1
|
Li SY, Tong MM, Li L, Hui F, Meng FZ, Zhao YL, Guo YM, Guo XY, Shi BL, Yan SM. Rectal microbiomes and serum metabolomics reveal the improved effect of Artemisia ordosica crude polysaccharides on the lactation performance, antioxidant status, and immune responses of lactating donkeys. J Dairy Sci 2024; 107:6696-6716. [PMID: 38608958 DOI: 10.3168/jds.2023-24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
This study is aimed at investigating the effects of dietary supplementation with Artemisia ordosica crude polysaccharides (AOCP) on lactation performance, antioxidant status, and immune status of lactating donkeys and analyzing rectal microbiomes and serum metabolomes. Fourteen lactating Dezhou donkeys with similar age (6.16 ± 0.67 yr of BW ± SD), weight (250.06 ± 25.18 kg), DIM (39.11 ± 7.42 d), and average parity of 3 were randomly allocated into 2 treatments: a control group (CON, basal diet) and an AOCP group (AOCP, basal diet with 1.0 g/kg DM AOCP). Ten weeks were allotted for the experiment, 2 wk for adaptation, and 8 wk for collecting data and samples. The results showed that supplementation of donkey diets with AOCP increased lactation performance, including DMI, milking yield, estimated milk yield, solids-corrected milk, ECM, milk fat yield, milk protein yield, milk lactose yield, milk TS yield, and milk SNF yield. The digestibility of DM, CP, ADF, and NDF was increased in the AOCP group compared with the CON group. The AOCP group increased the concentrations of IgA, IgG, and IgM, the activities of the superoxide dismutase, catalase, and total antioxidant capacity in the serum. Artemisia ordosica crude polysaccharides decreased the concentrations of tumor necrosis factor-α, nitric oxide, reactive oxygen species, and malondialdehyde in the serum. Compared with the CON group, AOCP increased propionate, butyrate, isovalerate, and total VFA concentrations in rectal feces (P < 0.05). The addition of AOCP to increased diversity (Shannon index) and altered structure of the rectal microflora. As a result of AOCP supplementation, there has been a significant improvement in the colonization of beneficial bacteria, including Lactobacillus, Unclassified_f_Prevotellacea, Ruminococcus, and Fibrobacter genera. In contrast, a decrease in the colonization of the Clostridium_sensu_stricto_1 bacterial genus and other pathogenic bacteria was observed. Meanwhile, metabolomics analysis found that AOCP supplementation upregulated metabolites l-tyrosine content while downregulating 9(S)-HODE, choline, sucrose, lysophosphatidylcholine (LysoPC) (18:0), LysoPC (18:1(9Z)), and LysoPC (20:2(11Z,14Z)) concentrations. These altered metabolites were involved in the PPAR signaling pathway, prolactin signaling pathway, glycerophospholipid metabolism, carbohydrate digestion and absorption, and tyrosine metabolism pathways, which were mainly related to antioxidant capacity, immune responses, and protein metabolism in the lactating donkeys. As a consequence of feeding AOCP diets, beneficial bacteria were abundant, and antioxidant and protein metabolism-related pathways were enriched, which may enhance lactation performance in donkeys. Therefore, supplementing AOCP diets is a desirable dietary strategy to improve donkey health and lactation performance.
Collapse
Affiliation(s)
- S Y Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - M M Tong
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - L Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Hui
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Z Meng
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y L Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y M Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - X Y Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - B L Shi
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - S M Yan
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
2
|
Lan Z, Huang H, Liu C, Li J, Li X. Lactiplantibacillus sp. G6 isolated from goose intestine as starter culture for degrading nitrite and improving quality in Chinese pickle fermentation. Food Sci Biotechnol 2024; 33:1413-1423. [PMID: 38585556 PMCID: PMC10992155 DOI: 10.1007/s10068-023-01433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2023] [Accepted: 09/10/2023] [Indexed: 04/09/2024] Open
Abstract
Animal intestines is considered as a source of lactic acid bacteria (LAB) that have potential to decrease the nitrite level during fermentation of food such as pickles. It was hypothesized that optimized level of LAB has a high capacity to degrade nitrite during Chinese pickle fermentation and benefit a higher acceptability of the Chinese pickle product. This study aims to investigate the performance of a goose intestine-isolated LAB strain G6 under the species Lactiplantibacillus plantarum as a starter culture of Chinese pickles. The results showed that Lactiplantibacillus sp. G6 had a nitrite degradation rate close to 100% under the MRS broth condition of 25 °C, 2% inoculum volume and pH at 5. As a starter culture for Chinese pickle, this strain was able to achieve a higher LABs amount, lower nitrite residue after fermentation, compared with the group without the starter, which implicates its feasibility of applying on fermented food for reducing nitrite level. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01433-8.
