1
|
Kurokawa A, Yamamoto Y. Immunohistochemical identification of immune cell subsets in formalin- and zinc-fixed, paraffin-embedded tissues from chicken and duck using commercial antibodies. Vet Immunol Immunopathol 2025; 281:110898. [PMID: 39938274 DOI: 10.1016/j.vetimm.2025.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Immunohistochemical identification of immune cells in poultry has primarily been performed using frozen tissues, with limited identification in paraffin-embedded tissues. In this study, the following 18 commercially available primary antibodies associated with immune cell phenotypes were tested: anti-CD3, CD4 (clone CT-4 and 2-35), TCRγδ, TCRαVβ1, TCRαVβ2, CD8, BAFF-R, PAX5, Bu-1a/b, Iba-1, MRC1L-B, CSF-1R, TIM4, MHC class II (clone 2D5 and 21-1A6), MUM1, and CD45 antibodies in formalin-fixed, paraffin-embedded (FFPE) and zinc-fixed, paraffin-embedded (ZFPE) chicken and duck lymphoid tissues. In chickens, 11 antibodies in FFPE tissue and 16 in ZFPE tissue reacted with the expected antigens under some of the antigen retrieval conditions tested. Antibodies against CD4 (clone CT-4), TCRγδ, TCRαVβ1, CSF-1R, and MHC class II (clone 21-1A6) were effective only in ZFPE tissue. In ducks, cells in both FFPE and ZFPE tissues were immunolabeled by five antibodies under some of the conditions tested. Antigen retrieval suitable for cellular membrane antigen tended to be heat for FFPE tissues and no treatment for ZFPE tissues. Heat-induced antigen retrieval allowed for better detection of nuclear antigens in both FFPE and ZFPE sections. Our results indicate that commercially available antibodies can immunohistochemically detect some of chicken and duck immune cell subsets in paraffin-embedded sections.
Collapse
Affiliation(s)
- Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
2
|
Ruiz Díaz N, Cisternas C, Silva M, Hernández A, Chacana P. Characterization of anti-soybean agglutinin (SBA) IgY antibodies: a new strategy for neutralization of the detrimental biological activity of SBA. Front Vet Sci 2024; 11:1382510. [PMID: 38681857 PMCID: PMC11045903 DOI: 10.3389/fvets.2024.1382510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Anti-soybean agglutinin (SBA) IgY was produced, and its potential to neutralize the haemagglutinating activity of SBA in vitro was tested. Thirty-five-week-old hens [treatment (n = 5) and control (n = 5)] were immunized with SBA or injected with saline 4 times every 15 days. Eggs were collected after the last immunization, and IgY was extracted using the polyethylene glycol (PEG) method. Serum anti-SBA IgY titres in immunized hens increased after the first immunization and reached a plateau between days 45 and 60. In contrast, specific IgY titres in the control group remained at basal levels throughout the evaluation. Average IgY titres were significantly higher in the treatment group on days 15, 30, 45, and 60. Total IgY content in the egg yolk extract was 38.7 ± 1.6 and 37.7 ± 1.5 mg/ml for the treatment and control groups, respectively. The specific anti-SBA IgY titer detected in the egg yolk extract was significantly higher (p < 0.001) for hens in the treatment group compared to the control group, with OD450nm values of 0.98 ± 0.05 and 0.058 ± 0.02, respectively. The specificity of anti-SBA IgY was confirmed by the Western blotting, and the inhibition of SBA-induced haemagglutination in vitro was compared with D-galactose, a known molecule that binds to SBA and blocks its binding to erythrocytes. The inhibition of SBA-induced haemagglutination by the anti-SBA IgY reached 512 units of haemagglutination inhibition (UHI), compared to 8 or 256 UHI, respectively, when IgY from control chickens or D-galactose was used. Thus, anti-SBA IgY antibodies were efficiently produced in large quantities and effectively inhibited SBA-induced haemagglutination in vitro.
