1
|
Karaffová V, Szabóová R, Tóthová C, Žitňan R, Čechová M, Levkut M, Hudec E, Ševčíková Z, Röntgen M, Albrecht E, Herich R. Application of Bacillus amyloliquefaciens CECT 5940 influenced muscle satellite cells, PCNA and acute phase protein secretion in broilers. Vet Res Commun 2025; 49:207. [PMID: 40397066 DOI: 10.1007/s11259-025-10769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Despite the growing interest in the use of probiotics in broilers as feed additives, studies conducted to investigate the effect of probiotic administration on acute phase responses and the impact on muscle growth parameters in broilers are still limited. In this study, we investigated the effect of Bacillus amyloliquefaciens CECT 5940 on relative gene expression for growth factors involved in muscle development (insulin-like growth factors, myogenic factor 5, paired-box transcription factor), percentage of proliferating antigen cell nuclei in breast muscle, and secretion of acute phase proteins (serum amyloid A, haptoglobin, alpha1-acid glycoprotein) in the peripheral blood of broilers. Sixty one-day-old chicks from the experimental group were sprayed with a probiotic containing B. amyloliquefaciens at a dose of 1 × 1010 CFU/g directly after hatching and received the probiotic in drinking water (50 × 1010 CFU/1000 L) for 5 consecutive days of life. Sampling was performed on the 5th, 8th, and 12th day of life of the chicks. From the obtained results, we can conclude that B. amyloliquefaciens modulated the gene expression of selected growth parameters in the pectoral muscle, thereby increasing the number of satellite cells, however, their uptake into muscle fibers and thus increased hypertrophic growth was not proven at the time of the last sampling. At the same time, it demonstrated a potentiating effect on PCNA expression in chicken breast muscles in the early intensive growth phase of broiler chickens and modulated the production of acute phase proteins, which may contribute to improving adaptive processes during the growth and development of broilers.
Collapse
Affiliation(s)
- Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia.
| | - Renáta Szabóová
- Department of Biology and Physiology, University of Veterinary Medicine in Košice, Košice, Slovak Republic
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Rudolf Žitňan
- National Agriculture and Food Centre Research Institute of Animal Production, Nitra, Slovak Republic
| | - Michaela Čechová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Martin Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Erik Hudec
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Monika Röntgen
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| |
Collapse
|
2
|
Herich R, Szabóová R, Karaffová V, Racines MP, Šefcová MA, Larrea-Álvarez M. A Narrative Review on the Impact of Probiotic Supplementation on Muscle Development, Metabolic Regulation, and Fiber Traits Related to Meat Quality in Broiler Chickens. Microorganisms 2025; 13:784. [PMID: 40284621 PMCID: PMC12029878 DOI: 10.3390/microorganisms13040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Public concern over drug resistance has led to governmental regulations banning the use of antibiotics as growth promoters, stimulating interest in developing complementary strategies to maintain animal production, mitigate infections, and enhance muscle characteristics and quality parameters, especially in meat-producing animals. Probiotics are recognized as a potential strategy for improving growth, primarily by promoting intestinal homeostasis. These microorganisms are suggested to modulate gut microbiota, preserving their ecosystem and influencing secondary metabolite production, which can directly or indirectly regulate skeletal muscle metabolism by influencing the expression of key muscle-related genes and the activity of various signaling factors. Several studies have documented the potential benefits of various strains of Bacillus, Enterococcus, and members of the Lactobacillaceae family on muscle characteristics. These studies have shown that probiotics not only modulated myogenic factors but also influenced proteins and enzymes involved in signaling pathways related to carbon metabolism, inflammatory response, mitochondrial dynamics, and antioxidant activity. These effects have been associated with improvements in meat quality parameters and enhanced growth performance. This manuscript seeks to present a brief overview of the impact of probiotic supplementation on muscle health and the quality of meat in broiler chickens.
