1
|
Jin F, Shen Y, Lin Z, Miao Y, Liu Y, Su R, Zhang W, Zhang Y. Small intestine structural and functional responses to environmental heavy metal stress in tree sparrow Passer montanus nestlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65344-65355. [PMID: 39579182 DOI: 10.1007/s11356-024-35587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Tree sparrow nestlings predominantly consume protein-rich insect larvae, making them vulnerable to environmental heavy metal contamination through the food web, potentially affecting their growth. Understanding the effects of heavy metals on the structure and function of the small intestine, the principal organ responsible for protein digestion and absorption, is therefore crucial. This study investigated tree sparrow nestlings at three developmental stages (3, 6, and 12 days old) in Liujiaxia (LJX), a comparatively unpolluted area, and Baiyin (BY), a heavy metal polluted area, to elucidate the factors and mechanisms by which heavy metals affect nutrient absorption. We compared heavy metal accumulation levels, structural integrity, and protein digestion and absorption functions of the duodenum, jejunum, and ileum. The increase of fluctuating asymmetry and decrease in body condition in tree sparrow nestlings were found to be associated with environmental heavy metal accumulation in the small intestine. Structural impairments of villi and crypts were observed in the duodenum and jejunum of tree sparrow nestlings at 3-, 6-, and 12-day-old in the polluted site BY. Conversely, structures related to the ileum were elevated, and the small intestine of nestlings at all stages exhibited abnormally elevated protein digestibility but diminished absorption of amino acids. However, there was no significant difference in small peptide absorption. These findings indicate that environmental heavy metal pollution impacts the structure of the small intestine in tree sparrow nestlings through the food chain and further affects their digestion and absorption function of proteins.
Collapse
Affiliation(s)
- Fei Jin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaocun Lin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuquan Miao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Zhao Z, Yang H, Wang Z, Ai Z, Yang R, Wang Z, Wang T, Fu K, Zhang Y. Metabolomics analysis of the yolk of Zhijin white goose during the embryogenesis based on LC-MS/MS. PLoS One 2024; 19:e0297429. [PMID: 38335168 PMCID: PMC10857567 DOI: 10.1371/journal.pone.0297429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The egg yolk of the goose is rich in lipids, proteins and minerals, which is the main source of nutrition during the goose embryogenesis. Actually, the magnitude and variety of nutrients in yolk are dynamically changed to satisfy the nutritional requirements of different growth and development periods. The yolk sac membrane (YSM) plays a role in metabolizing and absorbing nutrients from the yolk, which are then consumed by the embryo or extra-fetal tissues. Therefore, identification of metabolites in egg yolk can help to reveal nutrient requirement in goose embryo. In this research, to explore the metabolite changes in egg yolk at embryonic day (E) 7, E12, E18, E23, and E28, we performed the assay using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The findings showed that E7 and E12, E23 and E28 were grouped together, while E18 was significantly separated from other groups, indicating the changes of egg yolk development and metabolism. In total, 1472 metabolites were identified in the egg yolk of Zhijin white goose, and 636 differential metabolites (DMs) were screened, among which 264 were upregulated and 372 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DMs were enriched in the biosynthesis and metabolism of amino acids, digestion and absorption of protein, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, phosphotransferase system (PTS), mineral absorption, cholesterol metabolism and pyrimidine metabolism. Our study may provide new ideas for improving prehatch embryonic health and nutrition.