Collapse
Affiliation(s)
- Nancy Ruiz Díaz
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco, Chile
| | - Carlos Cisternas
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco, Chile
| | - Mauricio Silva
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Agroalimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Adrián Hernández
- Núcleo de Investigación en Producción Agroalimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Pablo Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| |
Collapse
|
3
|
Moreau T, Recoules E, De Pauw M, Labas V, Réhault-Godbert S. Evidence that the Bowman-Birk inhibitor from Pisum sativum affects intestinal proteolytic activities in chickens. Poult Sci 2024; 103:103182. [PMID: 37931399 PMCID: PMC10654233 DOI: 10.1016/j.psj.2023.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Chicken diet essentially relies on soybean as the major source of proteins but there are increasing efforts to identify other protein-rich feedstuffs. Of these, some pea cultivars constitute interesting sources of proteins, although some of them contain antinutritional factors that may compromise the digestibility of their protein content. Consequently, chickens exhibit low performance, while undigested compounds rejected in feces have a negative environmental impact. In this article, we analyzed the intestinal content of chickens fed a pea diet (Pisum sativum) to decipher the mechanisms that could explain such a low digestibility. Using gelatin zymography, we observed that the contents of chicken fed the pea diet exhibit altered proteolytic activities compared with intestinal contents from chickens fed a rapeseed, corn, or soybean diet. This pea-specific profile parallels the presence of a 34 kDa protein band that resists proteolysis during the digestion process. Using mass spectrometry analysis, we demonstrated that this band contains the pea-derived Bowman-Birk protease inhibitor (BBI) and 3 chicken proteases, the well-known chymotrypsinogen 2-like (CTRB2) and trypsin II-P39 (PRSS2), and the yet uncharacterized trypsin I-P38 (PRSS3). All 3 proteases are assumed to be protease targets of BBI. Molecular modeling of the interaction of pea BBI with PRSS2 and PRSS3 trypsins reveals that electrostatic features of PRSS3 may favor the formation of a BBI-PRSS3 complex at physiological pH. We hypothesize that PRSS3 is specifically expressed and secreted in the intestinal lumen to form a complex with BBI, thereby limiting its inhibitory effects on PRSS2 and chymotrypsinogen 2-like proteases. These data clearly demonstrate that in chickens, feedstuff containing active pea BBI affects intestinal proteolytic activities. Further studies on the effects of BBI on the expression of PRSS3 by digestive segments will be useful to better appreciate the impact of pea on intestine physiology and function. From these results, we suggest that PRSS3 protease may represent an interesting biomarker of digestive disorders in chickens, similar to human PRSS3 that has been associated with gut pathologies.
Collapse
Affiliation(s)
| | | | | | - Valérie Labas
- INRAE, CNRS, IFCE, University of Tours, PRC, 37380 Nouzilly, France; INRAE, CHU of Tours, University of Tours, PIXANIM, 37380 Nouzilly, France
| | | |
Collapse
|
4
|
Asen ND, Aluko RE, Martynenko A, Utioh A, Bhowmik P. Yellow Field Pea Protein ( Pisum sativum L.): Extraction Technologies, Functionalities, and Applications. Foods 2023; 12:3978. [PMID: 37959097 PMCID: PMC10648759 DOI: 10.3390/foods12213978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Yellow field peas (Pisum sativum L.) hold significant value for producers, researchers, and ingredient manufacturers due to their wealthy composition of protein, starch, and micronutrients. The protein quality in peas is influenced by both intrinsic factors like amino acid composition and spatial conformations and extrinsic factors including growth and processing conditions. The existing literature substantiates that the structural modulation and optimization of functional, organoleptic, and nutritional attributes of pea proteins can be obtained through a combination of chemical, physical, and enzymatic approaches, resulting in superior protein ingredients. This review underscores recent methodologies in pea protein extraction aimed at enhancing yield and functionality for diverse food systems and also delineates existing research gaps related to mitigating off-flavor issues in pea proteins. A comprehensive examination of conventional dry and wet methods is provided, in conjunction with environmentally friendly approaches like ultrafiltration and enzyme-assisted techniques. Additionally, the innovative application of hydrodynamic cavitation technology in protein extraction is explored, focusing on its prospective role in flavor amelioration. This overview offers a nuanced understanding of the advancements in pea protein extraction methods, catering to the interests of varied stakeholders in the field.