Collapse
Affiliation(s)
- Ziya Lan
- South China Agricultural University, Guangzhou, 510000 China
| | - Huiling Huang
- South China Agricultural University, Guangzhou, 510000 China
| | - Chenyang Liu
- South China Agricultural University, Guangzhou, 510000 China
| | - Jincai Li
- South China Agricultural University, Guangzhou, 510000 China
| | - Xueling Li
- South China Agricultural University, Guangzhou, 510000 China
| |
Collapse
|
3
|
Hong X, Zhang Y, Ni H, Xiao Q, Yin Y, Ren J, Zhao P, Zhang Z, Li X, Li Y, Yang Y. Optimization of Fermented Maize Stover for the Fattening Phase of Geese: Effect on Production Performance and Gut Microflora. Animals (Basel) 2024; 14:433. [PMID: 38338076 PMCID: PMC10854615 DOI: 10.3390/ani14030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
To optimize the utilization of fermented maize stover (FMS) feed during the fattening phase of Xianghai flying geese (XFG), a total of 300 XFG at 125 days of age were randomly assigned to four dietary treatment groups with three replicates of 25 in each set. Group A was fed the basal fattening diet, while the B, C, and D groups were fed the basic fattening diet and diets supplemented with 5%, 10% or 15% FMS, respectively. The findings indicate that the production performance indicators (especially the dressed, eviscerated and breast muscle yield) of Group D closely resembled Group A more than Groups B and C. Intestinal morphometry found that the jejunal villus height and the villus height/crypt depth were significantly increased in Group D compared to Group A. Next, 16S rRNA amplicon sequencing of the extracted DNA revealed that beneficial microbiota (Coprococcus and Victivallis) showed increased abundance in Group D. Cecal flora function analysis further revealed that some amino acid and glycerol biosynthesis were found to be associated with growth performance in geese. These findings suggest that incorporating 15% FMS as a substitute for a portion of the feed during the fattening phase of XFG can effectively sustain their production performance, optimize the gut microbial community and morphometrical traits, provide new insight into using non-conventional feed resources to reduce feed cost and improve economic benefits in the breeding industry.
Collapse
Affiliation(s)
- Xiaoqing Hong
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Hongyu Ni
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Qingxing Xiao
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yijing Yin
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Jing Ren
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Puze Zhao
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Ziyi Zhang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Xiaohui Li
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| |
Collapse
|
4
|
Ma S, Wang Y, Chen L, Wang W, Zhuang X, Liu Y, Zhao R. Parental betaine supplementation promotes gosling growth with epigenetic modulation of IGF gene family in the liver. J Anim Sci 2024; 102:skae065. [PMID: 38483185 PMCID: PMC10980284 DOI: 10.1093/jas/skae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor β (TRβ) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRβ binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenzheng Wang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Xinjuan Zhuang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Yuelong Liu
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| |
Collapse
|
5
|
Li M, Gou D, Gong P, Di W, Wang L, Ding J, Chang Y, Zuo R. An Investigation on the Effects of Dietary Vitamin E on Juvenile Sea Urchin ( Strongylocentrotus intermedius): Growth, Intestinal Microbiota, Immune Response, and Related Gene Expression. BIOLOGY 2023; 12:1523. [PMID: 38132349 PMCID: PMC10740812 DOI: 10.3390/biology12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
A 90 d feeding experiment was conducted to investigate the effects of vitamin E (VE) on growth, intestinal microbiota, immune response, and related gene expression of juvenile sea urchin (Strongylocentrotus intermedius). Six dry feeds were made to contain graded levels of VE (78, 105, 152, 235, 302, and 390 mg/kg); these were named E78, E105, E152, E235, E302, and E390, respectively. Dry feed E50 and fresh kelp (HD) were used as the control diets. There were six replicates of cages in each dietary group, and each cage held 20 sea urchins with an initial body weight of approximately 1.50 g. Results exhibited that weight gain rate and gonadosomatic index (GSI) of the sea urchins were not significantly affected by dietary VE ranging from 78 to 390 mg/kg. Sea urchins in the dry feed groups showed poorer growth performance, but significantly higher GSI than those in the fresh kelp groups. The pepsin and lipase activities were not significantly promoted by low or moderate VE, but were inhibited by a high level of VE (302-390 mg/kg), while amylase and cellulase activities were significantly increased by low or moderate VE, with the highest values observed in the E105 and E235 groups, respectively. VE addition at a low dosage (105-152 mg/kg) showed inhibitory effects on immune and antioxidant enzyme activities and expression of inflammation-related genes, but showed no beneficial effects at moderate or high dosage (235-390 mg/kg), while a moderate or relatively higher level of VE (235-302 mg/kg) significantly increased the expression of several immune-related genes. The relative abundance of Proteobacteria, Actinobacteria, Ruegeria, and Maliponia in the intestine of the sea urchins increased with the increase in VE in the dry feeds. On the contrary, the relative abundance of the Firmicutes, Bacteroidetes, Escherichia-Shigella, Bacteroides, and Clostridium sensu stricto 1 gradually decreased as VE content increased. These results indicated that a moderate level of VE (172.5-262.4) can achieve ideal digestive enzyme activities and growth performance, but a relatively higher level of VE (235-302 mg/kg) was beneficial for maintaining the immune and antioxidant capacity of juvenile S. intermedius by regulating the expression of inflammation- and immune-related genes and abundance of some bacteria to a healthy state.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