Collapse
Affiliation(s)
- Robert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia (V.K.)
| | - Renáta Szabóová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia (V.K.)
| | - Maria Paula Racines
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Miroslava Anna Šefcová
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
3
|
Agrifoglio O, Görs S, Sciascia Q, Li Z, Albrecht E, Achilles S, Statz M, Bastian M, Lindner T, Gauß K, Rohde S, Rischmüller K, Berlin P, Lamprecht G, Jaster R, Metges C, Ehlers L. Changes in Protein Metabolism and Early Development of Sarcopenia in Mice With Cholestatic Liver Disease. J Cachexia Sarcopenia Muscle 2025; 16:e13737. [PMID: 39971588 PMCID: PMC11839266 DOI: 10.1002/jcsm.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 01/12/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Sarcopenia is a frequent complication of liver cirrhosis. Here, we chose a mouse model of cholestatic liver disease (CLD) to gain mechanistic insights into the development of sarcopenia from the earliest stages of chronic liver injury. Particular attention was paid to protein metabolism, metabolite profiles, and mediators of CLD-induced muscle wasting. METHODS Male C57BL/6 J mice underwent bile duct ligation (BDL), sham surgery, or served as untreated controls. The observation phase lasted from the preoperative stage to postoperative day 14. Metabolic cage experiments were performed to determine the nitrogen balance (N-BAL), nitrogen metabolite profiles, and total energy expenditure (TEE) using doubly labelled water. The fractional protein synthesis rate (FPSR) was assessed using 2H5-ring-phenylalanine. Plasma concentrations of inflammatory markers, metabolites, and enzymes associated with liver damage were investigated. Muscle strength and volume were assessed using a grip strength meter and MRI, respectively. Gene expression was analysed by real-time PCR. RESULTS BDL caused CLD with necroses and inflammation, increased bilirubin (p < 0.0001) and conjugated bile acids (p < 0.05), and reduced food intake (p < 0.0001) and body weight (p < 0.0001; each vs. sham). Compared to controls, BDL mice showed lower N-BAL (p < 0.05), reduced TEE (p < 0.01), and lower FPSR in the liver (p < 0.05) and quadriceps muscle (p < 0.001). Arginine was the only plasma amino acid that was diminished after BDL compared to controls and sham treatment (p < 0.0001). Reduced muscle strength was observed as early as d3/d4 after BDL (p < 0.001; vs. sham), while muscle volume decreased from d6 to d13 (p < 0.05). In quadriceps muscle, a lower nuclei-to-fibre ratio (p < 0.001) and elevated 1-methyl-histidine (1-MH) (p < 0.001) were detected, whereas 3-MH was increased in the urine of BDL mice (p < 0.001; each vs. sham). The quadriceps muscle of BDL mice contained higher mRNA levels of atrophy-associated genes (Trim63: p < 0.0001, Fbxo32: p < 0.01) and Mstn (p < 0.05), but lower levels of genes involved in mitochondrial function (Cpt-1b: p < 0.05, Pgc-1α: p < 0.01; each vs. sham). In the plasma of BDL mice, elevated protein levels of TNF receptor-1 (p < 0.0001) and HGF-1 (p < 0.05) were observed, while myostatin was diminished (p < 0.05; each vs. sham). CONCLUSIONS Sarcopenia occurs early in CLD and is a multicausal process. Relevant pathophysiologies include reduced protein synthesis, degradation of muscle proteins, arginine deficiency, a systemic pro-inflammatory and catabolic state, and muscle toxicity of bile acids. Consequently, the treatment of sarcopenia should focus both on eliminating the cause of the cholestasis and on symptomatic measures such as anti-inflammatory treatment, lowering the bile acid level, and targeted compensation of deficiencies.