Collapse
Affiliation(s)
- Nancy D. Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (N.D.A.); (R.E.A.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (N.D.A.); (R.E.A.)
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alex Martynenko
- Department of Engineering, Dalhousie University, Agricultural Campus, P.O. Box 550, Truro, NS B2N 5E3, Canada;
| | - Alphonsus Utioh
- ACU Food Technology Services Inc., 64 Laverendrye Crescent, Portage la Prairie, MB R1N 1B2, Canada;
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
5
|
Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon ( Oncorhynchus kisutch). Animals (Basel) 2023; 13:ani13050945. [PMID: 36899803 PMCID: PMC10000117 DOI: 10.3390/ani13050945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
This study aims to investigate the effects of partial dietary replacement of fish meal with unfermented and/or fermented soybean meal (fermented by Bacillus cereus) supplemented on the growth performance, whole-body composition, antioxidant and immunity capacity, and their related gene expression of juvenile coho salmon (Oncorhynchus kisutch). Four groups of juveniles (initial weight 159.63 ± 9.54 g) at 6 months of age in triplicate were fed for 12 weeks on four different iso-nitrogen (about 41% dietary protein) and iso-lipid (about 15% dietary lipid) experimental diets. The main results were: Compared with the control diet, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation can significantly (p < 0.05) influence the expression of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, nuclear factor erythroid 2-related factor 2, tumor necrosis factor α and interleukin-6 genes, the growth performance, the serum biochemical indices, and the activity of antioxidant and immunity enzymes. However, there was no significant effect (p > 0.05) on the survival rate (SR) and whole-body composition in the juveniles among the experimental groups. In conclusion, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation could significantly increase the growth performance, antioxidant and immunity capacity, and their related gene expression of juveniles.
Collapse
|
6
|
Liu S, Zhang S, Wang Y, Lu S, Han S, Liu Y, Jiang H, Wang C, Liu H. Dietary Sodium Butyrate Improves Intestinal Health of Triploid Oncorhynchus mykiss Fed a Low Fish Meal Diet. BIOLOGY 2023; 12:biology12020145. [PMID: 36829424 PMCID: PMC9952962 DOI: 10.3390/biology12020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
This study aimed to determine the effects of dietary sodium butyrate (NaB) on the growth and gut health of triploid Oncorhynchus mykiss juveniles (8.86 ± 0.36 g) fed a low fish meal diet for 8 weeks, including the inflammatory response, histomorphology, and the composition and functional prediction of microbiota. Five isonitrogenous and isoenergetic practical diets (15.00% fish meal and 21.60% soybean meal) were supplemented with 0.00% (G1), 0.10% (G2), 0.20% (G3), 0.30% (G4), and 0.40% NaB (G5), respectively. After the feeding trial, the mortality for G3 challenged with Aeromonas salmonicida for 7 days was lower than that for G1 and G5. The optimal NaB requirement for triploid O. mykiss based on weight gain rate (WGR) and the specific growth rate (SGR) was estimated to be 0.22% and 0.20%, respectively. The activities of intestinal digestive enzymes increased in fish fed a NaB diet compared to G1 (p < 0.05). G1 also showed obvious signs of inflammation, but this inflammation was significantly alleviated with dietary NaB supplementation. In comparison, G3 exhibited a more complete intestinal mucosal morphology. Dietary 0.20% NaB may play an anti-inflammatory role by inhibiting the NF-κB-P65 inflammatory signaling pathway. Additionally, the relative abundance of probiotics was altered by dietary NaB. In conclusion, dietary 0.20% NaB improved the intestinal health of triploid O. mykiss fed a low fish meal diet.