- Department of Marine Biology, Weihai Ocean Vocational College, Weihai 264300, China
| | - Dan Gou
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Panke Gong
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Weixiao Di
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Lina Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Jun Ding
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Rantao Zuo
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| |
Collapse
|
6
|
Zhu J, Song Y, Xiao Y, Ma L, Hu C, Yang H, Wang X, Lyu W. Metagenomic reconstructions of caecal microbiome in Landes, Roman and Zhedong White geese. Br Poult Sci 2023; 64:565-576. [PMID: 37493577 DOI: 10.1080/00071668.2023.2239172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
1. The caecal microbiota in geese play a crucial role in determining the host's health, disease status and behaviour, as evidenced by extensive epidemiological data. The present investigation conducted 10× metagenomic sequencing of caecal content samples obtained from three distinct goose species, namely Landes geese, Roman geese and Zhedong White geese (n = 5), to explore the contribution of the gut microbiome to carbohydrate metabolism.2. In total, 337GB of Illumina data were generated, which identified 1,048,575 complete genes and construction of 331 metagenomic bins, encompassing 78 species from nine phyla. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Bacteria were identified as the dominant phyla while Prevotella, Bacteroides, Streptococcus, and Subdoligranulum were the most abundant genera in the caecum of geese.3. The genes were allocated to 375 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The most abundant classes in the caecum of geese were confirmed to be glycoside hydrolases (GHs), glycosyl transferases (GTs), as identified through the carbohydrate-active enzyme (CAZyme) database mapping. Subdoligranulum variabile and Mediterraneibacter glycyrrhizinilyticus were discovered to potentially facilitate carbohydrate digestion in geese.4. Notwithstanding, further investigation and validation are required to establish a connection between these species and CAZymes. Based on binning analysis, Mediterraneibacter glycyrrhizinilyticus and Ruminococcus sp. CAG:177 are potential species in LD geese that contribute to the production of fatty liver.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Y Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - C Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - H Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Wang X, Li G, Wang H, Liu Y, Yang Y, Wang C, Gong S, He D. Feeding whole-plant ensiled corn stover affects growth performance, blood parameters, and Cecal microbiota of Holdobagy goose. Front Vet Sci 2023; 10:1210706. [PMID: 37397002 PMCID: PMC10310790 DOI: 10.3389/fvets.2023.1210706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The aim of this study was to investigate the effects of adding whole-plant ensiled corn stalks (WECS) to the diet of Holdorbagy geese on their growth performance, serum parameters, and cecal microbiota. Geese farming is an important agricultural practice, and optimizing their diet can contribute to better growth and health outcomes. However, there is limited research on the utilization of WECS as a feed source for geese. Understanding the potential effects of WECS on growth, blood parameters, and cecal microbiota can provide valuable insights into its feasibility and impact on geese farming practices. Methods A total of 144 six-week-old Holdorbagy geese were randomly assigned to one of three groups: a control group (0% WECS), a group fed 15% WECS and 85% concentrated feed (15% WECS), and a group fed 30% WECS and 70% concentrated feed (30% WECS). The trial period lasted for three weeks, during which the growth performance, serum parameters, and cecal microbiota were assessed. Results The results revealed significant findings in different aspects. Firstly, the feed-to-gain ratio (F/G ratio) of the 15% WECS group was significantly higher than that of the control group (p<0.05), indicating potential challenges in feed efficiency. Additionally, the average daily feed intake (ADFI) of both the 15% and 30% WECS groups was significantly higher than that of the control group (p<0.05), suggesting increased appetite or palatability of the diet containing WECS. In terms of serum parameters, the level of lactate dehydrogenase (LDH) in the 30% WECS group was significantly lower than that in the control group (p<0.05). Moreover, there was a tendency for increasing Fe levels and decreasing Zn levels with higher levels of WECS supplementation, although the differences were not statistically significant (p<0.05). Furthermore, the principal coordinate analysis showed significant differences in the composition of cecal microbiota among the three groups (p < 0.01). The observed_species, Shannon, and Pielou_e indices of the 30% WECS group were significantly higher than those of the 0% and 15% WECS groups (p<0.05), while the Simpson index of the 15% WECS group was significantly lower than that of the control group (p<0.05). Discussion The results indicate that the addition of WECS to the geese diet has both positive