1
|
Yin D, Wang K, Wu C, Wang Z, Gu Y, Liu P, You S. Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. ENVIRONMENTAL RESEARCH 2025; 269:120811. [PMID: 39798649 DOI: 10.1016/j.envres.2025.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.
Collapse
Affiliation(s)
- Dan Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chuandong Wu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yue Gu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Liu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Xie C, Liang Q, Cheng J, Yuan Y, Xie L, Ji J. Transplantation of fecal microbiota from low to high residual feed intake chickens: Impacts on RFI, microbial community and metabolites profiles. Poult Sci 2025; 104:104567. [PMID: 39603188 PMCID: PMC11635772 DOI: 10.1016/j.psj.2024.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Improving feed efficiency is vital to bolster profitability and sustainability in poultry production. Although several studies have established links between gut microbiota and feed efficiency, the direct effects remain unclear. In this study, two distinct lines of Huiyang bearded chickens, exhibiting significant differences in residual feed intake (RFI), were developed after 15 generations of selective breeding. Fecal microbiota transplantation (FMT) from low RFI (LRFI) chickens to high RFI (HRFI) chickens resulted in a reduction trend in RFI, decreasing from 5.65 to 4.49 in the HRFI recipient chickens (HFMT). Microbiota composition and functional profiles in LRFI and HFMT chickens formed a distinct cluster compared to HRFI chickens. Using 16S rDNA sequencing and RandomForest analysis, Slackia, Peptococcus, Blautia, and Dorea were identified as key microbial markers associated with feed efficiency. Additionally, untargeted metabolomics identified common differential metabolites between HFMT and LRFI vs. HRFI groups. Correlation analysis showed significant correlations between these microbial markers and differential metabolites. These findings provide a foundation for microbiome-based strategies to improve feed efficiency in poultry.
Collapse
Affiliation(s)
- Chunlin Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiying Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiaheng Cheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yushan Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lu Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China..
| |
Collapse
|
3
|
Liu W, Cheng H, Zhang H, Liu G, Yin X, Zhang C, Jiang R, Wang Z, Ding X. Effect of Lactobacillus paracasei LK01 on Growth Performance, Antioxidant Capacity, Immunity, Intestinal Health, and Serum Biochemical Indices in Broilers. Animals (Basel) 2024; 14:3474. [PMID: 39682439 DOI: 10.3390/ani14233474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to investigate the effects of adding L. paracasei LK01 to the diet on the growth performance, antioxidant capacity, immunity, intestinal health, and serum biochemical indicators of broilers. This study selected 1080 one-day-old broiler chickens with similar body weight, and randomly divided them into six groups, with six replicates in each group and 30 chicks in each replicate. The chicks were fed (1) the basal diet (CON), (2) the basal diet with 106 CFU/kg L. paracasei LK01(T1), (3) the basal diet with 107 CFU/kg L. paracasei LK01(T2), (4) the basal diet with 108 CFU/kg L. paracasei LK01(T3), (5) the basal diet with 109 CFU/kg L. paracasei LK01(T4), and (6) the basal diet with 1010 CFU/kg L. paracasei LK01(T5). The experiment lasted for 42 days. In this study, compared with the CON group, the diet supplemented with L. paracasei significantly increased body weight from 1 to 21 days (p < 0.05). In addition, the 106 CFU/kg L. paracasei LK01 group significantly reduced the activity of glutamic oxaloacetic transaminase and triglyceride levels; the 107 CFU/kg,108 CFU/kg, and 109 CFU/kg L. paracasei LK01 groups also reduced serum uric acid and total cholesterol levels (p < 0.05). The experimental groups all had lower serum levels of malondialdehyde and interleukin-1β (p < 0.01). Except for the 106 CFU/kg group, all experimental groups had significantly lower tumor necrosis factor-α, and the 106 and 107 CFU/kg groups had higher immunoglobulin M levels (p < 0.05). In addition, the 106 CFU/kg group significantly reduced the depth of the ileocecal crypts and increased the villus-to-crypt ratio (V/C) of the jejunum and ileum. In addition, dietary supplementation with L. paracasei LK01 did not change the α diversity of the microbial community in the cecum, but significantly increased the proportion of Bacteroides (phylum) (p < 0.05). The 106 CFU/kg group also significantly increased the abundance of beneficial bacteria such as Ruminococcaceae (genus), Lachnospiraceae (genus), and Faecalibacterium (genus) (p < 0.05). In summary, this study revealed that adding 106 CFU/kg of L. paracasei LKO1 to broiler diets can improve their production performance, serum biochemical indicators, antioxidant, and immune capabilities, as well as cecal flora.