Collapse
Affiliation(s)
- Siyuan Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shuze Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150006, China
| | - Yaling Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shaoxia Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shicheng Han
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yang Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chang’an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Correspondence: (C.W.); (H.L.); Tel.: +86-13936508461 (C.W.); +86-13796050776 (H.L.)
| | - Hongbai Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Correspondence: (C.W.); (H.L.); Tel.: +86-13936508461 (C.W.); +86-13796050776 (H.L.)
| |
Collapse
|
7
|
Huerta A, Trocino A, Birolo M, Pascual A, Bordignon F, Radaelli G, Bortoletti M, Xiccato G. Growth performance and gut response of broiler chickens fed diets supplemented with grape ( Vitis vinifera L.) seed extract. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2084462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Almudena Huerta
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università degli Studi di Padova, Legnaro, Italy
| | - Angela Trocino
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università degli Studi di Padova, Legnaro, Italy
| | - Marco Birolo
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università degli Studi di Padova, Legnaro, Italy
| | - Antón Pascual
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università degli Studi di Padova, Legnaro, Italy
| | - Francesco Bordignon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università degli Studi di Padova, Legnaro, Italy
| | - Giuseppe Radaelli
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università degli Studi di Padova, Legnaro, Italy
| | - Martina Bortoletti
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università degli Studi di Padova, Legnaro, Italy
| | - Gerolamo Xiccato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università degli Studi di Padova, Legnaro, Italy
| |
Collapse
|
8
|
Pascual A, Pauletto M, Trocino A, Birolo M, Dacasto M, Giantin M, Bordignon F, Ballarin C, Bortoletti M, Pillan G, Xiccato G. Effect of the dietary supplementation with extracts of chestnut wood and grape pomace on performance and jejunum response in female and male broiler chickens at different ages. J Anim Sci Biotechnol 2022; 13:102. [PMID: 35978386 PMCID: PMC9387010 DOI: 10.1186/s40104-022-00736-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recently, interest in the use of herbs and phytogenic compounds has grown because of their potential role in the production and health of livestock animals. Among these compounds, several tannins have been tested in poultry, but those from chestnut wood and grape-industry byproducts have attracted remarkable interest. Thus, the present study aimed to gain further insights into the mechanisms involved in the response to the dietary supplementation with extracts of chestnut wood or grape pomace. To this purpose, 864 broiler chickens were fed a control diet (C) or the same diet supplemented 0.2% chestnut wood (CN) extract or 0.2% grape pomace (GP) extract from hatching until commercial slaughtering (at 45 days of age) to assess their effects on performance, meat quality, jejunum immune response and whole-transcriptome profiling in both sexes at different ages (15 and 35 d). RESULTS Final live weight and daily weight gain significantly increased (P < 0.01) in chickens fed GP diets compared to CN and C diets. The villi height was lower in chickens fed the CN diet than in those fed the C diet (P < 0.001); moreover, a lower density of CD45+ cells was observed in chickens fed the CN diet (P < 0.05) compared to those fed the C and GP diets. Genes involved in either pro- or anti-inflammatory response pathways, and antimicrobial and antioxidant responses were affected by GP and CN diets. There was no effect of the dietary treatment on meat quality. Regarding sex, in addition to a lower growth performance, females showed a lower occurrence of wooden breast (16.7% vs. 55.6%; P < 0.001) and a higher occurrence of spaghetti meat (48.6% vs. 4.17%; P < 0.001) in pectoralis major muscles after slaughtering than those in males. Based on the results of whole-transcriptome profiling, a significant activation of some molecular pathways related to immunity was observed in males compared with those of females. CONCLUSIONS The GP supplementation improved chicken performance and promoted immune responses in the intestinal mucosa; moreover, age and sex were associated with the most relevant transcriptional changes.