and negative effects. The study suggests that WECS can be a long-term stable feed source for geese, which can contribute to reducing feeding costs. However, it is important to monitor the amount of WECS added as it can affect the absorption of Zn by geese. Supplementation of Zn in the diet might be necessary to meet the needs of geese. Notably, adding 30% WECS to the diet can increase the richness, evenness, and diversity of the cecal microbiota, indicating potential benefits to gut health. In conclusion, this study highlights the potential of WECS as a feed source for geese. It provides valuable insights into the effects of WECS on growth performance, serum parameters, and cecal microbiota. These findings contribute to optimizing geese farming practices, improving feed utilization, and enhancing overall productivity and well-being of geese. Further research is needed to determine the optimal inclusion level of WECS and to explore strategies for mitigating any negative effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daqian He
- *Correspondence: Daqian He, ; Huiying Wang,
| |
Collapse
|
8
|
Gao X, Wang X, Wu X, Shang Y, Mei X, Zhou S, Wei Q, Sun G, Dong Y, Cui W, Zhang H. Comparative Analyses of the Fecal Microbiome of Five Wild Black-Billed Capercaillie ( Tetrao parvirostris) Flocks. Animals (Basel) 2023; 13:923. [PMID: 36899780 PMCID: PMC10000248 DOI: 10.3390/ani13050923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Black-billed capercaillie (Tetrao parvirostris) was listed as a first-class state-protected animal because it was endangered in China (Category I). This study is the first to examine the diversity and composition of T. parvirostris gut microbiome in the wild. We collected fecal samples from five black-billed capercaillie flock roosting sites (each 20 km apart) in one day. Thirty fecal samples were sequenced with 16S rRNA gene amplicons on the Illumina HiSeq platform. This study is the first to analyze the fecal microbiome composition and diversity of black-billed capercaillie in the wild. At the phylum level, Camplyobacterota, Bacillota, Cyanobacteria, Actinomycetota, and Bacteroidota were the most abundant in the fecal microbiome of black-billed capercaillie. At the genus level, unidentified Chloroplast, Escherichia-Shigella, Faecalitalea, Bifidobacterium, and Halomonas were the dominant genera. Based on alpha and beta diversity analyses, we found no significant differences in the fecal microbiome between five flocks of black-billed capercaillie. Protein families: genetic information processing; protein families: signaling and cellular processes, carbohydrate metabolism; protein families: metabolism and energy metabolism are the main predicted functions of the black-billed capercaillie gut microbiome through the PICRUSt2 method. This study reveals the composition and structure of the fecal microbiome of the black-billed capercaillie under wild survival conditions, and this study provides scientific data for the comprehensive conservation of the black-billed capercaillie.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
9
|
Fu G, Zhou Y, Song Y, Liu C, Hu M, Xie Q, Wang J, Zhang Y, Shi Y, Chen S, Hu J, Sun Y. The effect of combined dietary supplementation of herbal additives on carcass traits, meat quality, immunity and cecal microbiota composition in Hungarian white geese. PeerJ 2023; 11:e15316. [PMID: 37180579 PMCID: PMC10174065 DOI: 10.7717/peerj.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
The present study was performed to investigate the effects of dietary supplementation with herbal additives on meat quality, slaughter performance and the cecal microbial community in Hungarian white geese. A total of 60 newborn geese were assigned equally into the control group (CON) and the herbal complex supplemented group (HS). The dietary supplementations consisted of Compound Herbal Additive A (CHAA) including Pulsatilla, Gentian and Rhizoma coptidis, and Compound Herbal Additive B (CHAB) containing Codonopsis pilosula, Atractylodes, Poria cocos and Licorice. The geese in the HS group received a basal diet supplemented with 0.2% CHAA from day 0 to day 42 at the postnatal stage. Then from day 43 to day 70, the geese in HS group were provide a basal diet with 0.15% CHAB. The geese in the CON group were only provided with the basal diet. The results showed that the slaughter rate (SR), half chamber rates (HCR), eviscerated rate (ER) and breast muscle rate (BMR) in the HS group tended to increase slightly compared with the CON group (ns). In addition, the shear force, filtration rate and pH value of breast muscle and thigh muscle in the HS group were slightly enhanced compared to the CON group (ns). Significant increased levels in carbohydrate content, fat content and energy (P < 0.01) and significant decreased levels in cholesterol content (P < 0.01) were observed in the muscle of the HS group. The total amino acid (Glu, Lys, Thr and Asp) content in the muscle increased in HS group than in the CON group (P < 0.01). Dietary herb supplementations significantly increased the levels of IgG in serum (P < 0.05) on day 43 and higher levels of IgM, IgA and IgG (P < 0.01) were also observed in the HS group on day 70. Furthermore, 16S rRNA sequencing results indicated that herbal additives increased the growth of beneficial bacteria and inhibited the proliferation of harmful bacteria in the geese caecum. Altogether, these results offer crucial insights into the potential benefits of incorporating CHAA and CHAB into the diets of Hungarian white goose. The findings indicate that such supplementations could significantly improve meat quality, regulate the immune system and shape the intestinal microbiota composition.