Collapse
Affiliation(s)
- Zhonglong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Hong Yang
- Bijie City Animal Husbandry Station, Bijie, Guizhou, People’s Republic of China
| | - Zhiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Zhaobi Ai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Runqian Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Tiansong Wang
- Agricultural College, Tongren Polytechnic College, Tongren, Guizhou, People’s Republic of China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Yong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| |
Collapse
|
3
|
Jia M, Reynolds KL, Wong EA. Effects of high incubation temperature on tight junction proteins in the yolk sac and small intestine of embryonic broilers. Poult Sci 2023; 102:102875. [PMID: 37406432 PMCID: PMC10339051 DOI: 10.1016/j.psj.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
During the transition from incubation to hatch, the chicks shift from obtaining nutrients from the yolk sac to the intestine. The yolk sac tissue (YST) and small intestine serve as biological barriers between the yolk or gut contents and the blood circulation. These barriers must maintain structural integrity for optimal nutrient uptake as well as protection from pathogens. The objective of this study was to investigate the effect of high incubation temperature on mRNA abundance of the tight junction (TJ) proteins zona occludens 1 (ZO1), occludin (OCLN), claudin 1 (CLDN1), and junctional adhesion molecules A and 2 (JAMA, JAM2) and the heat shock proteins (HSP70 and HSP90) in the YST and small intestine of embryonic broilers. Broiler eggs were incubated at 37.5°C. On embryonic day 12 (E12), half of the eggs were switched to 39.5°C. YST samples were collected from E7 to day of hatch (DOH), while small intestinal samples were collected from E17 to DOH. The temporal expression of TJ protein mRNA from E7 to DOH at 37.5°C and the effect of incubation temperature from E13 to DOH were analyzed by one-way and two-way ANOVA, respectively and Tukey's test. Significance was set at P < 0.05. The temporal expression pattern of ZO1, OCLN, and CLDN1 mRNA showed a pattern of decreased expression from E7 to E13 followed by an increase to DOH. High incubation temperature caused an upregulation of ZO1 and JAM2 mRNA in the YST and small intestine. Using in situ hybridization, OCLN and JAMA mRNA were detected in the epithelial cells of the YST. In addition, JAMA mRNA was detected in epithelial cells of the small intestine, whereas JAM2 mRNA was detected in the vascular system of the villi and lamina propria. In conclusion, the YST expressed mRNA for TJ proteins and high incubation temperature increased ZO1 and JAM2 mRNA. This suggests that the TJ in the vasculature of the YST and intestine is affected by high incubation temperature.
Collapse
Affiliation(s)
- M Jia
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - K L Reynolds
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - E A Wong
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
4
|
Molecular mechanism of nutrient uptake in developing embryos of oviparous cloudy catshark (Scyliorhinus torazame). PLoS One 2022; 17:e0265428. [PMID: 35290397 PMCID: PMC8923501 DOI: 10.1371/journal.pone.0265428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Forms of embryonic nutrition are highly diverse in cartilaginous fishes, which contain oviparity, yolk-sac viviparity and several types of matrotrophic viviparity (histotrophy, oophagy, and placentotrophy). The molecular mechanisms of embryonic nutrition are poorly understood in these animals as few species are capable of reproducing in captivity. Oviparous cartilaginous fishes solely depend on yolk nutrients for their growth and development. In the present study, we compared the contribution to embryonic nutrition of the embryonic intestine with the yolk sac membrane (YSM). RNA-seq analysis was performed on the embryonic intestine and YSM of the oviparous cloudy catshark Scyliorhinus torazame to identify candidate genes involved in nutrient metabolism to further the understanding of nutrient utilization of developing embryos. RNA-seq discovery was subsequently confirmed by quantitative PCR analysis and we identified increases in several amino acid transporter genes (slc3a1, slc6a19, slc3a2, slc7a7) as well as genes involved in lipid absorption (apob and mtp) in the intestine after ‘pre-hatching’, which is a developmental event marked by an early opening of the egg case about 4 months before hatching. Although a reciprocal decrease in the nutritional role of YSM was expected after the intestine became functional, we observed similar increases in gene expression among amino acid transporters, lipid absorption molecules, and lysosomal cathepsins in the extraembryonic YSM in late developmental stages. Ultrastructure of the endodermal cells of YSM showed that yolk granules were incorporated by endocytosis, and the number of granules increased during development. Furthermore, the digestion of yolk granules in the YSM and nutrient transport through the basolateral membrane of the endodermal cells appeared to be enhanced after pre-hatching. These findings suggest that nutrient digestion and absorption is highly activated in both intestine and YSM after pre-hatching in catshark embryos, which supports the rapid growth at late developmental stages.