Collapse
Affiliation(s)
- A Pascual
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - A Trocino
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy.
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Dacasto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - C Ballarin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Pillan
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| |
Collapse
|
9
|
Song J, Zheng H, Xue J, Liu J, Sun Q, Yang W, Liu F, Xiang X, He K, Chen Y, Cheng J, Li W, Jin J, Brosius J, Deng C. GPR15-C10ORF99 functional pairing initiates colonic Treg homing in amniotes. EMBO Rep 2022; 23:e53246. [PMID: 34939731 PMCID: PMC8892231 DOI: 10.15252/embr.202153246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Regulatory T lymphocyte (Treg) homing reactions mediated by G protein-coupled receptor (GPCR)-ligand interactions play a central role in maintaining intestinal immune homeostasis by restraining inappropriate immune responses in the gastrointestinal tract. However, the origin of Treg homing to the colon remains mysterious. Here, we report that the C10ORF99 peptide (also known as CPR15L and AP57), a cognate ligand of GPR15 that controls Treg homing to the colon, originates from a duplication of the flanking CDHR1 gene and is functionally paired with GPR15 in amniotes. Evolutionary analysis and experimental data indicate that the GPR15-C10ORF99 pair is functionally conserved to mediate colonic Treg homing in amniotes and their expression patterns are positively correlated with herbivore diet in the colon. With the first herbivorous diet in early amniotes, a new biological process (herbivorous diet short-chain fatty acid-C10ORF99/GPR15-induced Treg homing colon immune homeostasis) emerged, and we propose an evolutionary model whereby GPR15-C10ORF99 functional pairing has initiated the first colonic Treg homing reaction in amniotes. Our findings also highlight that GPCR-ligand pairing leads to physiological adaptation during vertebrate evolution.
Collapse
Affiliation(s)
- Jingjing Song
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Huaping Zheng
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jingwen Xue
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jian Liu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qian Sun
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wei Yang
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Fang Liu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiangyin Xiang
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Kai He
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Younan Chen
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jingqiu Cheng
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wei Li
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Juergen Brosius
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Cheng Deng
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
10
|
Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines (Basel) 2022; 10:vaccines10020172. [PMID: 35214631 PMCID: PMC8875638 DOI: 10.3390/vaccines10020172] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
“Gut health” refers to the physical state and physiological function of the gastrointestinal tract and in the livestock system; this topic is often focused on the complex interacting components of the intestinal system that influence animal growth performance and host-microbial homeostasis. Regardless, there is an increasing need to better understand the complexity of the intestinal system and the various factors that influence gut health, since the intestine is the largest immune and neuroendocrine organ that interacts with the most complex microbiome population. As we face the post-antibiotic growth promoters (AGP) era in many countries of the world, livestock need more options to deal with food security, food safety, and antibiotic resilience to maintain agricultural sustainability to feed the increasing human population. Furthermore, developing novel antibiotic alternative strategies needs a comprehensive understanding of how this complex system maintains homeostasis as we face unpredictable changes in external factors like antibiotic-resistant microbes, farming practices, climate changes, and consumers’ preferences for food. In this review, we attempt to assemble and summarize all the relevant information on chicken gut health to provide deeper insights into various aspects of gut health. Due to the broad and complex nature of the concept of “gut health”, we have highlighted the most pertinent factors related to the field performance of broiler chickens.
