1
|
Bauer MM, Ao T, Jacob JP, Ford MJ, Pescatore AJ, Power RF, Adedokun SA. Performance, energy, and nutrient utilization benefits with exogenous enzyme supplementation of wheat-soybean meal-based diets fed to 22-day-old broiler chickens. Poult Sci 2025; 104:105039. [PMID: 40121759 PMCID: PMC11981741 DOI: 10.1016/j.psj.2025.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
This study was designed to investigate the performance, bone quality, and nutrient and energy utilization in broiler chickens fed wheat-soybean meal-based diets with a dietary multi-enzyme complex. The positive control (PC) diet met or exceeded energy and nutrient needs, while the negative control (NC) diet was formulated to contain 3.0, 16.7, and 33.3% less of AMEn, Ca, and avP, respectively. Enzyme complex was supplemented to the NC diet at 0, 150, 200, or 250 mg/kg during the pre-starter (d 0-9) and starter (d 9-22) phases. A total of 300 d-old male broiler chicks were assigned to the 5 treatments in a randomized complete block design with 10 replicate cages of 6 chicks per cage. Data were analyzed using the GLM procedures of SAS. Birds fed the NC diet had lower (P < 0.01) average daily gain, average daily feed intake, and feed efficiency (FE) compared to those fed the PC diet (d 0-22), while the chickens fed enzyme supplemented diets had similar (P > 0.05) performance to those fed the PC diet. Average daily feed intake (d 9-22 and 0-22) and FE (d 9-22) rose linearly (P < 0.05) with the level of enzyme supplementation. There were linear and quadratic (P < 0.001) relationships for jejunal digesta viscosity, tibia bone breaking strength and tibia ash with enzyme supplementation level. Birds fed the NC diet had lower (P < 0.05) apparent ileal digestibility and utilization of DM, N, digestible energy, and AMEn, but higher (P < 0.05) Ca digestibility and utilization compared with birds fed the PC diet. Higher levels of enzyme supplementation resulted in a quadratic relationship (P = 0.005) with P digestibility and a linear relationship (P < 0.001) with P utilization. Ileal digestibility of nonessential amino acids was quadratically related (P < 0.05) with enzyme supplementation except for Glu and Tyr (P < 0.01). This study showed that growth performance, energy and nutrient utilization, and bone mineralization were maintained with a supplemental multi-enzyme complex in a reduced energy and nutrient wheat-soybean meal-based diet.
Collapse
Affiliation(s)
- M M Bauer
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - T Ao
- Alltech Inc., Nicholasville KY, USA
| | - J P Jacob
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - M J Ford
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - A J Pescatore
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | - S A Adedokun
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
2
|
Toghyani M, Kim E, Macelline SP, González-Ortiz G, Barekatain R, Liu SY. Xylanase and stimbiotic supplementation improve broilers performance and nutrient digestibility across both wheat-barley and corn-based diets. Poult Sci 2025; 104:105224. [PMID: 40319581 DOI: 10.1016/j.psj.2025.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
The present study investigated the effects of supplemental xylanase or stimbiotic in male broiler chickens fed either corn- or wheat-barley-based diets. A total of 1,296 Ross 308 day-old chicks were assigned to a 2 × 3 factorial design, evaluating the effects of diet grain source (wheat-barley or corn) and additives (none, xylanase, or stimbiotic). The stimbiotic used in the present study contained xylanase and fermentable xylo-oligosaccharides. Each treatment was replicated 8 times, with 27 birds per replicate pen. At day 21, 3 birds per pen were selected for blood sample collection and another 3 birds at day 27 for digesta collection. The final body weight at day 42 was not statistically affected by grain source, additive supplementation, or their interaction (P > 0.05). Over the entire production period (0-42 d), an interaction between grain source and additive supplementation was found for feed conversion ratio (FCR), where xylanase or stimbiotic improved the FCR across the diet type, with a more pronounced improvement achieved when supplemented to the wheat-barley based diets (P < 0.01). A feed grain × additive interaction resulted in lower total feed intake in birds fed the wheat-barley based diets only in response to stimbiotic (P < 0.05). Ileal viscosity was also affected by an interaction between grain source and additive supplementation, in which viscosity reduction by xylanase or stimbiotic was only achieved in birds fed the wheat-barley based diets (P < 0.01). Similarly, an interaction was found in the ileal digestibility coefficient of protein (P = 0.016) and starch (P = 0.006), where either xylanase or stimbiotic improved the digestibility only in birds offered the wheat-barley based diets. Serum fluorescein isothiocyanate dextran level was higher in birds fed the corn-based diets compared to those fed the wheat-barley based diets (P < 0.01). These results suggest that dietary supplementation with either xylanase or stimbiotic improved feed efficiency, regardless of the dietary grain source, likely through enhanced nutrient digestibility and/or reduced digesta viscosity.
Collapse
Affiliation(s)
- Mehdi Toghyani
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia.