Collapse
Affiliation(s)
- Guilin Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chang Liu
- Changchun Animal Husbandry Service, Changchun, China
| | - Manjie Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiuyu Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yumeng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuhao Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Zhang J, Cheng Y, Wang F, Yuan Y, Liu A, Wan K, Han Y, He H. Effect of dietary yeast culture supplementation on the cecal microbiota modulation of geese. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Guo Z, Lv L, Liu D, He X, Wang W, Feng Y, Islam MS, Wang Q, Chen W, Liu Z, Wu S, Abied A. A global meta-analysis of animal manure application and soil microbial ecology based on random control treatments. PLoS One 2022; 17:e0262139. [PMID: 35061792 PMCID: PMC8782357 DOI: 10.1371/journal.pone.0262139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
The processes involved in soil domestication have altered the soil microbial ecology. We examined the question of whether animal manure application affects the soil microbial ecology of farmlands. The effects of global animal manure application on soil microorganisms were subjected to a meta-analysis based on randomized controlled treatments. A total of 2303 studies conducted in the last 30 years were incorporated into the analysis, and an additional 45 soil samples were collected and sequenced to obtain 16S rRNA and 18S rRNA data. The results revealed that manure application increased soil microbial biomass. Manure application alone increased bacterial diversity (M-Z: 7.546 and M-I: 8.68) and inhibited and reduced fungal diversity (M-Z: -1.15 and M-I: -1.03). Inorganic fertilizer replaced cattle and swine manure and provided nutrients to soil microorganisms. The soil samples of the experimental base were analyzed, and the relative abundances of bacteria and fungi were altered compared with no manure application. Manure increased bacterial diversity and reduced fungal diversity. Mrakia frigida and Betaproteobacteriales, which inhibit other microorganisms, increased significantly in the domesticated soil. Moreover, farm sewage treatments resulted in a bottleneck in the manure recovery rate that should be the focus of future research. Our results suggest that the potential risks of restructuring the microbial ecology of cultivated land must be considered.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
- * E-mail: , (ZG); (DL)
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R. China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
- * E-mail: , (ZG); (DL)
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Yanzhong Feng
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Md. Saiful Islam
- Department of Animal Production & Management, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - Qiuju Wang
- Key laboratory of Heilongjiang Soil Environment and Plant Nutrient, Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, P. R. China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R. China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Saihui Wu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
| | - Adam Abied
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin, P. R. China
- Dry Land Research Center (DLRC) and Animal Production, Agricultural Research Corporation (ARC), Khartoum, Sudan
- Projects and Programs Secretary of the Sudan Youth Organization on Climate Change, Khartoum, Sudan
| |
Collapse
|
12
|
Xi Y, Huang Y, Li Y, Huang Y, Yan J, Shi Z. The effects of dietary protein and fiber levels on growth performance, gout occurrence, intestinal microbial communities, and immunoregulation in the gut-kidney axis of goslings. Poult Sci 2022; 101:101780. [PMID: 35325834 PMCID: PMC8938869 DOI: 10.1016/j.psj.2022.101780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
The current study evaluated the effects of dietary protein and fiber levels on growth performance, gout occurrence, intestinal microbial communities, and immunoregulation in the gut-kidney axis of goslings. A completely randomized 2 × 3 factorial design was adopted with 2 CP levels (180 [18CP] and 220 [22CP] g/kg) and 3 crude fiber (CF) levels (30 [low CF], 50 [mid CF], and 70 [high CF] g/kg). The high CP or low CF diets predisposed the goslings to gout. The high protein diets worsened renal function; serum concentrations of UA and Cr as well as XOD activity in 9-day-old goslings fed 22% CP diets were significantly increased. Although CF levels from 3 to 7% did not directly affect kidney health, increasing CF levels might accelerate the increase of probiotics in the cecum of goslings and withhold maleficent bacteria, alleviating the gut dysbiosis caused by high protein diets. An analysis of the cecal microbiota via 16Sr RNA sequencing revealed that the abundance of Enterococcus in the 22CP group was higher than that in the 18CP group but decreased with increasing CF levels on d 9. The abundance of Lactobacillus increased with increasing CF levels. Additionally, higher serum LPS and proinflammatory cytokine concentrations and upregulated mRNA expression levels in the cecal, tonsil, and kidney tissues indicated that high-protein diets could activate the TLR4/MyD88/NFκB pathway and induce both intestinal and renal inflammation in young goslings. Serum LPS concentrations on d 9 were found to decrease with increasing CF, although altering dietary CF levels did not directly affect the serum immune indices of goslings. In conclusion, the high CP diet exerted a negative effect on gout occurrence, microbial communities, and immunoregulation in the gut-kidney axis of goslings, while appropriately increased dietary fiber levels helped maintain intestinal balance and reduced serum LPS concentration. We propose a diet of 18% CP paired with a 5% CF as the optimal combination for gosling feed.