Collapse
Affiliation(s)
- Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Kyungwoo Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Woo H. Kim
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Correspondence: ; Tel.: +1-301-504-8771
| |
Collapse
|
11
|
Lignocellulose as an insoluble fiber source in poultry nutrition: a review. J Anim Sci Biotechnol 2021; 12:82. [PMID: 34140038 PMCID: PMC8212492 DOI: 10.1186/s40104-021-00594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/11/2021] [Indexed: 11/27/2022] Open
Abstract
Extensive research in recent years into the use of various fiber sources in poultry nutrition has led to the perception that dietary fiber is more than a simple diet diluent. Several studies showed that the feeding of insoluble fiber sources such as oat hulls, sunflower hulls or wood shavings may affect digestive physiology and function improving chickens health and growth performance. In this context, the effect of lignocellulose as an insoluble dietary fiber source is increasingly being investigated. Lignocellulose is a component of plant cell walls and consists mainly of the insoluble carbohydrate polymers cellulose and hemicelluloses as well as the phenolic polymer lignin. Lignocellulose is chemically and physicochemically different from other insoluble fiber sources and thus possibly has different effects on poultry compared to traditional fiber sources. Several studies investigated the effect of dietary lignocellulose on growth performance, nutrient digestibility, gastrointestinal tract development and intestinal microbiota in broilers and laying hens. Studies differed in terms of feed formulation and lignocellulose inclusion level as well as products of different suppliers were used. The results obtained are inconsistent; beneficial, indifferent or detrimental effects of feeding lignocellulose were observed, so that a final assessment of lignocellulose as a “novel” insoluble fiber source is difficult. This review article summarizes the results of studies in connection with the feeding of lignocellulose to poultry, compares them with those that have used other insoluble fiber sources and illuminates the possible mechanisms of action.
Collapse
|
12
|
Guo S, Xi Y, Xia Y, Wu T, Zhao D, Zhang Z, Ding B. Dietary Lactobacillus fermentum and Bacillus coagulans Supplementation Modulates Intestinal Immunity and Microbiota of Broiler Chickens Challenged by Clostridium perfringens. Front Vet Sci 2021; 8:680742. [PMID: 34136557 PMCID: PMC8200825 DOI: 10.3389/fvets.2021.680742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Preventative effects of Lactobacillus fermentum and Bacillus coagulans against Clostridium perfringens infection in broilers have been well-demonstrated. The present study was conducted to investigate the modulation of these two probiotics on intestinal immunity and microbiota of C. perfringens-challenged birds. The 336 one-day-old broilers were assigned to four groups with six replicates in each group. Birds in the control were unchallenged and fed a basal diet, and birds in the three challenged groups were dietary supplemented with nothing (Cp group), 1 × 109 CFU/kg of L. fermentum (Lf_Cp group), or 1 × 1010 CFU/kg of B. coagulans (Bc_Cp group). Challenge was performed from days 14 to 20, and samples were collected on days 21 and 28. Challenge upregulated interleukin (IL)-1β and transforming growth factor (TGF)-β4 mRNA expression in jejunum on day 21, which was downregulated by B. coagulans and L. fermentum, respectively (P < 0.05). Both probiotic groups upregulated jejunal IL-1β, interferon (IFN)-γ, IL-17, and TGF-β4 on day 28 as well as IFN-γ on day 21 (P < 0.05). The Bc_Cp group increased CD3+ T cell counts in the jejunal crypt on day 21 (P < 0.05). Challenge decreased the ileal ACE index on day 21 and cecal microbial richness on day 28, which were increased by probiotic treatments, and ileal bacterial richness decreased in the Bc_Cp group on day 28 (P < 0.05). Only ileal microbiota on day 21 was distinctly affected with an R-value at 0.3116 by ANOSIM analysis (P < 0.05). Compared with the control, ileal Firmicutes increased on day 21, and ileal Bacteroidetes and cecal Proteobacteria decreased on day 28 in challenged groups (P < 0.05). Challenge increased Romboutsia spp. in the ileum as well as unclassified f_Lachnospiraceae and Ruminococcus_torques group in the cecum, and decreased Lactobacillus spp. in the ileum on day 21, which were all conversely modulated by L. fermentum (P < 0.05). Challenge increased amino acid metabolism of ileal microbiota and membrane transport of cecal microbiota, and decreased amino acid metabolism of cecal microbiota on day 21, which were conversely regulated by both probiotics (P < 0.05). In conclusion, L. fermentum and B. coagulans attenuated the intestinal inflammation and microbial dysbiosis soon after C. perfringens challenge.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yu Xi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yi Xia
