS, Han JY, Hong YH. Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018. [PMID: 29531188 PMCID: PMC6127573 DOI: 10.5713/ajas.17.0836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1–AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. Methods We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. Results Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. Conclusion Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|