| | - Eunjoo Kim
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia
| | - Shemil P Macelline
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia
| | | | - Reza Barekatain
- Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia; South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
| | - Sonia Y Liu
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia
| |
Collapse
|
3
|
Yi W, Liu Y, Fu S, Zhuo J, Zhang W, Liu S, Tu Y, Shan T. Effect of a novel alkaline protease from Bacillus licheniformis on growth performance, carcass characteristics, meat quality, antioxidant capacity, and intestinal morphology of white feather broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5176-5185. [PMID: 38284560 DOI: 10.1002/jsfa.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The present study was conducted to investigate the effects of dietary novel alkaline protease from Bacillus licheniformis on the growth performance, meat quality, antioxidant status and intestinal morphology of broilers. In total, 4000 broilers were randomly assigned into five groups and treated with normal control, normal control + 100 mg kg-1 protease, normal control + 200 mg kg-1 protease, normal control + 300 mg kg-1 protease and normal control + 400 mg kg-1 protease. RESULTS Supplementing protease impacted final body weight (linear, P = 0.003; quadratic, P = 0.006) and decreased feed conversion rate (linear, P = 0.036) in broilers. Moreover, dietary protease significantly increased breast muscle rate (linear, P = 0.005; quadratic, P = 0.021) and decreased drip loss (linear, P < 0.001; quadratic, P < 0.001). In addition, dietary protease notably increased protein digestibility (linear, P = 0.001; quadratic, P = 0.006) and trypsin activity (linear, P = 0.002; quadratic, P = 0.009) in jejunum. Light microscopy revealed that the jejunum villi in the 300 mg kg-1 and 400 mg kg-1 groups exhibited greater height and a denser arrangement compared to those in the control group. The addition of protease decreased malondialdehyde content (linear, P < 0.001; quadratic, P < 0.001) and increased total antioxidant capacity (linear, P = 0.001; quadratic, P < 0.001) in pectoral muscles. CONCLUSION The results of the present study suggest that dietary novel alkaline protease from B. licheniformis improved growth performance by affecting trypsin activity, protein digestibility, antioxidant capacity and intestinal health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wuzhou Yi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yanjie Liu
- Jinan Bestzyme Bio-Engineering Co., Ltd, Jinan, China
| | - Shijun Fu
- Shandong Binzhou Animal Science& Veterinary Medicine Academy, Binzhou, China
| | - Jianshu Zhuo
- Jinan Bestzyme Bio-Engineering Co., Ltd, Jinan, China
| | - Wenye Zhang
- ShanXi ShiYang Agricultural Science & Technology Co., Ltd, Shanxi, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yunang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
4
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Wang J, Bao C, Cao H, Huang F, Liu Y, Cao Y. Multi-copy expression of a protease-resistant xylanase with high xylan degradation ability and its application in broilers fed wheat-based diets. Int J Biol Macromol 2024; 257:128633. [PMID: 38070812 DOI: 10.1016/j.ijbiomac.2023.128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The acidic thermostable xylanase (AT-xynA) has great potential in the feed industry, but its low activity is not conductive to large-scale production, and its application in poultry diets still needs to be further evaluated. In Experiment1, AT-xynA activity increased 3.10 times by constructing multi-copy strains, and the highest activity reached 10,018.29 ± 91.18 U/mL. AT-xynA showed protease resistance, high specificity for xylan substrates, xylobiose and xylotriose were the main hydrolysates. In Experiment2, 192 broilers were assigned into 3 treatments including a wheat-based diet, and the diets supplemented with AT-xynA during the entire period (XY-42) or exclusively during the early stage (XY-21). AT-xynA improved growth performance, while the performance of XY-21 and XY-42 was identical. To further clarify the mechanism underlying the particular effectiveness of AT-xynA during the early stage, 128 broilers were allotted into 2 treatments including a wheat-based diet and the diet supplemented with AT-xynA for 42 d in Experiment3. AT-xynA improved intestinal digestive function and microbiota composition, the benefits were stronger in younger broilers than older ones. Overall, the activity of AT-xynA exhibiting protease resistance and high xylan degradation ability increased by constructing multi-copy strains, and AT-xynA was particularly effective in improving broiler performance during the early stage.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China; Department of Nutrition and Health, China Agricultural University, Beijing 100091, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Fei Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
7
|
Tang D, Du B, Wang X, Nian F, Shi Z. Supplementation of amylase or amylase + xylanase improves performance and metabolism of broilers fed with diets containing newly harvested maize. Anim Biotechnol 2023; 34:4316-4336. [PMID: 36691753 DOI: 10.1080/10495398.2022.2149544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
How supplementation with amylase or amylase + xylanase in newly harvested maize-based diets affects broiler nutrient metabolism and performance is unclear. Thus, this study evaluated whether the supplementation of amylase (CN) or amylase + xylanase (CAX) improves performance and metabolism of broilers fed with newly harvested maize-based diets during a 6-week production. The results showed that the body weight gain of broilers fed with CA or CAX diet was higher than that with the control (CN) diet at 1-21 d of age; however, an opposite trend was observed for feed/gain (p < 0.05). Furthermore, 150, 64 and 35 different metabolites were found between CA/CN, CAX/CN and CAX/CA, respectively. Overall, amylase supplementation improved broiler growth performance at 1-21 d of age, and the positive effects of amylase on nutrient utilization were mostly related to nicotinate, retinol and glutathione metabolism improvement. Moreover, CAX diet increased apparent metabolizable energy and growth performance of broilers at 22-42 d of age, and the difference might be related to sphingolipid, porphyrin and chlorophyll metabolism regulation. The findings prove amylase + xylanase supplementation is an effective method to improve the nutritional value of newly harvested maize for broilers.
Collapse
Affiliation(s)
- Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Baolong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Xuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Fang Nian
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Zhaoguo Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| |
Collapse
|
8
|
Moita VHC, Kim SW. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals (Basel) 2022; 12:3322. [PMID: 36496844 PMCID: PMC9740087 DOI: 10.3390/ani12233322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
This review paper discussed the nutritional and functional roles of phytase and xylanase enhancing the intestinal and growth of nursery pigs and broiler chickens. There are different feed enzymes that are currently supplemented to feeds for nursery pigs and broiler chickens. Phytase and xylanase have been extensively studied showing consistent results especially related to enhancement of nutrient digestibility and growth performance of nursery pigs and broiler chickens. Findings from recent studies raise the hypothesis that phytase and xylanase could play functional roles beyond increasing nutrient digestibility, but also enhancing the intestinal health and positively modulating the intestinal microbiota of nursery pigs and broiler chickens. In conclusion, the supplementation of phytase and xylanase for nursery pigs and broiler chickens reaffirmed the benefits related to enhancement of nutrient digestibility and growth performance, whilst also playing functional roles benefiting the intestinal microbiota and reducing the intestinal oxidative damages. As a result, it could contribute to a reduction in the feed costs by allowing the use of a wider range of feedstuffs without compromising the optimal performance of the animals, as well as the environmental concerns associated with a poor hydrolysis of antinutritional factors present in the diets for swine and poultry.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Bautil A, Bedford MR, Buyse J, Courtin CM. Reduced-particle size wheat bran and endoxylanase supplementation in broiler feed affect arabinoxylan hydrolysis and fermentation with broiler age differently. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:308-320. [PMID: 36733780 PMCID: PMC9874015 DOI: 10.1016/j.aninu.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Since the caecal microbiota of young broilers are not yet able to ferment the dietary fibre (DF) fraction of the feed to a large extent, increasing the accessibility of DF substrates along the gastrointestinal tract is crucial to benefit from the health stimulating metabolic end-products (e.g. butyric acid) generated upon microbial DF fermentation. Therefore, the present study aimed to evaluate the potential of reduced-particle size wheat bran (RPS-WB) and endoxylanases as feed additives to stimulate arabinoxylan (AX) hydrolysis and fermentation along the hindgut of young broilers. To this end, RPS-WB and endoxylanase supplementation were evaluated in a 2 × 2 factorial design using a total of 256 male 1-d-old chicks (Ross 308). Broilers were assigned to 4 dietary treatments: a basal wheat-based diet with (1) no feed additives (control, CTRL), (2) an endoxylanase (XYL; Econase XT 25 at 0.10 g/kg diet), (3) 1% wheat bran with an average reduced particle size of 297 μm (RPS-WB) and (4) an endoxylanase and 1% RPS-WB (RPS-WB + XYL). Each dietary treatment was replicated 8 times and on d 10 and 28, respectively, 24 and 16 broilers per treatment group were euthanised to analyse AX degradation, short-chain fatty acid production and digesta viscosity in the ileum and caecum. Broilers receiving XYL in their diet showed increased AX solubilisation and fermentation at both d 10 and 28 compared to the CTRL group (P < 0.05). Adding RPS-WB to the diet stimulated wheat AX utilisation by the primary AX degraders in the caecum at 10 d of age compared to the CTRL group, as observed by the high AX digestibility coefficient for the RPS-WB supplemented group at this young age (P < 0.05). At 28 d, RPS-WB supplementation lowered body-weight gains but increased butyric acid concentrations compared to the XYL and CTRL group (P < 0.05). Although no synergistic effect for RPS-WB + XYL broilers was observed for AX hydrolysis and fermentation, these findings suggest that both additives can raise a dual benefit to the broiler as a butyrogenic effect and improved AX fermentation along the ileum and caecum were observed throughout the broiler's life.