Collapse
Affiliation(s)
- Ottavia Agrifoglio
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Solvig Görs
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Quentin Sciascia
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Zeyang Li
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Elke Albrecht
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Sophie Achilles
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Meike Statz
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Manuela Bastian
- Institute of Clinical Chemistry and Laboratory MedicineRostock University Medical CenterRostockGermany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal ImagingRostock University Medical CenterRostockGermany
| | - Karen Friederike Gauß
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine GreifswaldGreifswaldGermany
- University Institute of Clinical Chemistry and Laboratory MedicineUniversity OldenburgOldenburgGermany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Karen Rischmüller
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Peggy Berlin
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| | - Cornelia C. Metges
- Nutrition and MetabolismResearch Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Luise Ehlers
- Department of Medicine II, Division of Gastroenterology and EndocrinologyRostock University Medical CenterRostockGermany
| |
Collapse
|
4
|
Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep 2023; 43:232343. [PMID: 36538023 PMCID: PMC9829652 DOI: 10.1042/bsr20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.
Collapse
|
5
|
Wen K, Liu L, Zhao M, Geng T, Gong D. The Changes in Microbiotic Composition of Different Intestinal Tracts and the Effects of Supplemented Lactobacillus During the Formation of Goose Fatty Liver. Front Microbiol 2022; 13:906895. [PMID: 35923413 PMCID: PMC9339986 DOI: 10.3389/fmicb.2022.906895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal bacteria play an important role in the formation of fatty liver in animals by participating in the digestion and degradation of nutrients, producing various metabolites, and altering the barrier effect of the intestine. However, changes in the gut microbiota during the formation of goose fatty liver are unclear. In this study, 80 healthy Landes geese with similar body weights at 70 days of age were randomly divided into two groups: the control group (n = 48; fed ad libitum) and the overfeeding group (n = 32; overfed). The intestinal contents were collected at 0, 12, and 24 days of overfeeding. The 16S rRNA and metagenomic sequencing analyses showed that the dominant phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. At the genus level, Phyllobacterium, Bacteroides, Helicobacter, Lactobacillus, Enterococcus, and Romboutsia were the dominant genera in the goose intestine, and most of them were probiotics. In the control group, the relative abundance of Firmicutes in the jejunum and ileum gradually decreased with time, while that of Proteobacteria increased, whereas in the overfeeding group, the relative abundance of Firmicutes in the jejunum and ileum decreased and then increased with time, while that of Proteobacteria showed an opposite trend. In addition, supplementing Lactobacillus to the diet reduced body weight and fatty liver weight in overfed geese, but increased the weight of abdominal fat, suggesting that Lactobacillus supplementation might affect the transport of nascent fat from the liver to abdominal fat. In conclusion, the species of intestinal-dominant bacteria in the geese are relatively stable, but their relative abundance and function are affected by a number of factors. Overfeeding promotes the metabolism of nutrients in the jejunum and ileum and increases bacterial adaptability to environmental changes by enhancing their ability to process environmental and genetic information more efficiently. These findings suggest that the effect of overfeeding on the composition of intestinal microbiota may indirectly influence the formation of goose fatty liver through the gut/liver axis.
