1
|
Wang X, Zhang T, Li W, Wang H, Yan L, Zhang X, Zhao L, Wang N, Zhang B. Arginine alleviates Clostridium perfringens α toxin-induced intestinal injury in vivo and in vitro via the SLC38A9/mTORC1 pathway. Front Immunol 2024; 15:1357072. [PMID: 38638435 PMCID: PMC11024335 DOI: 10.3389/fimmu.2024.1357072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1β, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-β (TGF-β), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Tong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Heliang Wang
- Qingdao Sino-science Gene Technology Co., Ltd, Qingdao, China
| | - Lei Yan
- Shandong New Hope Liuhe Group, Qingdao, China
| | - Xiaowen Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lianwen Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nianxue Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Lu P, Morawong T, Molee A, Molee W. L-arginine alters myogenic genes expression but does not affect breast muscle characteristics by in ovo feeding technique in slow-growing chickens. Front Vet Sci 2022; 9:1030873. [PMID: 36590799 PMCID: PMC9794582 DOI: 10.3389/fvets.2022.1030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
In ovo feeding (IOF) of nutrients is a viable method for increasing muscle mass through hyperplasia and hypertrophy. The objective of this study was to evaluate the effects of IOF of L-arginine (Arg) on breast muscle weight, muscle morphology, amino acid profile, and gene expression of muscle development in slow-growing chickens. Four hundred eighty fertilized eggs were randomly divided into two groups: the first group was the non-injected control group, and the second group was the Arg group, injected with 1% Arg (0.5 mL) into the amnion on day 18 of incubation. After hatching, 160 birds from each group were randomly divided into four replicates of 40 birds each. This experiment lasted for 63 days. The results showed that IOF of Arg did not affect (P > 0.05) breast muscle weight, muscle morphology, and mRNA expression of mammalian target of rapamycin (mTOR) signaling pathway in slow-growing chickens. However, the amino acid profile of breast muscle was altered (P < 0.05) on the day of hatching (DOH), day 21 (D21), and day 42 (D42) post-hatch, respectively. Myogenic factor 5 (Myf5) mRNA expression was upregulated (P < 0.05) on D21 post-hatch. Myogenic regulator 4 (MRF4) mRNA expression was increased (P < 0.05) on DOH. And myogenin (MyoG) was increased (P < 0.05) on DOH and D21 post-hatch, in the Arg group compared to the control group. Overall, IOF of 1% Arg improved the expression of myogenic genes but did not influence muscle morphology and BMW. These results indicate that in ovo Arg dosage (0.5 mL/egg) has no adverse effect on breast muscle development of slow-growing chickens.
Collapse
|
3
|
Assessing effects of guar gum viscosity on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Int J Biol Macromol 2022; 222:1037-1047. [PMID: 36181882 DOI: 10.1016/j.ijbiomac.2022.09.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022]
Abstract
A 56-day feeding trial was conducted to assess the effects of different viscous guar gum on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Four practical diets with 42.5 % crude protein and 13.7 % crude lipid were formulated to contain 8 % cellulose and three different viscosities (2500, 5200, and 6000 mPa·s) of guar gum. Dietary guar gum inhibits fish growth and feed utilization, decreases the α-diversity of the intestinal flora, and negatively alters the intestinal flora structure and metabolite composition. High viscous guar gum down-regulated the intestinal tight junction, anti-inflammatory, and anti-apoptotic related gene's expression, decreased digesta butyrate/histamine ratio; and increased the abundance of Plesiomonas shigelloides. These results suggest that dietary guar gum adversely affects intestinal health by disrupting intestinal flora structure and metabolite composition, and that viscosity should be considered when using guar gum as a binder in aquafeeds.