Collapse
|
5
|
Nutritional stimulation by in-ovo feeding modulates cellular proliferation and differentiation in the small intestinal epithelium of chicks. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:91-101. [PMID: 34977379 PMCID: PMC8669250 DOI: 10.1016/j.aninu.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Nutritional stimulation of the developing small intestine of chick embryos can be conducted by in-ovo feeding (IOF). We hypothesized that IOF of glutamine and leucine can enhance small intestinal development by promoting proliferation and differentiation of multipotent small intestinal epithelial cells. Broiler embryos (n = 128) were subject to IOF of glutamine (IOF-Gln), leucine (IOF-Leu), NaCl (IOF-NaCl) or no injection (control) at embryonic d 17 (E 17). Multipotent, progenitor and differentiated cells were located and quantified in the small intestinal epithelium between E 17 and d 7 after hatch (D 7) in all treatment groups by immunofluorescence of SRY-box transcription factor 9 (Sox9) and proliferating cell nuclear antigen (PCNA), in-situ hybridization of leucine-rich repeat containing G-protein coupled receptor 5 (Lgr5) and peptide transporter 1 (PepT1) and histochemical goblet cell staining. The effects of IOF treatments at E 19 (48 h post-IOF), in comparison to control embryos, were as follows: total cell counts increased by 40%, 33% and 19%, and multipotent cell counts increased by 52%, 50% and 38%, in IOF-Gln, IOF-Leu and IOF-NaCl embryos, respectively. Only IOF-Gln embryos exhibited a significance, 36% increase in progenitor cell counts. All IOF treatments shifted Lgr5+ stem cell localizations to villus bottoms. The differentiated, PepT1+ region of the villi was 1.9 and 1.3-fold longer in IOF-Gln and IOF-Leu embryos, respectively, while goblet cell densities decreased by 20% in IOF-Gln embryos. Post–hatch, crypt and villi epithelial cell counts were significantly higher IOF-Gln chicks, compared to control chicks (P < 0.05). We conclude IOF of glutamine stimulates small intestinal maturation and functionality during the peri-hatch period by promoting multipotent cell proliferation and differentiation, resulting in enhanced compartmentalization of multipotent and differentiated cell niches and expansions of the absorptive surface area.
Collapse
|
6
|
Cloft SE, Kinstler SR, Reno KE, Sellers HS, Franca M, Ecco R, Lee MD, Maurer JJ, Wong EA. Runting Stunting Syndrome in Broiler Chickens Is Associated with Altered Intestinal Stem Cell Morphology and Gene Expression. Avian Dis 2022; 66:85-94. [DOI: 10.1637/21-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Sara E. Cloft
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Sydney R. Kinstler
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Kaitlyn E. Reno
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Holly S. Sellers
- Department of Population Health, Poultry Diagnostic Research Center, University of Georgia, Athens, GA 30601
| | - Monique Franca
- Department of Population Health, Poultry Diagnostic Research Center, University of Georgia, Athens, GA 30601
| | - Roselene Ecco
- Department of Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Margie D. Lee
- Department of Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA 24061
| | - John J. Maurer
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Eric A. Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
7
|
Developmental Change of Yolk Microbiota and Its Role on Early Colonization of Intestinal Microbiota in Chicken Embryo. Animals (Basel) 2021; 12:ani12010016. [PMID: 35011123 PMCID: PMC8749561 DOI: 10.3390/ani12010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
Although the fertilized eggs were found to contain microbes in early studies, the detailed composition of yolk microbiota and its influence on embryo intestinal microbiota have not been satisfactorily examined yet. In this study, the yolk microbiota was explored by using 16s rRNA sequencing at different developmental stages of the broiler embryo. The results showed that the relative abundance of yolk microbiota was barely changed during embryogenesis. According to the KEGG analysis, the yolk microbiota were functionally related to amino acid, carbohydrate, and lipid metabolisms during chicken embryogenesis. The yolk microbiota influences the embryonic intestinal microbiota through increasing the colonization of Proteobacteria, Firmicutes, and Bacteroidetes in the intestine, particularly. The intestinal microbes of neonatal chicks showed higher proportions of Faecalibacterium, Blautia, Coprococcus, Dorea, and Roseburia compared to the embryonic intestinal microbiota. Our findings might give a better understanding of the composition and developmental change of yolk microbiota and its roles in shaping the intestinal microbiota.