Collapse
Affiliation(s)
- An Bautil
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium,Corresponding author.
| | | | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
10
|
Kouzounis D, Jonathan MC, Soares N, Kabel MA, Schols HA. In vivo formation of arabinoxylo-oligosaccharides by dietary endo-xylanase alters arabinoxylan utilization in broilers. Carbohydr Polym 2022; 291:119527. [DOI: 10.1016/j.carbpol.2022.119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
|
11
|
Gao Q, Wang Y, Li J, Bai G, Liu L, Zhong R, Ma T, Pan H, Zhang H. Supplementation of multi-enzymes alone or combined with inactivated Lactobacillus benefits growth performance and gut microbiota in broilers fed wheat diets. Front Microbiol 2022; 13:927932. [PMID: 35979486 PMCID: PMC9376439 DOI: 10.3389/fmicb.2022.927932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of multi-enzymes mixture supplementation or combination with inactivated Lactobacillus on growth performance, intestinal barrier, and cecal microbiota were investigated in broilers at the age of 15-42 days fed a wheat-based diet. A total of 576 broilers (12 broilers/cage; n = 12) were used and divided into four groups and randomly allotted to four experimental diets throughout grower (15-28 days of age) and finisher (29-42 days of age) phases. Diets consisted of a corn-soybean meal-based diet (BD), a wheat-soybean meal-based diet (WD), and WD supplemented multi-enzymes (WED) or combined with inactivated Lactobacillus (WEPD). The results showed that the average daily gain (ADG) and body weight (BW) were reduced in broilers fed WD diet compared with those fed BD diet during the grower period (P < 0.05). Broilers in the WED or WEPD group had higher ADG and BW during the grower period (P < 0.05) and had a lower feed-to-gain ratio (F/G) compared to broilers in the WD group during the grower and overall periods (P < 0.05). Improved expression of intestinal barrier genes (claudin-1, ZO-1, and mucin-2) was observed in WEPD compared to the BD or WD group (P < 0.05). Compared to the BD group, the WD group decreased the abundance of Oscillospira, norank_f__Erysipelotrichaceae, and Peptococcus, which are related to anti-inflammatory function and BW gain. The WD also increased Bifidobacterium and some short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Blautia, and Oscillibacter), and Barnesiella, which were presumed as "harmful microbes" [false discovery rate (FDR) < 0.05]. WED and WEPD groups, respectively, improved Bilophila and Eubacterium_hallii_group compared with those in the WD group (FDR < 0.05). In addition, the Enterococcus abundance was reduced in the WEPD group compared to the WD group (FDR < 0.05). Higher acetate and total SCFA concentrations were observed (P < 0.05) among broilers who received a WD diet. Compared with the WD group, the WED or WEPD group further increased cecal propionate content (P < 0.05) and tended to improve butyrate concentration. These results suggested that supplemental multi-enzymes alone and combined with inactivated Lactobacillus could improve the growth performance based on the wheat-based diet and offer additional protective effects on the intestinal barrier function of broilers.