Collapse
|
13
|
Zhong H, Liu Z, Luo Y, Li J, Huang X, Wang Q, Wang C. Comparative Analysis on the Duodenal Microbiota Community in Geese Fed with the All-grass or Basal Diet. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2020-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- H Zhong
- Chongqing Academy of Animal Sciences, P.R. China
| | - Z Liu
- Chongqing Academy of Animal Sciences, P.R. China
| | - Y Luo
- Chongqing Academy of Animal Sciences, P.R. China
| | - J Li
- Chongqing Academy of Animal Sciences, P.R. China
| | - X Huang
- Chongqing Academy of Animal Sciences, P.R. China
| | - Q Wang
- Chongqing Academy of Animal Sciences, P.R. China
| | - C Wang
- Chongqing Academy of Animal Sciences, P.R. China
| |
Collapse
|
14
|
Wan Y, Ma R, Zhang H, Li L, Chai L, Qi R, Liu W, Li J, Li Y, Zhan K. Different Non-cage Housing Systems Alter Duodenal and Cecal Microbiota Composition in Shendan Chickens. Front Vet Sci 2021; 8:728538. [PMID: 34692808 PMCID: PMC8526545 DOI: 10.3389/fvets.2021.728538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Housing systems are among the most important non-genetic factors affecting hen production performance and intestinal microbes. With increased interest in animal welfare, cage-free laying hen housing systems have become common, providing behavioral freedom and health benefits. The present study aimed to compare the effects of plastic net housing system (NRS) and floor litter housing system (LRS) on the composition and function of the duodenal and cecal microbiota in Shendan chicken, one of the most popular laying hen strains in China. The associations between the differential microbiota abundance and production traits and intestinal morphological parameters were determined. Compared with the LRS, the NRS improved the laying rate (p < 0.05) and increased the villus height (VH) of the duodenum (p < 0.05) and the VH-to-crypt depth ratio (VCR) of the cecum (p < 0.05). Alpha diversity analysis showed that LRS chickens had a significantly higher diversity and richness than NRS chickens. Beta diversity analysis demonstrated differences in the microbiota composition based on housing systems. Within the cecum, Proteobacteria and Kiritimatiellaeota were significantly more abundant in the LRS than in the NRS (p < 0.05), while Bacteroidetes were significantly less abundant in the LRS (p < 0.05). Phascolarctobacterium and Ruminococcaceae_UCG-005 were significantly less abundant in the LRS (p < 0.05) compare to the NRS. Within the duodenum, Lactobacillus was significantly less abundant in the LRS (p < 0.05) than in the NRS, while Pseudomonas was significantly more abundant in the LRS (p < 0.05). Cecal Phascolarctobacterium and Ruminococcaceae_UCG-005 were significantly positively correlated with eggshell strength (R = 0.608, p < 0.01) and egg weight (R = 0.526, p < 0.05), respectively. Duodenal Lactobacillus was significantly positively correlated with VH and VCR (R = 0.548 and 0.565, p < 0.05), while Pseudomonas was significantly negatively correlated with the Haugh unit (R = -0.550, p < 0.05). In conclusion, there are differences in the cecal and duodenal microbiota compositions of Shendan laying hens reared in different non-cage housing systems, and the NRS was superior to the LRS in improving the laying performance and intestinal morphology and microecological environment.