Collapse
|
8
|
Wen JS, Xu QQ, Zhao WY, Hu CH, Zou XT, Dong XY. Effects of early weaning on intestinal morphology, digestive enzyme activity, antioxidant status, and cytokine status in domestic pigeon squabs (Columba livia). Poult Sci 2021; 101:101613. [PMID: 34936957 PMCID: PMC8703073 DOI: 10.1016/j.psj.2021.101613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to explore the effects of early weaning on growth performance, intestinal morphology, digestive enzyme activity, antioxidant status, and cytokine status in domestic pigeon squabs (Columba livia). The conclusion is based on body weight (BW) and average daily gain (ADG), length index and weight index of small intestine, small intestinal morphology, activity of digestive enzymes in duodenum content, the concentrations of jejunal antioxidant status and cytokines. A completely randomized design with 2 treatments, the control group (CON) and early weaning (EW) group, was utilized. Eight squabs per treatment were sampled at the age of 25 d. The results showed that early weaning reduced BW (P < 0.05), ADG (P < 0.05), ileac length index (P < 0.05), and weight index (P < 0.01). Compared with the CON group, small intestinal morphology was altered in the EW group. Ileac crypt depth (CD) increased significantly (P < 0.01). The villus area was decreased in the duodenum (P < 0.05), jejunum (P < 0.01), and ileum (P < 0.05). The ileac ratio of villus height to crypt depth (VCR) in the EW group was lower than the ileac ratio of villus height to VCR in the CON group (P < 0.01). The activity of trypsin (P < 0.05), sucrase (P < 0.01) and aminopeptidase-N (APN) (P < 0.01) in the duodenum was reduced. Jejunal malondialdehyde (MDA) (P < 0.01) was increased and total superoxide dismutase (T-SOD) (P < 0.01) was reduced significantly. Early weaning decreased the concentrations of interferon-γ (IFN-γ) (P < 0.01), interleukin-4 (IL-4) (P < 0.05) and interleukin-10 (IL-10) (P < 0.01) but induced significant upregulation of interleukin-2 (IL-2) (P < 0.05). In conclusion, our results suggested that early weaning did harm the BW and ADG, intestinal length index and weight index, intestinal morphology, activity of digestive enzymes, and antioxidant and cytokine status.
Collapse
Affiliation(s)
- J S Wen
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - Q Q Xu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - W Y Zhao
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - C H Hu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - X T Zou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - X Y Dong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China.
| |
Collapse
|
9
|
Wong EA, Uni Z. Centennial Review: The chicken yolk sac is a multifunctional organ. Poult Sci 2021; 100:100821. [PMID: 33518342 PMCID: PMC7936120 DOI: 10.1016/j.psj.2020.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 11/26/2022] Open
Abstract
The yolk sac (YS) consists of the yolk, which supplies nutrients, and the YS tissue, which surrounds the yolk and provides essential metabolic functions for the developing embryo. The YS tissue is derived from the midgut of the embryo and consists of a layer of endodermal epithelial cells (EEC) in contact with the yolk contents, a mesodermal layer that contains the vascular system and an outer ectodermal layer. The YS tissue is a multifunctional organ that provides essential functions such as host immunity, nutrient uptake, carbohydrate and lipid metabolism, and erythropoiesis. The YS tissue plays a role in immunity by the transport of maternal antibodies in the yolk to the embryonic circulation that feeds the developing embryo. In addition, the YS tissue expresses high mRNA levels of the host defense peptide, avian β-defensin 10 during mid embryogenesis. Owing to its origin, the YS EEC share some functional properties with intestinal epithelial cells such as expression of transporters for amino acids, peptides, monosaccharides, fatty acids, and minerals. The YS tissue stores glycogen and expresses enzymes for glycogen synthesis and breakdown and glucogenesis. This carbohydrate metabolism may play an important role in the hatching process. The mesodermal layer of the YS tissue is the site for erythropoiesis and provides erythrocytes before the maturation of the bone marrow. Other functions of the YS tissue involve synthesis of plasma proteins, lipid transport and cholesterol metabolism, and synthesis of thyroxine. Thus, the YS is an essential organ for the growth, development, and health of the developing embryo. This review will provide an overview of the studies that have investigated the functionalities of the YS tissue at the cellular and molecular levels with a focus on chickens.