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
13
|
Pascual A, Pauletto M, Giantin M, Radaelli G, Ballarin C, Birolo M, Zomeño C, Dacasto M, Bortoletti M, Vascellari M, Xiccato G, Trocino A. Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens. J Anim Sci Biotechnol 2020; 11:40. [PMID: 32377338 PMCID: PMC7193382 DOI: 10.1186/s40104-020-00448-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background The dietary supplementation of yeast cell wall extracts (YCW) has been found to reduce pathogenic bacteria load, promote immunoglobulin production, prevent diseases by pro-inflammatory responses, and alter gut microbiota composition. This study evaluated growth and slaughter results, health, gut morphology, immune status and gut transcriptome of 576 male chickens fed two diets, i.e. C (control) or Y (with 250-500 g/t of YCW fractions according to the growth period). At 21 and 42 d the jejunum of 12 chickens per diet were sampled and stained with hematoxylin/eosin for morphometric evaluation, with Alcian-PAS for goblet cells, and antibodies against CD3+ intraepithelial T-cells and CD45+ intraepithelial leukocytes. The jejunum sampled at 42 d were also used for whole-transcriptome profiling. Results Dietary YCW supplementation did not affect final live weight, whereas it decreased feed intake (114 to 111 g/d; P ≤ 0.10) and improved feed conversion (1.74 to 1.70; P ≤ 0.01). Regarding the gut, YCW supplementation tended to increase villi height (P = 0.07); it also increased the number of goblet cells and reduced the density of CD45+ cells compared to diet C (P < 0.001). In the gut transcriptome, four genes were expressed more in broilers fed diet Y compared to diet C, i.e. cytochrome P450, family 2, subfamily C, polypeptide 23b (CYP2C23B), tetratricopeptide repeat domain 9 (TTC9), basic helix-loop-helix family member e41 (BHLHE41), and the metalloreductase STEAP4. Only one gene set (HES_PATHWAY) was significantly enriched among the transcripts more expressed in broilers fed diet Y. However, a total of 41 gene sets were significantly over-represented among genes up-regulated in control broilers. Notably, several enriched gene sets are implicated in immune functions and related to NF-κB signaling, apoptosis, and interferon signals. Conclusions The dietary YCW supplementation improved broiler growth performance, increased gut glycoconjugate secretion and reduced the inflammatory status together with differences in the gut transcriptome, which can be considered useful to improve animal welfare and health under the challenging conditions of intensive rearing systems in broiler chickens.
Collapse
Affiliation(s)
- A Pascual
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Pauletto
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Giantin
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - G Radaelli
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - C Ballarin
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Birolo
- 2Department of Agronomy, Food, Natural Resources, Animal, and Environment (DAFNAE), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - C Zomeño
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Dacasto
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Bortoletti
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Vascellari
- 3Histopathology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro, Padova Italy
| | - G Xiccato
- 2Department of Agronomy, Food, Natural Resources, Animal, and Environment (DAFNAE), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - A Trocino
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| |
Collapse
|
14
|
Shan C, Sun B, Dalloul RA, Zhai Z, Sun P, Li M, Yang S, Luan W. Effect of the oral administration of astragalus polysaccharides on jejunum mucosal immunity in chickens vaccinated against Newcastle disease. Microb Pathog 2019; 135:103621. [PMID: 31310831 DOI: 10.1016/j.micpath.2019.103621] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/29/2019] [Accepted: 07/13/2019] [Indexed: 01/06/2023]
Abstract