Collapse
Affiliation(s)
- Yi Wan
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei, China
| | - Ruiyu Ma
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei, China
| | - Hongyi Zhang
- Hubei Shendan Health Food Co., Ltd., Anlu, China
| | - Ling Li
- Hubei Shendan Health Food Co., Ltd., Anlu, China
| | - Lilong Chai
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Renrong Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei, China
| | - Wei Liu
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei, China
| | - Junying Li
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei, China
| | - Yan Li
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei, China
| | - Kai Zhan
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei, China
| |
Collapse
|
15
|
Liu G, Guo Z, Liu D, Meng H, Zheng Y, Zhao X, Gu L, Chen Z, Chen X, Li M, Sun J, Ma Z, He H, Yu X, Hu F. Does gut microbiota regulate brooding in geese? ANIM BIOL 2021. [DOI: 10.1163/15707563-bja10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Domestic geese can reduce the amount of food intake when brooding. Because of the reduction in food intake, the total number of microorganisms in the gut is also reduced. Will this affect the goose’s thinking and make the goose stop brooding and eat food? We hypothesize that gut microbiota affects the brain through a brain–gut peptide and further regulates the breeding behavior of geese. In this study, we evaluated the microbiome related to the goose and transcription groups of brooding and egg production periods. The changes and differences in gut microbiota and gene expression of female geese in different reproduction periods were analyzed, and the possible interaction between them was explored. The results showed that the relative abundance of Faecalibacterium with a growth-promoting effect in the cecum was higher in the egg production group than in the brooding group. Microbial metabolic pathways with significant differences between the two groups were also enriched in the secondary functional groups with different gut microbiota metabolism. The downregulated genes in the egg production group were mainly related to energy metabolism, such as ATP synthesis-related genes. These results suggest that the brooding group’s gut microbiota can make relevant changes according to the reproduction stage of the goose. Since the amount of food taken in is reduced, it can promote the decomposition of the host’s fat. Simultaneously, insulin is also used to deliver messages to the brain; it is necessary to end the brooding behavior at an appropriate time and for eating to start.
Collapse
Affiliation(s)
- Guojun Liu
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - Zhenhua Guo
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, P.R. China
| | - Yuming Zheng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, P.R. China
| | - Xiuhua Zhao
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - Lihong Gu
- Hainan Academy of Agricultural Sciences, Institute of Animal Science and Veterinary Medicine, 14 Xingdan Road, Qiongshan District, Haikou, 570203, P.R. China
| | - Zhifeng Chen
- Heilongjiang Academy of Agricultural Sciences, Qiqihare Branch Academy, No. 2 Heyi Road, Qiqihare 161005, P.R. China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxi Road, Hefei, 230036, P.R. China
| | - Manyu Li
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - Jinyan Sun
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - Zhigang Ma
- Heilongjiang Academy of Agricultural Sciences, Qiqihare Branch Academy, No. 2 Heyi Road, Qiqihare 161005, P.R. China
| | - Haijuan He
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - Xiaolong Yu
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, P.R. China
| | - Fanghong Hu
- Agricultural and Rural Bureau, Longhexi Road, Liuan, 237006, P.R. China
| |
Collapse
|
16
|
Jha R, Mishra P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Anim Sci Biotechnol 2021; 12:51. [PMID: 33866972 PMCID: PMC8054369 DOI: 10.1186/s40104-021-00576-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary fiber (DF) was considered an antinutritional factor due to its adverse effects on feed intake and nutrient digestibility. However, with increasing evidence, scientists have found that DF has enormous impacts on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry. It may help maintain the small and large intestine's integrity by strengthening mucosal structure and functions and increasing the population and diversity of commensal bacteria in the GIT. Increasing DF content benefits digestive physiology by stimulating GIT development and enzyme production. And the inclusion of fiber at a moderate level in diets also alters poultry growth performance. It improves gut health by modulating beneficial microbiota in the large intestine and enhancing immune functions. However, determining the source, type, form, and level of DF inclusion is of utmost importance to achieve the above-noted benefits. This paper critically reviews the available information on dietary fibers used in poultry and their effects on nutrient utilization, GIT development, gut health, and poultry performance. Understanding these functions will help develop nutrition programs using proper DF at an appropriate inclusion level that will ultimately lead to enhanced DF utilization, overall health, and improved poultry growth performance. Thus, this review will help researchers and industry identify the sources, type, form, and amount of DF to be used in poultry nutrition for healthy, cost-effective, and eco-friendly poultry production.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
17
|