Collapse
Affiliation(s)
- E A Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061.
| | - Z Uni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
Liu H, Ding P, Tong Y, He X, Yin Y, Zhang H, Song Z. Metabolomic analysis of the egg yolk during the embryonic development of broilers. Poult Sci 2021; 100:101014. [PMID: 33676096 PMCID: PMC7933800 DOI: 10.1016/j.psj.2021.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
The chicken egg yolk, which is abundant with lipids, proteins, and minerals, is the major nutrient resource for the embryonic development. In fact, the magnitude and type of yolk nutrients are dynamically changed during the chicken embryogenesis to meet the developmental and nutritional requests at different stages. The yolk nutrients are metabolized and absorbed by the yolk sac membrane and then used by the embryo or other extraembryonic tissues. Thus, understanding the metabolites in the yolk helps to unveil the developmental nutritional requirements for the chicken embryo. In this study, we performed ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) analysis to investigate the change of metabolites in the egg yolk at embryonic (E) 07, E09, E11, E15, E17, and E19. The results showed that 1) the egg yolk metabolites at E07 and E09 were approximately similar, but E09, E11, E15, E17, and E19 were different from each other, indicating the developmental and metabolic change of the egg yolk; and 2) most of the metabolites were annotated in amino acid metabolism pathways from E11 to E15 and E17 to E19. Especially, arginine, lysine, cysteine, and histidine were continuously increased during the embryonic development, probably because of their effects on the growth promotion and oxidative stress amelioration of the embryo. Interestingly, the ferroptosis was found as one of major processes occurred from E15 to E17 and E17 to E19. Owing to the upregulated expression of acyl-CoA synthetase long-chain family member 4 detected in the yolk sac, we assumed that the ferroptosis of the yolk sac was perhaps caused by the accumulation of reactive oxygen species, which was induced by the large amount of polyunsaturated fatty acids and influx of iron in the yolk. Our findings might offer a novel understanding of embryonic nutrition of broilers according to the developmental changes of metabolites in the egg yolk and may provide new ideas to improve the health and nutrition for prehatch broiler chickens.
Collapse
Affiliation(s)
- Huichao Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yueyue Tong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| |
Collapse
|
11
|
Reicher N, Melkman-Zehavi T, Dayan J, Uni Z. It's All About Timing: Early Feeding Promotes Intestinal Maturation by Shifting the Ratios of Specialized Epithelial Cells in Chicks. Front Physiol 2020; 11:596457. [PMID: 33391016 PMCID: PMC7773643 DOI: 10.3389/fphys.2020.596457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022] Open
Abstract
The small intestine (SI) of chicks (Gallus gallus) matures rapidly during the initial post-hatch period and acquires digestive, absorptive, and secretive capabilities. The effects of the timing of first feeding on the quantities and distribution of specialized epithelial cells, which generate and maintain SI morphology and functionality, have not yet been examined. In this study, we identified specialized SI epithelial cell sub-types, including stem, progenitor, proliferating, and differentiated cells within crypts and villi of chicks during the first 10 days post-hatch, by in situ hybridization (ISH), immunofluorescence (IF), and histochemical staining. We then examined their quantities and ratios between day of hatch and d10 in chicks that were fed upon hatch [early feeding (EF)], compared to chicks that were fed 24 h post-hatch [delayed feeding (DF)]. Results showed that EF increased total cell quantities in the crypts and villi at days 1, 3, 7, and 10, compared to DF (p < 0.0001). At d3, EF, in comparison to DF, decreased crypt stem cell proportions (p < 0.0001), increased crypt proliferating (p < 0.01) and differentiated (p < 0.05) cell proportions, and increased villus enterocyte proportions (p < 0.01). By d10, EF increased both the quantities and proportions of villus enterocytes and goblet cells, compared to DF. We conclude that feeding upon hatch, compared to 24 h-delayed feeding, enhanced SI maturation and functionality by increasing the quantities and proportions of proliferating and differentiated cells, thus expanding the digestive, absorptive, and secretive cell populations throughout the initial post-hatch period.