Collapse
|
4
|
Scanes CG. Avian Physiology: Are Birds Simply Feathered Mammals? Front Physiol 2020; 11:542466. [PMID: 33240094 PMCID: PMC7680802 DOI: 10.3389/fphys.2020.542466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
There are marked differences between the physiology of birds and mammals. These reflect the evolutionary distance between the two classes with the last common ancestor estimated as existing 318 million years ago. There are analogous organ systems in birds and mammals. However, marked differences exist. For instance, in the avian gastro-intestinal tract, there is a crop at the lower end of the esophagus. This functions both to store feed and for microbial action. The avian immune system lacks lymph nodes and has a distinct organ producing B-lymphocytes, namely the bursa Fabricius. The important of spleen has been largely dismissed until recently. However, its importance in both innate and specific immunity is increasingly recognized. There is a major difference between birds and mammals is the female reproductive system as birds produce large yolk filled eggs. The precursors of the yolk are synthesized by the liver. Another difference is that there is a single ovary and oviduct in birds.
Collapse
Affiliation(s)
- Colin G. Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
5
|
Ruan D, Fouad AM, Fan QL, Huo XH, Kuang ZX, Wang H, Guo CY, Deng YF, Zhang C, Zhang JH, Jiang SQ. Dietary L-arginine supplementation enhances growth performance, intestinal antioxidative capacity, immunity and modulates gut microbiota in yellow-feathered chickens. Poult Sci 2020; 99:6935-6945. [PMID: 33248609 PMCID: PMC7705054 DOI: 10.1016/j.psj.2020.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
This study investigated the effects of dietary Arginine (Arg) on performance, intestinal antioxidative capacity, immunity, and gut microbiota in Chinese yellow-feathered chickens. One thousand two hundred 1-day-old female Qingyuan partridge chickens were randomly assigned to 5 groups with 6 replicates of 40 birds each. Chickens were fed diets with 5 levels of total Arg (8.5, 9.7, 10.9, 12.1, and 13.3 g/kg) without antibiotics for 30 d. The ADFI, ADG, and feed conversion ratio were improved with dietary Arg levels (P < 0.05). The proportions of CD3+ and CD4+/CD8+ lymphocytes responded in a linear (P < 0.05) manner and those of CD4+ in a linear or quadratic (P < 0.05) manner as dietary Arg levels increased. Dietary Arg level had a linear (P < 0.05) or quadratic (P < 0.05) effect on the gene expression of glutathione peroxidase 1, heme oxygenase 1, nuclear factor erythroid 2-related factor 2, and the activities of glutathione peroxidase and total antioxidative capacity in the jejunum and ileum. The relative expression of IL-1β, myeloid differentiation primary response 88, and Toll-like receptor 4 decreased linearly (P < 0.05) in the ileum with increasing dietary Arg levels; secretory IgA contents were increased. In addition, sequencing data of 16S rRNA indicated that dietary Arg increased the relative abundance of Firmicutes phylum, Romboutsia and Candidatus Arthromitus genera, while decreased that of Clostridium sensu stricto 1. A diet containing 12.1 g Arg/kg promoted growth performance, intestinal antioxidation, and innate immunity and modulated gut microbiota in yellow-feathered chickens.