Collapse
Affiliation(s)
- Qingtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Guosong Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teng Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, Taha AE, Soliman SM, Ahmed AE, El-Kott AF, Al Syaad KM, Swelum AA. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. Poult Sci 2022; 101:101696. [PMID: 35150942 PMCID: PMC8844281 DOI: 10.1016/j.psj.2022.101696] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
The poultry industry contributes significantly to bridging the nutritional gap in many countries because of its meat and eggs products rich in protein and valuable nutrients at a cost less than other animal meat sources. The natural antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, enzymes, immunostimulants, and phytogenic (phytobiotic) including herbs, botanicals, essential oils, and oleoresins are the most common feed additives that acquire popularity in poultry industry following the ban of antibiotic growth promoters (AGPs). They are commonly used worldwide because of their unique properties and positive impact on poultry production. They can be easily mixed with other feed ingredients, have no tissue residues, improve feed intake, feed gain, feed conversion rate, improve bird immunity, improve digestion, increase nutrients availability as well as absorbability, have antimicrobial effects, do not affect carcass characters, decrease the usage of antibiotics, acts as antioxidants, anti-inflammatory, compete for stress factors and provide healthy organic products for human consumption. Therefore, the current review focuses on a comprehensive description of different natural antibiotic growth promoters' alternatives, the mode of their action, and their impacts on poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, 21995, Saudi Arabia
| | - Gehan B A Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed 22758, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed E Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Director of the Research Center, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| |
Collapse
|
13
|
Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poult Sci 2021; 100:101506. [PMID: 34731741 PMCID: PMC8571078 DOI: 10.1016/j.psj.2021.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 11/03/2022] Open
Abstract
Four nonantibiotic alternative growth promoters for broiler chickens were evaluated. Ross 308 chicks were fed a control diet (mainly corn and soybean meal) or a diet supplemented with a probiotic (Bacillus subtilis Gallipro DSM 17299), encapsulated butyric acid (Novyrate C), mannan-oligosaccharide (Actigen MOS) or formulated with 20% naked oat (starter diet) and 30% naked oat (grower and finisher). The study was carried out as a complete random blocked design with 10 pens for each diet, 45 birds per pen. Compared to the control, the naked oat diet improved the average daily gain by 16% during the starter phase (up to d 10). The probiotic did so during the grower phase as did butyric acid in the finisher phase (up to d 34). For the experiment overall, the probiotic decreased average daily gain slightly. The best improvement in feed conversion ratio was obtained in the butyrate group (5%). No significant treatment effect on crop pH or on mortality was observed. The naked oat diet gave a slightly lower cecum pH on d 34. The MOS supplement decreased jejunal mass on d 34 and increased villus length (34%) and villus height/crypt depth ratio (32%) measured on d 10. Naked oat, butyric acid and MOS diets all reduced serum endotoxin levels. The probiotic increased serum C-reactive protein. All noncontrol diets reduced serum malondialdehyde. The naked oat diet reduced d 34 litter pH by about 0.3. Some effects of the proposed non-antibiotic growth promoters have been observed and could contribute to livestock performance. Their exact modes of action remained to be defined.
Collapse
|
14
|
Wang J, Cao H, Bao C, Liu Y, Dong B, Wang C, Shang Z, Cao Y, Liu S. Effects of Xylanase in Corn- or Wheat-Based Diets on Cecal Microbiota of Broilers. Front Microbiol 2021; 12:757066. [PMID: 34721363 PMCID: PMC8548762 DOI: 10.3389/fmicb.2021.757066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Xylanase has been demonstrated to improve growth performance of broilers fed wheat- or corn-based diets due to its ability to degrade arabinoxylans (AX). However, content and structure of AX in corn and wheat are different, comparing effects of xylanase on cecal microbiota of broilers fed corn- or wheat-based diets could further elaborate the mechanism of the specificity of xylanase for different cereal grains. Thus, a total of 192 one-day-old broilers were randomly allotted into four dietary treatments, including wheat-soybean basal diet, wheat-soybean basal diet with 4,000U/kg xylanase, corn-soybean basal diet, and corn-soybean basal diet with 4,000U/kg xylanase to evaluate interactive effects of xylanase in corn- or wheat-based diets on broilers cecal microbiota during a 6-week production period. The results indicated that bacterial community clustering was mainly due to cereal grains rather than xylanase supplementation. Compared with broilers fed wheat-based diets, corn-based diets increased alpha-diversity and separated from wheat-based diets (p<0.05). Xylanase modulated the abundance of specific bacteria without changing overall microbial structure. In broilers fed wheat-based diets, xylanase increased the abundance of Lactobacillus, Bifidobacterium, and some butyrate-producing bacteria, and decreased the abundance of non-starch polysaccharides-degrading (NSP) bacteria, such as Ruminococcaceae and Bacteroidetes (p<0.05). In broilers fed corn-based diets, xylanase decreased the abundance of harmful bacteria (such as genus Faecalitalea and Escherichia-Shigella) and promoted the abundance of beneficial bacteria (such as Anaerofustis and Lachnospiraceae_UCG_010) in the cecum (p<0.05). Overall, xylanase supplementation to wheat- or corn-based diets improved broilers performance and cecal microbiota composition. Xylanase supplementation to wheat-based diets increased the abundance of butyrate-producing bacteria and decreased the abundance of NSP-degrading bacteria. Moreover, positive effects of xylanase on cecal microbiota of broilers fed corn-based diets were mostly related to the inhibition of potentially pathogenic bacteria, and xylanase supplementation to corn-based diets slightly affected the abundance of butyrate-producing bacteria and NSP-degrading bacterium, the difference might be related to lower content of AX in corn compared to wheat.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| |
Collapse
|
15
|
Bautil A, Buyse J, Goos P, Bedford MR, Courtin CM. Feed endoxylanase type and dose affect arabinoxylan hydrolysis and fermentation in ageing broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:787-800. [PMID: 34466683 PMCID: PMC8384776 DOI: 10.1016/j.aninu.2020.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/02/2020] [Accepted: 11/15/2020] [Indexed: 11/16/2022]
Abstract
Despite the general use of endoxylanases in poultry feed to improve broiler performance, the abundance of different endoxylanase products and the variable response to their application in the field prevent a clear understanding of endoxylanase functionality in vivo. To gain insight into this functionality, we investigated the impact of endoxylanase type (Belfeed from Bacillus subtilis versus Econase XT from Nonomuraea flexuosa) and dose (10, 100, 1,000 mg/kg) in combination with broiler age on arabinoxylan (AX) hydrolysis and fermentation in broilers (Ross 308) fed a wheat-soy based diet. In a digestibility trial and a performance trial, a total of 1,057 one-day-old chicks received the control diet or 1 of the 6 endoxylanase supplemented wheat-soy based diets with, respectively, 5 replicate cages and 8 replicate pens per dietary treatment per trial. The AX content and structure, the AX digestibility values and the short-chain fatty acids produced were analysed at the level of the ileum, caeca and excreta at d 11 and 36. Endoxylanase supplementation resulted in a more extensive solubilisation of wheat AX and a reduction in the intestinal viscosity compared to the control (P < 0.05). A high endoxylanase dose was, however, required to obtain increased hydrolysis of the dietary AX along the gastrointestinal tract against the control (P < 0.001). Depending on the type of endoxylanase, a pool of AX with distinct physicochemical properties was created. The B. subtilis endoxylanase created a large pool of soluble AX in the ileum, thereby increasing ileal viscosity compared to broilers fed an endoxylanase from N. flexuosa (P < 0.001). The N. flexuosa endoxylanase mainly triggered caecal AX fermentation in young broilers, by delivering easily fermentable AX substrates with a low degree of polymerisation (P = 0.03). The effects were particularly present in young broilers (d 11). From this study, it is clear that the type and dose of endoxylanase added to wheat-soy based diets determine the nature of AX substrates formed. These, in turn, affect the intestinal viscosity and the interplay between the dietary AX compounds and microbiota, hence dictating AX digestion at young broiler ages and performance outcomes towards slaughter age.