Collapse
Affiliation(s)
- Naama Reicher
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Melkman-Zehavi
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan Dayan
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zehava Uni
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
12
|
Liu K, Jia M, Wong EA. Delayed access to feed affects broiler small intestinal morphology and goblet cell ontogeny. Poult Sci 2020; 99:5275-5285. [PMID: 33142443 PMCID: PMC7647802 DOI: 10.1016/j.psj.2020.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Broilers are often deprived of feed and water for up to 48 h after hatch. This delayed access to feed (DAF) can inhibit small intestine development. The objective of this study was to determine the effects of DAF on small intestinal morphology, mRNA abundance of the goblet cell marker Muc2 and absorptive cell marker PepT1, and the distribution of goblet cells in young broilers. Cobb 500 chicks, hatching within a 12-h window, were randomly allocated into 3 groups: control with no feed delay (ND), 24-h feed delay (DAF24), and 36-h feed delay (DAF36). Morphology, gene expression, and in situ hybridization analyses were conducted on the duodenum, jejunum, and ileum at 0, 24, 36, 72, 120, and 168 h after hatch. Statistical analysis was performed using a t test for ND and DAF24 at 24 h. A 2-way ANOVA and Tukey's HSD test (P < 0.05) were used for ND, DAF24, and DAF36 from 36 h. At 24 to 36 h, DAF decreased the ratio of villus height/crypt depth (VH/CD) in the duodenum but increased VH/CD in the ileum due to changes in CD, whereas at 72 h, DAF decreased VH/CD due to a decrease in VH. The mRNA abundance of PepT1 was upregulated, while Muc2 mRNA was downregulated in DAF chicks. Cells expressing Muc2 mRNA were present along the villi and in the crypts. The ratio of the number of goblet cells found in the upper half to the lower half of the villus was greater in DAF chicks than in ND chicks, suggesting that DAF affected the appearance of new goblet cells. The number of Muc2 mRNA-expressing cells in the crypt, however, was generally not affected by DAF. In conclusion, DAF transiently affected small intestinal morphology, upregulated PepT1 mRNA, downregulated Muc2 mRNA, and changed the distribution of goblet cells in the villi. By 168 h, however, these parameters were not different between ND, DAF24, and DAF36 chicks.
Collapse
Affiliation(s)
- K Liu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - M Jia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - E A Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Zhang H, Li D, Liu L, Xu L, Zhu M, He X, Liu Y. Cellular Composition and Differentiation Signaling in Chicken Small Intestinal Epithelium. Animals (Basel) 2019; 9:E870. [PMID: 31717851 PMCID: PMC6912625 DOI: 10.3390/ani9110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
The small intestine plays an important role for animals to digest and absorb nutrients. The epithelial lining of the intestine develops from the embryonic endoderm of the embryo. The mature intestinal epithelium is composed of different types of functional epithelial cells that are derived from stem cells, which are located in the crypts. Chickens have been widely used as an animal model for researching vertebrate embryonic development. However, little is known about the molecular basis of development and differentiation within the chicken small intestinal epithelium. This review introduces processes of development and growth in the chicken gut, and compares the cellular characteristics and signaling pathways between chicken and mammals, including Notch and Wnt signaling that control the differentiation in the small intestinal epithelium. There is evidence that the chicken intestinal epithelium has a distinct cellular architecture and proliferation zone compared to mammals. The establishment of an in vitro cell culture model for chickens will provide a novel tool to explore molecular regulation of the chicken intestinal development and differentiation.
Collapse
Affiliation(s)
- Haihan Zhang
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, IN 47408, USA
| | - Dongfeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Ling Xu
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
| | - Mo Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| | - Xi He
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
| | - Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| |
Collapse
|
14
|
Zhang H, Wong EA. Expression of avian β-defensin mRNA in the chicken yolk sac. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:89-95. [PMID: 30753854 DOI: 10.1016/j.dci.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The chicken yolk sac (YS) plays an important role in nutrient absorption and immune function for the developing embryo. The avian β-defensins (AvBD) are cationic peptides that are important members of the innate immune system. The objective of this study was to profile AvBD mRNA expression patterns and distribution of cells expressing AvBD mRNA in the chicken YS. Expression of AvBD1, 2, 7, and 10 mRNA was low at embryonic day 7 (e7), increased to e9 through e13 and then declined to e19. Using in situ hybridization, AvBD10 mRNA was found to be expressed in endodermal epithelial cells, while AvBD1, 2, and 7 mRNA were expressed in heterophils. The developmental expression pattern and distribution of AvBD mRNA in the YS reveals the importance of these genes to protection of the developing chick embryo.
Collapse
Affiliation(s)
- Haihan Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Eric A Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Zhang H, Li H, Kidrick J, Wong E. Localization of cells expressing SGLT1 mRNA in the yolk sac and small intestine of broilers. Poult Sci 2019; 98:984-990. [DOI: 10.3382/ps/pey343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
|
16
|
Zhang H, Wong E. Identification of cells expressing OLFM4 and LGR5 mRNA by in situ hybridization in the yolk sac and small intestine of embryonic and early post-hatch chicks. Poult Sci 2018; 97:628-633. [DOI: 10.3382/ps/pex328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022] Open
|