Astragalus polysaccharides (APS) are a traditional Chinese medicine with a therapeutic effect by enhancing immune function; however, the underlying functional mechanism is still unclear. The aim of the present study was to determine the effect of oral administration of APS on jejunum mucosal immunity in chickens vaccinated against Newcastle disease (ND). One-day-old Hy-Line male chickens were divided into five groups of 20 chicks each: three APS groups, one vaccinated control (VC) group and one non-vaccinated negative control (NC) group. On d 10, the APS groups were orally administered 0.5 mL of APS at doses of 1 mg/mL (APSL), 2 mg/mL (APSM) and 4 mg/mL (APSH) daily for 4 consecutive days. The chicks in the control groups were administered 0.5 mL saline for those 4 days. All groups except NC were administered a ND virus (NDV) vaccine on day 14. The jejunum was removed from 4 randomly selected chickens of each group at 1, 7, 14 and 28 days after vaccination. The jejunal villus height (VH) and crypt depth (CD) were measured and the VH:CD ratio calculated. Immunohistochemistry was used to analyze the differences of IgA+ cells in the jejunum. NDV specific secretory IgA (sIgA) levels in jejunal contents were detected using an indirect ELISA. At most time points, VH:CD ratios, number of IgA+ cells, and sIgA levels were significantly higher in the APS groups than those in VC and NC groups, but there were little differences among the three doses of APS groups. These results indicate that oral administration of APS could enhance the intestinal mucosal immune function of chickens, and APS could be used as a vaccine enhancer.
Collapse
Affiliation(s)
- Chunlan Shan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China; College of Animal Science and Technology, Yunnan Agricultural University, Yunnan, 650210, China
| | - Bodong Sun
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China; Institute of Veterinary Medicine Feed Inspection in Guizhou Province, 550000, China
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zhichao Zhai
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China
| | - Maohui Li
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China
| | - Shubao Yang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China.
| | - Weimin Luan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, 130118, China.
| |
Collapse
|
15
|
Röhe I, Boroojeni FG, Zentek J. Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers. Poult Sci 2017; 96:4075-4084. [PMID: 29050410 DOI: 10.3382/ps/pex199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Peas are locally grown legumes being rich in protein and starch. However, the broad usage of peas as a feed component in poultry nutrition is limited to anti-nutritional factors, which might impair gut morphology and function. This study investigated the effect of feeding raw or differently processed peas compared with feeding a soybean meal-based control diet (C) on intestinal morphology and nutrient transport in broilers. A total of 360 day-old broiler chicks were fed with one of the following diets: The C diet, and 3 diets containing raw peas (RP), fermented peas (FP) and enzymatically pre-digested peas (EP), each supplying 30% of dietary crude protein. After 35 d, jejunal samples of broilers were taken for analyzing histomorphological parameters, active glucose transport in Ussing chambers and the expression of genes related to glucose absorption, intestinal permeability and cell maturation. Villus length (P = 0.017) and crypt depth (P = 0.009) of EP-fed broilers were shorter compared to birds received C. The villus surface area was larger in broilers fed C compared to those fed with the pea-containing feed (P = 0.005). Glucose transport was higher for broilers fed C in comparison to birds fed with the EP diet (P = 0.044). The sodium-dependent glucose co-transporter 1 (SGLT-1) expression was down-regulated in RP (P = 0.028) and FP (P = 0.015) fed broilers. Correlation analyses show that jejunal villus length negatively correlates with the previously published number of jejunal intraepithelial T cells (P = 0.014) and that jejunal glucose transport was negatively correlated with the occurrence of jejunal intraepithelial leukocytes (P = 0.041). To conclude, the feeding of raw and processed pea containing diets compared to a soybean based diet reduced the jejunal mucosal surface area of broilers, which on average was accompanied by lower glucose transport capacities. These morphological and functional alterations were associated with observed mucosal immune reactions. Further studies are required elucidating the specific components in peas provoking such effects and whether these effects have a beneficial or detrimental impact on gut function and animal health.
Collapse
Affiliation(s)
- I Röhe
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - F Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|