Collapse
Affiliation(s)
- Weixin Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Hong Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Hao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Guozhen Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Xinyu Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Runsheng Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Zaigui Wang
- College of Life Science and Technology, Anhui Agricultural University, Hefei 230031, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230031, China
| |
Collapse
|
4
|
Liang S, Gu X, Sun J, Wang X, Tao H, Wang Z, Zhong Y, Wang J, Han B. Application of Lactobacillus plantarum and Pediococcus lactis on Lipid Metabolism, Anti-Inflammatory, and Fecal Microbiota in Cats. Microorganisms 2024; 12:2446. [PMID: 39770649 PMCID: PMC11677972 DOI: 10.3390/microorganisms12122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Probiotics have been used in functional foods and dietary supplements, and in recent years, they have become more widely used in pets. In our previous experiment, Lactobacillus plantarum L-27-2 and Pediococcus lactis L-14-1 were isolated from cat feces and proved to have positive effects on lipid metabolism in mice. To further discuss their possible effects in cats, a total of 12 healthy cats (British Shorthair) were randomly divided into two groups. One group was fed Pediococcus lactis L-14-1 (1 × 109 CFU/kg/d, n = 6), and the other group was fed Lactobacillus plantarum L-27-2 (1 × 109 CFU/kg/d, n = 6), and the experiment was conducted for 28 days. Blood and feces were collected on days 0 and 28 separately. ELISA was used to detect blood biochemical indexes in cats. The results showed that L-27-2 and L-14-1 could reduce the content of TG (triglyceride, p < 0.05) and LDL-C (low-density lipoprotein cholesterol, p < 0.01) in the blood, increase the content of HDL-C (high-density lipoprotein, p < 0.01), and L-27-2 could significantly reduce the content of IL-6 (p < 0.01). The diversity of feces microbiota was also tested. On the phylum level, there was no significance in the phylum level of Firmicutes and Bacteroidetes (p > 0.05), but on the genus level, in the L-14-1 group, the abundance of Lantiplantibacillus and Cetobacterium was increased (p < 0.05), and the abundance of Ruminococcus, Olsenella, and Labanicoccus was decreased (p < 0.05), while in the L-27-2 group, the abundance of Libanicoccus was also decreased in L-14-1 (p < 0.05). Above all, L-27-2 and L-14-1 can be considered potential probiotics to improve cat gut health and lipid metabolism.
Collapse
Affiliation(s)
- Shukun Liang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Xinshu Gu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1225, Zhimin Avenue, Xinjian District, Nanchang 330045, China
| | - Jintao Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Hui Tao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Yougang Zhong
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| | - Bing Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (S.L.); (X.G.); (J.S.); (X.W.); (H.T.); (Z.W.)
| |
Collapse
|
5
|
Song Y, Cui Y, Wang Y, Wang T, Zhong Y, Liu J, Zheng X. The effect and potential mechanism of inulin combined with fecal microbiota transplantation on early intestinal immune function in chicks. Sci Rep 2024; 14:16973. [PMID: 39043769 PMCID: PMC11266578 DOI: 10.1038/s41598-024-67881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Our previous research found that fecal microbiota transplantation (FMT) and inulin synergistically affected the intestinal barrier and immune system function in chicks. However, does it promote the early immunity of the poultry gut-associated lymphoid tissue (GALT)? How does it regulate the immunity? We evaluated immune-related indicators in the serum, cecal tonsil, and intestine to determine whether FMT synergistic inulin had a stronger impact on gut health and which gene expression regulation was affected. The results showed that FMT synergistic inulin increased TGF-β secretion and intestinal goblet cell number and MUC2 expression on day 14. Expression of BAFFR, PAX5, CXCL12, and IL-2 on day 7 and expression of CXCR4 and IL-2 on day 14 in the cecal tonsils significantly increased. The transcriptome indicated that CD28 and CTLA4 were important regulatory factors in intestinal immunity. Correlation analysis showed that differential genes were related to the immunity and development of the gut and cecal tonsil. FMT synergistic inulin promoted the development of GALT, which improved the early-stage immunity of the intestine by regulating CD28 and CTLA4. This provided new measures for replacing antibiotic use and reducing the use of therapeutic drugs while laying a technical foundation for achieving anti-antibiotic production of poultry products.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yibo Cui
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Taiping Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China.