Collapse
Affiliation(s)
- An Bautil
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, 3001, Leuven, Belgium
| | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Peter Goos
- MeBioS Division, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | | | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
16
|
Liu X, Xing K, Ning R, Carné S, Wu X, Nie W. Impact of combined α-galactosidase and xylanase enzymes on growth performance, nutrients digestibility, chyme viscosity, and enzymes activity of broilers fed corn-soybean diets. J Anim Sci 2021; 99:skab088. [PMID: 33744922 PMCID: PMC8186538 DOI: 10.1093/jas/skab088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Two experiments were conducted to investigate the effects of a combined α-galactosidase and xylanase preparation on nutrients digestibility and growth performance in broiler chickens. Experiment 1 had 240 broilers allocated to 3 treatments with the dietary supplementation of 0, 300, and 500 g/t of the enzyme combination. Diet and amino acid (AA) digestibility were assessed. Experiment 2 was a 2 × 3 (enzyme × diet) factorial arrangement with 10 replicates of 12 male broilers per replicate. Diets were based on corn-soybean meal (SBM) diet and had 3 nutritional levels (normal, 2% apparent metabolizable energy (AME) and crude protein (CP) reduction, and 4% AME and CP reduction). Each of these diets was fed with or without enzyme supplementation. Growth performance, chyme viscosity, nutrients digestibility, and endogenous enzymes activity were assessed. In experiment 1, enzyme supplementation improved the digestibility of Ca (P = 0.025) and ileal digestibility of total AA, Pro, Alu, Ile, Lys, His, Thr, Glu, Val, Leu, Tyr, and Phe (P < 0.05), and also tended to increase the AME of diets (P < 0.10). In experiment 2, broilers fed the corn-SBM diet with 4% nutrient reduction had better growth performance (P < 0.05), jejunal digesta viscosity at 42 d (P < 0.01), and lower digestibility of gross energy (GE; P < 0.05) when compared with those fed the normal nutrient diet. Enzyme inclusion increased digestibility of CP (P = 0.044), GE (P = 0.009), raffinose (P < 0.001) and stachyose (P < 0.001), improved average daily gain (P = 0.031), and reduced jejunal digesta viscosity at 42 d (P = 0.011). Besides, similar improvements trend in amylase, trypsin, sucrase, and maltase activity with enzyme inclusion were observed as with energy. These data support that the enzyme supplementation increased nutrients and ileal AA digestibility, improved performance and endogenous enzymes activity.
Collapse
Affiliation(s)
- Xingbo Liu
- National Key Laboratory of Animal Nutrition, College of Animal Science, China Agricultural University, Beijing 100091, China
| | - Kun Xing
- National Key Laboratory of Animal Nutrition, College of Animal Science, China Agricultural University, Beijing 100091, China
| | - Ran Ning
- National Key Laboratory of Animal Nutrition, College of Animal Science, China Agricultural University, Beijing 100091, China
| | - Sergi Carné
- Industrial Técnica Pecuaria S.A. (ITPSA), Barcelona 08011, Spain
| | - Xingqiang Wu
- Industrial Técnica Pecuaria S.A. (ITPSA), Barcelona 08011, Spain
| | - Wei Nie
- National Key Laboratory of Animal Nutrition, College of Animal Science, China Agricultural University, Beijing 100091, China
| |
Collapse
|
17
|
Kouzounis D, Hageman JA, Soares N, Michiels J, Schols HA. Impact of Xylanase and Glucanase on Oligosaccharide Formation, Carbohydrate Fermentation Patterns, and Nutrient Utilization in the Gastrointestinal Tract of Broilers. Animals (Basel) 2021; 11:1285. [PMID: 33947151 PMCID: PMC8147108 DOI: 10.3390/ani11051285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
This study aimed at determining how the degradation of cereal non-starch polysaccharides (NSP) by dietary enzymes during feed digestion can influence nutrient digestibility and NSP fermentability in broilers. Ninety-six one-day-old male broilers were assigned to 4 different treatments: control and enzyme-supplemented wheat-based (WC, WE) or maize-based (MC, ME) treatments. Enzyme supplementation with endo-xylanase and endo-glucanase occurred from day 20 onwards. On day 28, digesta samples were collected. Nutrient digestibility, NSP recovery, oligosaccharide profile, and short-chain fatty acids (SCFA) content were determined. Enzyme supplementation in WE resulted in a higher starch (3%; p = 0.004) and protein (5%; p = 0.002) digestion in the ileum compared to WC. Xylanase activity in WE led to in situ formations of arabinoxylan-oligosaccharides consisting of 5 to 26 pentose units in the ileum. This coincided with decreased arabinose (p = 0.059) and xylose (p = 0.036) amounts in the ceca and higher acetate (p = 0.014) and butyrate (p = 0.044) formation in WE compared to WC. Conversely, complete total tract recovery of arabinoxylan in MC and ME suggested poor maize NSP fermentability. Overall, enzyme action improved nutrient digestibility and arabinoxylan fermentability in the wheat-based diet. The lower response of the maize-based diet to enzyme treatment may be related to the recalcitrance of maize arabinoxylan as well as to the high nutritive value of maize.