Collapse
Affiliation(s)
- D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - A M Fouad
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Q L Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - X H Huo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Z X Kuang
- Guangdong Aijiankang Biotechnology Co., Ltd., Qingyuan 511500, China
| | - H Wang
- Guangdong Aijiankang Biotechnology Co., Ltd., Qingyuan 511500, China
| | - C Y Guo
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - Y F Deng
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - C Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - J H Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - S Q Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
6
|
Chen MJ, Fu Z, Jiang SG, Wang XQ, Yan HC, Gao CQ. Targeted disruption of TORC1 retards young squab growth by inhibiting the synthesis of crop milk protein in breeding pigeon (Columba livia). Poult Sci 2020; 99:416-422. [PMID: 32416826 PMCID: PMC7587900 DOI: 10.3382/ps/pez513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to explore the regulatory role of the target of rapamycin complex 1 (TORC1) signaling pathway in crop milk synthesis in breeding pigeons (Columba livia). Three groups of breeding pigeons in the lactation period (n = 30 pairs/group) were respectively injected with rapamycin (RAPA, a specific inhibitor of the target of rapamycin complex) at doses of 0 (vehicle, control), 0.6, or 1.2 mg/kg body weight (BW)/day via the wing vein for 7 days. The average daily feed intake (ADFI) and BW of the breeding pigeons and the BW of young squabs were respectively recorded throughout the experimental period. The breeding pigeons were sacrificed to collect their crop tissues, crop milk, and serum on the eighth day of the experiment. The results showed that neither 0.6 nor 1.2 mg/kg BW RAPA injection affected BW loss or ADFI in breeding pigeons (P > 0.05), while crop thickness and crop relative weight were significantly decreased (P < 0.05) in the 1.2 mg/kg BW rapamycin-injected group. Simultaneously, RAPA (especially at 1.2 mg/kg BW) decreased the crude protein, αs1-casein, αs2-casein, β-casein, and amino acid contents (Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Tyr, Lys, His, Arg, and Pro) of crop milk (P < 0.05) and the concentrations of albumin, total protein, and uric acid in the serum of breeding pigeons (P < 0.05). Additionally, the expression of TORC1 pathway-related proteins (TORC1, S6K1, S6, 4EBP1, and eIF4E) was downregulated in the crop tissues of breeding pigeons by 0.6 or 1.2 mg/kg BW/day RAPA injection (P < 0.05). Accordingly, the average daily gain (ADG) of young squabs declined, and the mortality rate increased significantly (P < 0.05). Together, the results showed that RAPA reduced protein and amino acid levels in the crop milk of breeding pigeons and retarded young squab growth, suggesting a crucial role of TORC1 in crop milk synthesis in breeding pigeons.
Collapse
Affiliation(s)
- M J Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Z Fu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - S G Jiang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - X Q Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - H C Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - C Q Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
7
|
Li LL, Zhang NN, Gong YJ, Zhou MY, Zhan HQ, Zou XT. Effects of dietary Mn-methionine supplementation on the egg quality of laying hens. Poult Sci 2018; 97:247-254. [PMID: 29077932 DOI: 10.3382/ps/pex301] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/20/2017] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate the effects of dietary manganese-methionine (Mn-Met) supplementation on the egg quality of laying hens. A total of 480 Jinghong-1 strain layers aged 53 wk were divided into 5 groups with 6 replicates of 16 layers. Birds in the control group were fed a diet supplemented with 60 mg Mn/kg in the form of MnSO4; the birds in other 4 experimental groups were fed a diet supplemented with 20, 40, 60, and 80 mg Mn/kg as Mn-Met, respectively. Dietary Mn-Met treatments significantly affected (P < 0.05) the albumen height, yolk color, and Haugh unit compared to those of the control diet. The Mn contents in the eggshell increased (P < 0.01) significantly by increasing the Mn-Met supplementation, whereas Mn content in eggshell was triple that in the yolk or albumen. Compared with the 60 mg/kg Mn-Met group, the transverse surface in the control group had (P < 0.01) a greater width of mammillary cones, and there were obvious cracks on the outer surface in the control. There was no difference (P > 0.05) in the eggshell gland (ESG) in the expression of calbindin-D28k (CaBP-D28k) mRNA in response to any diet treatment. In conclusion, dietary Mn-Met supplementation increased internal egg quality and the ultrastructure of the eggshell. Compared to the control, 60 mg/kg Mn-Met treatment resulted in improving egg quality, and 20 mg/kg Mn-Met treatment had similar effects the control treatment had on the egg quality. This indicates that the inorganic Mn can be replaced by the lower concentration of Mn-Met.
Collapse
Affiliation(s)
- L L Li
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - N N Zhang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - Y J Gong
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - M Y Zhou
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - H Q Zhan
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - X T Zou
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|