| |
Collapse
|
6
|
Wang M, Ma W, Wang C, Li D. Lactococcus G423 improve growth performance and lipid metabolism of broilers through modulating the gut microbiota and metabolites. Front Microbiol 2024; 15:1381756. [PMID: 38939183 PMCID: PMC11210191 DOI: 10.3389/fmicb.2024.1381756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
This study aimed to explore whether Lactococcus G423 could improve growth performance and lipid metabolism of broilers by the modulation of gut microbiota and metabolites. A total of 640 1-day-old AA broilers were randomly divided into 4 groups [Control (CON), Lac_L, Lac_H, and ABX]. Average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR), breast muscle, thigh muscle, and abdominal fat pad were removed and weighed at 42 days of age. Serum was obtained by centrifuging blood sample from jugular vein (10 mL) for determining high-density lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein (LDL), and triglyceride (TG) using ELISA. The ileal contents were harvested and immediately frozen in liquid nitrogen for 16S rRNA and LC-MS analyses. Then, the results of 16S rRNA analysis were confirmed by quantitative polymerase chain reaction (qPCR). Compared with the CON group, FCR significantly decreased in the Lac_H group (p < 0.05) in 1-21 days; ADG significantly increased and FCR significantly decreased in the Lac_H group (p < 0.05) in 22-42 days. 42 days weight body and ADG significantly increased in the Lac_H group (p < 0.05) in 42 days. Abdominal fat percentage was significantly decreased by Lactococcus G423 (p < 0.05), the high dose of Lactococcus G423 significantly decreased the serum of TG, TC, and LDL level (p < 0.05), and the low dose of Lactococcus G423 significantly decreased the serum of TG and TC level (p < 0.05). A significant difference in microbial diversity was found among the four groups. Compared with the CON group, the abundance rates of Firmicutes and Lactobacillus in the Lac_H group were significantly increased (p < 0.05). The global and overview maps and membrane transport in the Lac_L, Lac_H, and ABX groups significantly changed versus those in the CON group (p < 0.05). The results of LC-MS demonstrated that Lactococcus could significantly improve the levels of some metabolites (6-hydroxy-5-methoxyindole glucuronide, 9,10-DiHOME, N-Acetyl-l-phenylalanine, and kynurenine), and these metabolites were involved in four metabolic pathways. Among them, the pathways of linoleic acid metabolism, phenylalanine metabolism, and pentose and glucuronate interconversions significantly changed (p < 0.05). Lactococcus G423 could ameliorate growth performance and lipid metabolism of broilers by the modulation of gut microbiota and metabolites.