Collapse
Affiliation(s)
- Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands;
| | - Jos A. Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Droevendaalsesteeg 1, 6700 AA Wageningen, The Netherlands;
| | - Natalia Soares
- Huvepharma NV, Uitbreidingstraat 80, 2600 Berchem, Belgium;
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands;
| |
Collapse
|
18
|
Abbasi Arabshahi H, Ghasemi HA, Hajkhodadadi I, Khaltabadi Farahani AH. Effects of multicarbohydrase and butyrate glycerides on productive performance, nutrient digestibility, gut morphology, and ileal microbiota in late-phase laying hens fed corn- or wheat-based diets. Poult Sci 2021; 100:101066. [PMID: 33744611 PMCID: PMC8010519 DOI: 10.1016/j.psj.2021.101066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
A study was undertaken to determine the effects of supplemental multicarbohydrase (MC) and butyrate glycerides (BG) on productive performance, nutritional, and physiological responses in laying hens fed corn- or wheat-based diets during a 12-week production period (from 50–62 wk of age). The experiment consisted of a 2 × 2 × 2 factorial arrangement of the treatments with 2 different basal diets (corn- or wheat-based diets), 2 concentrations of MC (0 or 200 mg/kg of diet), and 2 concentrations of BG (0 or 2 g/kg of diet). Each treatment had 6 replicates with 8 hens each. The interactions among diet, MC, and BG were observed for egg production (P = 0.048), feed conversion ratio (P = 0.005), and ileal Escherichia coli count (P = 0.043), indicating that the effects of MC and BG on these responses were more marked when wheat-based diet was fed. A diet × MC interaction (P < 0.05) was also detected for egg mass, eggshell breaking strength, jejunal viscosity, and digestibility coefficients of fat and ash. Replacing 100% of the corn with wheat in the diets of laying hens negatively affected (P < 0.05) yolk color index, eggshell thickness, digesta viscosity, jejunal morphology, and populations of ileal microbiota. By contrast, MC supplementation increased (P < 0.05) eggshell thickness, digestibility coefficients of energy and crude protein, and populations of Lactobacillus and Bifidobacterium spp. in the ileum. Inclusion of BG also resulted in greater (P < 0.05) jejunal villus height and villus surface area, and digestibility coefficients of protein and ash, but lower (P < 0.05) populations of total bacteria, Salmonella and E. coli in the ileum. Results indicate that while the complete substitution of corn by wheat has a detrimental effect on productive performance and gut health, the combination of MC and BG may have synergistic effects on improving productive performance and intestinal microbiota in laying hens fed the wheat-based diets during the late laying period.
Collapse
Affiliation(s)
- Hossein Abbasi Arabshahi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran.
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran
| | | |
Collapse
|
19
|
Craig AD, Khattak F, Hastie P, Bedford MR, Olukosi OA. The similarity of the effect of carbohydrase or prebiotic supplementation in broilers aged 21 days, fed mixed cereal diets and challenged with coccidiosis infection. PLoS One 2020; 15:e0229281. [PMID: 32092087 PMCID: PMC7039455 DOI: 10.1371/journal.pone.0229281] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate the effect on growth performance and nutrient utilisation when supplementing diets deficient in energy and protein with carbohydrase enzymes or xylo-oligosaccharide in broilers challenged with coccidia. 960 Ross 308 broilers were used in this 21-day study. The treatments were arranged into a 2×4 factorial with 2 challenge states (challenged and non-challenged) and 4 different additive types (control, xylanase alone, xylanase and β-glucanase mixture and xylo-oligosaccharide). On day 14, the challenged group received 12× the recommended dose of coccidiosis vaccine while the non-challenged group received a sham treatment of water only. The birds and feed were weighed on days 0, 14 and 21. On day 21, two birds per pen were euthanized, the caeca were removed and the contents collected for short chain fatty acid analysis. Six more birds per pen were euthanized and ileal digesta were collected and pooled per pen for nutrient digestibility analysis. Feed intake was greater (P < 0.05) on days 14 and 21 when xylo-oligosaccharide was included in the diet compared to the xylanase and β-glucanase mixture in birds challenged with coccidiosis. Including xylo-oligosaccharide in the diet improved (P < 0.05) the digestibility of nitrogen and supplementing diets with the xylanase and β-glucanase mixture improved (P < 0.05) the digestibility of several amino acids. The concentration of arabinose and xylose was (P < 0.001) greater when broiler diets were supplemented with carbohydrase enzymes or xylo-oligosaccharide compared to the control. Although there was an increase in short chain fatty acid production due to the addition of carbohydrase enzymes or xylo-oligosaccharide, there was no additive effect on the %G+C profile of caecal bacteria however there was a negative effect of coccidiosis. In conclusion, the similarity in the response to carbohydrase enzymes or xylo-oligosaccharide supplementation illustrates that the hydrolysis products from carbohydrase activity may have prebiotic like effects.
Collapse
Affiliation(s)
- Allison D. Craig
- Monogastric Science Research Centre, SRUC, Edinburgh, United Kingdom
- McCall Building, School of Veterinary Medicine, University of Glasgow, United Kingdom
- * E-mail:
| | - Farina Khattak
- Monogastric Science Research Centre, SRUC, Edinburgh, United Kingdom
| | - Peter Hastie
- McCall Building, School of Veterinary Medicine, University of Glasgow, United Kingdom
| | - Mike R. Bedford
- A B Vista, Woodstock Centre, Marlborough Business Park, Marlborough, United Kingdom
| | - Oluyinka A. Olukosi
- Monogastric Science Research Centre, SRUC, Edinburgh, United Kingdom
- Department of Poultry Science, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
20
|
Muszyński S, Świątkiewicz S, Arczewska-Włosek A, Dobrowolski P, Valverde Piedra JL, Arciszewski MB, Szymańczyk S, Zacharko-Siembida A, Kowalik S, Hułas-Stasiak M, Tomczyk-Warunek A, Schwarz T, Tomaszewska E. Analysis of mechanical properties of bones and tendons shows that modern hybrid rye can be introduced to corn-wheat based diet in broiler chickens as an alternative energy source irrespective of xylanase supplementation. Poult Sci 2020; 98:5613-5621. [PMID: 31222275 DOI: 10.3382/ps/pez323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
This study focused on analyzing the effects of inclusion of modern hybrid rye to corn-wheat diet on mechanical properties of bones and tendons. A total of 224 broiler chickens were fed a diet without rye inclusion or a diet containing 15% of hybrid rye cv. Brasetto. The diets were either unsupplemented or supplemented with xylanase (minimum activity 1000 FXU/g, dose 200 mg/kg of feed). Each dietary group consisted of 56 birds. On day 42, selected chickens (n = 7 from each group) were slaughtered. Tibia were analyzed for mineralization, geometry, and biomechanical characteristics of bone mid-diaphysis. The mechanical properties of digital flexor III tendon were also assessed. Bone mineral density and bone ash percentage did not differ when both diets were given without xylanase. Enzyme supplementation increased bone mineral density (P < 0.01) in both dietary groups, whereas bone ash percentage (P < 0.01) increased only for corn-wheat diet. Rye inclusion had no effect on bone mid-shaft geometrical traits related to tibia weight-bearing capacity (cross-sectional area, cortical index, and mean relative wall thickness). Performed bending test showed no effect of hybrid rye inclusion on bone mechanical endurance. When xylanase was supplemented, bone length (P < 0.01) and weight (P < 0.05) decreased, whereas yield load (P < 0.01), stiffness (P < 0.05), Young modulus (P < 0.05), elastics stress (P < 0.01), and ultimate stress (P < 0.01) increased, irrespective of rye presence. The tendon tensile strain test showed that in corn-wheat diet enzyme supplementation positively influenced rupture force (P < 0.05) and tendon stiffness (P < 0.01). Xylanase supplementation increased the value of energy required to tendon rupture, irrespective of rye inclusion (P < 0.05). Study showed that modern hybrid rye varieties can be introduced to corn-wheat diets of broiler chickens in the aspect of animal welfare related to the development and homeostasis of musculoskeletal system, irrespective of xylanase supplementation. The enzyme addition positively affected biomechanical properties of bones and tendons.