Knudsen C, Arroyo J, Even M, Cauquil L, Pascal G, Fernandez X, Lavigne F, Davail S, Combes S, Ricaud K. The intestinal microbial composition in Greylag geese differs with steatosis induction mode: spontaneous or induced by overfeeding. Anim Microbiome 2021; 3:6. [PMID: 33499980 PMCID: PMC7934468 DOI: 10.1186/s42523-020-00067-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Relationships between microbial composition and steatosis are being extensively studied in mammals, and causal relations have been evidenced. In migratory birds the liver can transiently store lipids during pre-migratory and migratory phases, but little is known about the implications of the digestive microbiota in those mechanisms. The Landaise greylag goose (Anser anser) is a good model to study steatosis in migratory birds as it is domesticated, but is still, from a genetic point of view, close to its wild migratory ancestor. It also has a great ingestion capacity and a good predisposition for hepatic steatosis, whether spontaneous or induced by conventional overfeeding. The conventional (overfeeding) and alternative (spontaneous steatosis induction) systems differ considerably in duration and feed intake level and previous studies have shown that aptitudes to spontaneous steatosis are very variable. The present study thus aimed to address two issues: (i) evaluate whether microbial composition differs with steatosis-inducing mode; (ii) elucidate whether a digestive microbial signature could be associated with variable aptitudes to spontaneous liver steatosis. Results Performances, biochemical composition of the livers and microbiota differed considerably in response to steatosis stimulation. We namely identified the genus Romboutsia to be overrepresented in birds developing a spontaneous steatosis in comparison to those submitted to conventional overfeeding while the genera Ralstonia, Variovorax and Sphingomonas were underrepresented only in birds that did not develop a spontaneous steatosis compared to conventionally overfed ones, birds developing a spontaneous steatosis having intermediate values. Secondly, no overall differences in microbial composition were evidenced in association with variable aptitudes to spontaneous steatosis, although one OTU, belonging to the Lactobacillus genus, was overrepresented in birds having developed a spontaneous steatosis compared to those that had not. Conclusions Our study is the first to evaluate the intestinal microbial composition in association with steatosis, whether spontaneous or induced by overfeeding, in geese. Steatosis induction modes were associated with distinct digestive microbial compositions. However, unlike what can be observed in mammals, no clear microbial signature associated with spontaneous steatosis level was identified.
Collapse
Affiliation(s)
- Christelle Knudsen
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France.
| | - Julien Arroyo
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, 24420, Coulaures, France
| | - Maxime Even
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Xavier Fernandez
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Franck Lavigne
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, 24420, Coulaures, France
| | - Stéphane Davail
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Karine Ricaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, NUMEA, Saint-Pée-sur- Nivelle, 64310, Pau, France
| |
Collapse
|
18
|
Tian Y, Li G, Chen L, Bu X, Shen J, Tao Z, Zeng T, Du X, Lu L. High-temperature exposure alters the community structure and functional features of the intestinal microbiota in Shaoxing ducks (Anas platyrhynchos). Poult Sci 2020; 99:2662-2674. [PMID: 32359603 PMCID: PMC7597459 DOI: 10.1016/j.psj.2019.12.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome is a complex ecosystem that contributes to host nutrition and health. However, our current knowledge of the relationship between ambient temperature and gut microbiota of poultry is still limited. The objective of the present study was to characterize the intestinal microbiota of ducks exposed to high ambient temperature. Sixty 60-day-old Shaoxing ducks were allocated to control and heat-treated groups. The ducks in the control group were kept at 25°C, and the ducks in the heat treatment group were raised at 30–40°C, which simulated the temperature change of day and night in summer. After 15 D, the intestinal contents of the duodenum, jejunum, and ileum were obtained from 6 ducks of each group. Genomic DNA was extracted and amplified based on the V4–V5 hypervariable region of 16S rRNA. The results showed that Firmicutes was the dominant bacterial phylum with the highest abundance in the contents of the small intestine of ducks, and the relative abundance of the phylum Firmicutes in all 3 intestinal segments was increased by high temperature. At the genus level, Lactobacillus was found to be the most dominant bacterial genus across 3 gut segments, and its abundance was increased in ducks under heat treatment. Compared with the corresponding intestine segment of control ducks, a total of 36 genera in the duodenum, 19 genera in the jejunum, and 6 genera in the ileum of heat-treated ducks were found to be significantly different in the abundance (linear discriminant analysis score >3.0, P < 0.05). Functional prediction of gut microbiota revealed that high temperature caused changes in the abundance of metabolism and transcription-related pathways. It is noteworthy that most of the altered pathways are related to metabolism. In conclusion, high temperature induced remarkable taxonomic changes in the gut microbiome of ducks, which might be related to the negative effects of high temperature in ducks. Our present study provided an important theoretical ground for high-temperature intervention.
Collapse
Affiliation(s)
- Yong Tian
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Guoqin Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingchen Bu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengrong Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Xue Du
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China.
| |
Collapse
|