Collapse
Affiliation(s)
- Kang Wen
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Liu
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Minmeng Zhao
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tuoyu Geng
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Daoqing Gong
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Boodaghi Malidareh E, Ahanjan M, Asgharzadeh Marghmalek S, Goli HR. Dissemination of Quinupristin-Dalfopristin and Linezolid resistance genes among hospital environmental and healthy volunteer fecal isolates of Enterococcus faecalis and Enterococcus faecium. Mol Biol Rep 2022; 49:7929-7937. [PMID: 35716285 DOI: 10.1007/s11033-022-07627-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Streptogramins and linezolid are important in the treatment of infections caused by vancomycin-resistant enterococci. PURPOSE Then, we aimed to evaluate the resistance rates against these drugs and the prevalence of genes involved in hospital environmental and fecal normal-flora isolates of Enterococcus faecalis and Enterococcus faecium. METHODS AND RESULTS The strains were isolated from the stool samples and hospital environments by culturing on M-Enterococcus (ME) agar, and identified by phenotypic and genotypic microbiological tests. The disk agar diffusion method was used to identify the antimicrobial susceptibility pattern of the isolates. The genomic DNA extraction was done by the alkaline lysis method, and the PCR test was used to detect the resistance genes. A total of 145 enterococci isolates were taken, from which 84 (57.9%) isolates were detected as E. faecalis and 61 (42.06%) isolates were E. faecium. Moreover, 70 (83.33), 4 (4.76%), 1 (1.19%), and 40 (47.61%) isolates of E. faecalis and 20 (32.78%), 1 (1.63%), 4 (6.55%), and 26 (42.62%) E. faecium isolates were resistant against quinupristin-dalfopristin, linezolid, vancomycin, and erythromycin, respectively. Also, 112 (77.24%), 50 (34.48%), 39 (26.89%), 27 (18.62%), 19 (13.1%), 4 (2.75%), and 1 (0.68%) isolates were contained LsaA, vatD, vgbB, vatE, cfr, lsaE and optrA genes, respectively. None of the isolates carried the vgbA gene. CONCLUSIONS High-level streptogramin resistance rate and high prevalence of resistance genes in enterococci isolated from the stool of healthy persons and the hospital environment indicates the importance of possible transmission of resistance genes from these isolates to clinical ones.
Collapse
Affiliation(s)
- Elham Boodaghi Malidareh
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ahanjan
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saba Asgharzadeh Marghmalek
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Ebeid TA, Al-Homidan IH, Fathi MM. Physiological and immunological benefits of probiotics and their impacts in poultry productivity. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1960239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ibrahim H. Al-Homidan
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Moataz. M. Fathi
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Levkut M, Karaffová V, Levkutová M, Seman V, Revajová V, Ševčíková Z, Herich R, Levkut M. Influence of Lacto-Immuno-Vital on growth performance and gene expression of IgA, MUC-2, and growth factor IGF-2 in the jejunum of broiler chickens. Poult Sci 2020; 99:6569-6575. [PMID: 33248572 PMCID: PMC7705053 DOI: 10.1016/j.psj.2020.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022] Open
Abstract
The effects of Lacto-Immuno-Vital synbiotic preparation on gene expression of IgA, MUC-2, and growth factor IGF-2 in the jejunum and on BW gain in broiler chickens were studied. A flock of 64,400 1-day-old Hybrid ROSS 308 chickens was inducted in the 42-day experiment. The chickens were divided into 2 equally size groups in separate halls. The chickens in the experimental (E) group received 500 g of Lacto-Immuno-Vital in 1,000 L of drinking water. The preparation was administered daily from the first day (day 1) to day 7 of the experiment. From day 7 to day 22, it was given in pulsed manner (every third day) at a dose of 300 g in 1,000 L of drinking water. The broiler chickens in the E group gained more weight (P < 0.001) compared with control from day 10 to day 42. Death of animals during feeding period was 1,078 chickens in the E group compared with 1,115 dead chickens in the control group. Feed conversion ratio was 1.61 kg of supplemented diet/kg of BW in the E group compare with 1.67 kg of nonsupplemented diet/kg of BW in control. The relative expression of IgA gene in the jejunum was upregulated on day 22 in the E group compared with control (P < 0.05), whereas relative expression of MUC-2 gene was upregulated in the E group compared with control on day 8 and day 22 (P < 0.05; P < 0.001). Similarly, relative expression of IGF-2 gene was upregulated in the E group compared with control on both samplings (P < 0.01). The composition of Lacto-Immuno-Vital synbiotic preparation showed beneficial effects on growth performance, feed conversion ratio, morbidity, mortality, and selected parameters of mucosal immunity in the chicken jejunum.