Collapse
Affiliation(s)
- S Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - S Świątkiewicz
- Department of Nutrition Physiology, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - A Arczewska-Włosek
- Department of Nutrition Physiology, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - P Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, 20-400 Lublin, Poland
| | - J L Valverde Piedra
- Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - M B Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - S Szymańczyk
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - A Zacharko-Siembida
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - S Kowalik
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - M Hułas-Stasiak
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, 20-400 Lublin, Poland
| | - A Tomczyk-Warunek
- Locomotor System Research Department, Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland
| | - T Schwarz
- Department of Swine and Small Animal Breeding, University of Agriculture in Kraków, 30-059 Cracow, Poland
| | - E Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
21
|
González-Ortiz G, Dos Santos TT, Vienola K, Vartiainen S, Apajalahti J, Bedford MR. Response of broiler chickens to xylanase and butyrate supplementation. Poult Sci 2019; 98:3914-3925. [PMID: 30915461 DOI: 10.3382/ps/pez113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
A 2 × 2 factorial experiment was used to evaluate the effect of xylanase and sodium butyrate supplementation on performance, intestinal fermentation, histology, and morphometry in broiler chickens. A total of 384 Ross 308 broiler chicks (1-day-old) were allocated to 4 experimental treatments: CTR (control diet), XYL (CTR diet with 16,000 BXU/kg of xylanase), BUT (CTR diet with 1 kg/t sodium butyrate), and XYL+BUT (CTR diet plus xylanase and sodium butyrate). Each treatment had 8 replicates of 12 animals. Starter and grower diets, based on wheat and soybean meal, and water were available ad libitum. Body weight gain and feed intake were measured from 0 to 42 D, and feed conversion ratio corrected for mortality (FCR) was calculated. The profile of short-chain fatty acids in the duodenum, jejunum, ileum, and ceca digesta on days 21 and 42 was analyzed in addition to the relative weights of the different portions of the gastrointestinal tract (GIT). The villus height (VH), crypt depth (CD), and villus to crypt (VH: CD) ratio from the ileal tissue on day 42 were also evaluated. Statistical comparisons were performed using a 2-way ANOVA. Xylanase supplementation improved 42-D FCR by 5 points (P = 0.006), while butyrate did not affect 42-D FCR. On day 21, birds fed butyrate had heavier total GIT (P = 0.024), duodenum (P < 0.001), and jejunum (P = 0.025). Xylanase did not influence the relative weights in any intestinal section except the crop which was smaller in xylanase supplemented birds. At day 42, the VH: CD ratio was increased with sodium butyrate (P = 0.005). Supplementation of broiler diets with xylanase improved performance but had little effect on intestinal measures, whereas sodium butyrate influenced many of the intestinal indices with no consequence on animal performance.
Collapse
Affiliation(s)
| | | | - K Vienola
- Alimetrics Ltd., 02920 Espoo, Finland
| | | | | | - M R Bedford
- AB Vista, Marlborough, Wiltshire SN8 4AN, UK
| |
Collapse
|
22
|
Craig AD, Bedford MR, Hastie P, Khattak F, Olukosi OA. The effect of carbohydrases or prebiotic oligosaccharides on growth performance, nutrient utilisation and development of small intestine and immune organs in broilers fed nutrient-adequate diets based on either wheat or barley. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3246-3254. [PMID: 30549054 PMCID: PMC6492135 DOI: 10.1002/jsfa.9537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Non-starch polysaccharides are large complex molecules and are found in cereal grains. This study was conducted to investigate the effect of carbohydrase enzymes or prebiotic oligosaccharides on growth performance, nutrient utilisation and weight of organs associated with the immune system in broilers fed wheat- or barley-based diets. RESULTS In wheat-based diets, feed intake was lower (P < 0.05) following xylo-oligosaccharide supplementation, whereas in barley-based diets feed intake was greater (P < 0.05) following β-glucanase supplementation. Gross energy digestibility was improved (P < 0.01) when either level of xylanase was added to wheat diets. Ileal digestible energy was greater (P < 0.01) in wheat diets including an additive compared with the control diet. In wheat diets, bursa weight was lower (P < 0.05) following xylo-oligosaccharide supplementation compared with the control treatment. CONCLUSIONS The current study showed that supplemented carbohydrases or prebiotic oligosaccharides could alter the development of immune organs or small intestine without any significant effect on growth performance in broilers receiving nutrient-adequate diets. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Allison D Craig
- Monogastric Science Research Centre, Scotland's Rural CollegeEdinburghEH9 3JGUK
- McCall Building, School of Veterinary MedicineUniversity of GlasgowGlasgowUK
| | | | - Peter Hastie
- McCall Building, School of Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Farina Khattak
- Monogastric Science Research Centre, Scotland's Rural CollegeEdinburghEH9 3JGUK
| | - Oluyinka A Olukosi
- Monogastric Science Research Centre, Scotland's Rural CollegeEdinburghEH9 3JGUK
- Department of Poultry ScienceUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
23
|
Lin YS, Saputra F, Chen YC, Hu SY. Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 86:410-419. [PMID: 30471337 DOI: 10.1016/j.fsi.2018.11.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Zebrafish (Danio rerio) are an excellent model for assessing the beneficial effects of probiotics before applying them in aquaculture. This study evaluated the effects on zebrafish of dietary supplementation with the probiotic Bacillus amyloliquefaciens R8, which heterologously expresses xylanase from rumen fungi. Nutrient metabolism, hepatic oxidative stress, and innate immunity against pathogen infections were investigated. Treated zebrafish received feed supplemented with B. amyloliquefaciens R8 for 30 days and then were compared to zebrafish that were fed a control diet. The treated fish showed significant increases in xylanase activity in the intestines. The livers of the treated fish showed increased mRNA expressions of glycolysis-related genes of hexokinase, glucokinase, glucose-6-phosphatase, and pyruvate kinase; and higher enzyme activities of 3-hydroxyacyl-coenzyme A dehydrogenase and citrate synthase which are associated with fatty acid β-oxidation and mitochondrial integrity. The livers of treated fish also showed decreased mRNA expressions of oxidative stress-related genes (SOD, Gpx, NOS2, and Hsp70) and an apoptotic gene (tp53), as well as increased expression of an anti-apoptotic gene (bcl-2). The probiotics-treated fish had increased expression of innate immune-related genes (IL-1β, IL-6, IL-21, TNF-α, and TLR-1, -3, and -4). Following challenge with Aeromonas hydrophila and Streptococcus agalactiae, treated fish showed increased a higher survival rate than control fish. Overall, results showed that the administration of xylanase-expressing B. amyloliquefaciens R8 can potentially improve nutrient metabolism and hepatic stress tolerance, and enhance immunity and disease resistance against A. hydrophila and S. agalactiae in zebrafish.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Febriyansyah Saputra
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Department of Aquaculture, Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, Indonesia
| | - Yo-Chia Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
24
|
Xylanase and Fermented Polysaccharide of Hericium caputmedusae Reduce Pathogenic Infection of Broilers by Improving Antioxidant and Anti-Inflammatory Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4296985. [PMID: 30693063 PMCID: PMC6332932 DOI: 10.1155/2018/4296985] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/12/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Background Pathogenic infection in broilers has become an important issue in the development of poultry industry. Xylooligosaccharides released from xylan via xylanase and fermented polysaccharide of Hericium caputmedusae (FPHC) have antimicrobial potential against many pathogens. Objective We aimed to explore the effects of xylanase and FPHC on pathogenic infection in the broilers (Gallus gallus domesticus). Methods Three hundred and thirty 21-day male broilers were assigned into four groups: control group (CG, basic diet), xylanase group (XG, basic diet + xylanase), FPHC group (HG, basic diet + FPHC), and XHG group (basic diet + xylanase + FPHC). Average daily feed intake (ADFI) and daily gain (ADG) were measured. Microflora from broiler feces was analyzed using 16S rRNA sequencing. Serum tumor necrosis factor- (TNF-) α, interleukin-1β (IL-1β), IL-1 receptor antagonist (IL-1ra), IL-10, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) contents were detected using kits. The variables were compared using the Student t-test between two groups. Results Microbiological investigations showed that 75% of broilers were affected by bacterial pathogens in the CG group, most notably by coagulase-negative staphylococci. Comparatively, 15%, 26%, and 5% of broilers were affected by bacterial pathogens in the XG, HG, and XHG groups, respectively. Xylanase and FPHC treatment increased the ratio of ADG to ADFI and antioxidant capacity by increasing the levels of T-AOC, SOD, and GSH-Px and reducing the levels of MDA (P < 0.05). Xylanase and FPHC treatment improved anti-inflammatory capacity by increasing serum levels of IL-1ra and IL-10 and reducing the levels of IL-1β and TNF-α. On the other hand, the treatment increased probiotic concentration of Bacillus licheniformis, Bacillus subtilis, and Lactobacillus plantarum (P < 0.05), which were also proved in cell culture. Conclusions Xylanase and FPHC ameliorate pathogen infection by increasing antioxidant and anti-inflammatory activities of broilers via the increase of probiotics.
Collapse
|
25
|
AI QIN, ZHAO JIANGTAO, TAN HUIZE, ZHANG CHUNLEI, XU JINGREN, FENG DINGYUAN, ZUO JIANGJUN. Effects of xylanase on yellow-feather broiler diets. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i1.79518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To evaluate the effect of xylanase on broiler diets, we carried out two trials. In experiment 1, broilers were randomly assigned to six wheat-maize-soybean meal diet groups with different xylanase concentrations (0–500 mg/kg-1). In experiment 2, broilers were randomly assigned to several experimental groups consisting of two metabolic methods (total tract excreta collection and ileal digesta collection) and two xylanase concentrations (0 and 244.23mg/kg-1). Based on the results, xylanase supplementation significantly increased the digestibility of dry matter, gross energy and apparent metabolizable energy. These corresponding values were maximized at 300 mg/ kg-1 xylanase. The coefficients of variation (CVs) for DM, GE and AME in the ileal digesta collection method were about 10%, whereas those in the total tract collection method were only about 1.7%. Regression analysis showed that a segmented model satisfactorily described the dose-response relationship. Compared to the ileal digesta collection method, the total tract excreta collection method was more efficient for evaluating the effects of xylanase. These results provide valuable information on the optimal nutrition of broilers.
Collapse
|
26
|
Van Immerseel F, Eeckhaut V, Moore RJ, Choct M, Ducatelle R. Beneficial microbial signals from alternative feed ingredients: a way to improve sustainability of broiler production? Microb Biotechnol 2017; 10:1008-1011. [PMID: 28840976 PMCID: PMC5609280 DOI: 10.1111/1751-7915.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023] Open
Abstract
More sustainable broiler meat production can be facilitated by the increased use of cheap by‐products and local crops as feed ingredients, while not affecting animal performance and intestinal health, or even improving intestinal health, so that antibiotic usage is further reduced. To achieve this, knowledge of the relationship between the taxonomic and functional microbiota composition and intestinal health is required. In addition, the relationship between the novel feed sources, the substrates present in these feed sources, and the breakdown by enzymes and microbial networks can be crucial, because this can form the basis for development of tailored feed‐type specific solutions for optimal digestion and animal performance.
Collapse
Affiliation(s)
- Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Vic., Australia
| | - Mingan Choct
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
27
|
|