Collapse
Affiliation(s)
- M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - V Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic.
| | - M Levkutová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - V Seman
- Regional Association of Veterinary Doctors, Trebišov, Slovak Republic
| | - V Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Z Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - R Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic; Neuroimmunological Institute SAS, Bratislava, Slovak Republic
| |
Collapse
|
9
|
Zhao Y, Albrecht E, Sciascia QL, Li Z, Görs S, Schregel J, Metges CC, Maak S. Effects of Oral Glutamine Supplementation on Early Postnatal Muscle Morphology in Low and Normal Birth Weight Piglets. Animals (Basel) 2020; 10:E1976. [PMID: 33126436 PMCID: PMC7692811 DOI: 10.3390/ani10111976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022] Open
Abstract
Adapted nutrition can improve the growth of low birth weight (LBW) piglets. Since maternal milk is thought to provide insufficient glutamine (Gln) for LBW piglets, the current study investigated the influence of Gln supplementation during the early suckling period on development and lipid deposition in skeletal muscle. The weight differences between LBW and normal birth weight (NBW) littermates persisted from birth to slaughter (p < 0.001). However, intramuscular Gln and Ala concentrations were altered in piglets according to the supplementation (p < 0.01). There were larger muscle fibers (p = 0.048) in Gln-supplemented piglets. Capillarization or nuclei number per muscle fiber was not influenced by birth weight (BiW) or Gln supplementation. Abundance of myosin heavy chain (MYH) isoforms was slightly altered by Gln supplementation. LBW piglets had more lipid droplets than NBW piglets at day 5 of life in both muscles (p < 0.01). The differences decreased with age. Adipocyte development increased with age, but was not influenced by BiW or supplementation. The results indicate that BiW differences were accompanied by differences in lipid deposition and muscle fiber structure, suggesting a delayed development in LBW piglets. Supplementation with Gln may support piglets to overcome those disadvantages.
Collapse
Affiliation(s)
- Yaolu Zhao
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Y.Z.); (S.M.)
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Y.Z.); (S.M.)
| | - Quentin L. Sciascia
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Zeyang Li
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Solvig Görs
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Johannes Schregel
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Cornelia C. Metges
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Y.Z.); (S.M.)
| |
Collapse
|
10
|
Dahl N, Albrecht E, Dannenberger D, Uken KL, Hammon HM, Maak S. Consequences of Maternal Essential Fatty Acid and Conjugated Linoleic Acid Supplementation on the Development of Calf Muscle and Adipose Tissue. Animals (Basel) 2020; 10:ani10091598. [PMID: 32911793 PMCID: PMC7552164 DOI: 10.3390/ani10091598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Common silage and concentrate-based diets in dairy and beef production may deliver insufficient amounts of essential fatty acids (EFA), thereby also reducing conjugated linoleic acids (CLA) in body tissues and milk. An impaired maternal EFA and CLA supply can have an important impact on calf postnatal development. The current study investigates how maternal supplementation with EFA and CLA affects muscle and adipose tissue development in neonatal calves. Holstein cows (n = 40) were abomasaly supplemented with coconut oil (control), CLA or EFA, or both combined during the transition period. Calves were fed their dam's colostrum until slaughter at day 5 of life. Fatty acid composition and tissue morphology were analyzed. In muscle and adipose tissues, EFA, CLA, and metabolites were elevated, indicating the effective transfer of maternally-supplemented FA to the offspring. Muscle fiber types, fiber nuclei, myosin heavy chain isoform distribution, capillarization, and fat cell size of intramuscular and other adipose tissues did not differ among groups. The results confirm that maternal nutrition during the transition period can alter the FA composition of the calf tissues. This could influence the offspring's development and health in the long-term, even though only minor effects were observed in the neonatal calves' tissue morphology.
Collapse
Affiliation(s)
- Nina Dahl
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
- Correspondence: ; Tel.: +49-38208-68-858
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
| | - Katrin L. Uken
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (K.L.U.); (H.M.H.)
| | - Harald M. Hammon
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (K.L.U.); (H.M.H.)
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
| |
Collapse
|