Collapse
Affiliation(s)
| | | | | | - Desheng Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Su J, Xue J, Wang X, Zhang R, Zhang X, Yang Y, Chu X. Modulation of cyclophosphamide-induced immunosuppression and intestinal flora in broiler by deep eutectic solvent extracted polysaccharides of Acanthopanax senticosus. Front Vet Sci 2024; 11:1415716. [PMID: 38863455 PMCID: PMC11165361 DOI: 10.3389/fvets.2024.1415716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction The aim of this experiment was to investigate the modulation effect of Acanthopanax senticosus polysaccharide (ASPS-PD) extracted with deep eutectic solvent on cyclophosphamide-induced immunosuppression in broilers and its modulation of the gut microbiota of broilers. Methods The 108 one-day-old broilers were divided into six groups, including the control group, the Cyclophosphamide (CY) model group, the ASPS-PD control group, the ASPA-PD high and low dose groups and the Astragalus polysaccharide group. Body weight, feed intake, feed conversion ratio, and immune organ index of broilers at 7, 14, and 21 days were determined; IL-2, IFN-γ, and lgG1 levels were determined by enzyme-linked immunosorbent assay (ELISA); Broiler caeca feces were analyzed by amplification and 16S rRNA sequencing. Results The results showed that ASPS-PD can restore growth performance, increase immune organ index and improve serum cytokine levels of IL-2 and IFN-γ and immunoglobulin lgG1 levels in CY-treated broilers. The analysis of cecum flora showed that ASPS-PD can promote the proliferation of beneficial bacteria and reduce the number of harmful bacteria, regulating intestinal flora. Discussion Therefore, ASPA-PD may be a potential novel immunomodulator to ameliorate CY-induced immunosuppression and intestinal flora dysregulation in broiler.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuling Chu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Park J, Wickramasinghe S, Mills DA, Lönnerdal BL, Ji P. Iron Fortification and Inulin Supplementation in Early Infancy: Evaluating the Impact on Iron Metabolism and Trace Mineral Status in a Piglet Model. Curr Dev Nutr 2024; 8:102147. [PMID: 38645881 PMCID: PMC11026733 DOI: 10.1016/j.cdnut.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background Infant formula in the United States contains abundant iron, raising health concerns about excess iron intake in early infancy. Objectives Using a piglet model, we explored the impact of high iron fortification and prebiotic or synbiotic supplementation on iron homeostasis and trace mineral bioavailability. Methods Twenty-four piglets were stratified and randomly assigned to treatments on postnatal day 2. Piglets were individually housed and received an iron-adequate milk diet (AI), a high-iron milk diet (HI), HI supplemented with 5% inulin (HI with a prebiotic [HIP]), or HIP with an oral gavage of Ligilactobacillus agilis YZ050, an inulin-fermenting strain, every third day (HI with synbiotic [HIS]). Milk was provided in 14 meals daily, mimicking formula feeding in infants. Fecal consistency score and body weight were recorded daily or every other day. Blood and feces were sampled weekly, and tissues collected on postnatal day 29. Data were analyzed using mixed model analysis of variance with repeated measures whenever necessary. Results Diet did not affect growth. HI increased hemoglobin, hematocrit, and serum iron compared to AI. Despite marginal adequacy, AI upregulated iron transporter genes and maintained satisfactory iron status in most pigs. HI upregulated hepcidin gene expression in liver, caused pronounced tissue iron deposition, and markedly increased colonic and fecal iron. Inulin supplementation, regardless of L. agilis YZ050, not only attenuated hepatic iron overload but also decreased colonic and fecal iron without altering pH or the expression of iron regulatory genes. HI lowered zinc (Zn) and copper (Cu) in the duodenum and liver compared to AI, whereas HIP and HIS further decreased Zn and Cu in the liver and diminished colonic and fecal trace minerals. Conclusions Early-infancy excessive iron fortification causes iron overload and compromises Zn and Cu absorption. Inulin decreases trace mineral absorption likely by enhancing gut peristalsis and stool frequency.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Nutrition, University of California Davis, CA, United States
| | - Saumya Wickramasinghe
- Department of Food Science and Technology, University of California Davis, CA, United States
| | - David A. Mills
- Department of Food Science and Technology, University of California Davis, CA, United States
| | - Bo L. Lönnerdal
- Department of Nutrition, University of California Davis, CA, United States
| | - Peng Ji
- Department of Nutrition, University of California Davis, CA, United States
| |
Collapse
|
9
|
Zhang M, Li D, Yang X, Wei F, Wen Q, Feng Y, Jin X, Liu D, Guo Y, Hu Y. Integrated multi-omics reveals the roles of cecal microbiota and its derived bacterial consortium in promoting chicken growth. mSystems 2023; 8:e0084423. [PMID: 38018992 PMCID: PMC10734529 DOI: 10.1128/msystems.00844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The improvement of chicken growth performance is one of the major concerns for the poultry industry. Gut microbes are increasingly evidenced to be associated with chicken physiology and metabolism, thereby influencing chicken growth and development. Here, through integrated multi-omics analyses, we showed that chickens from the same line differing in their body weight were very different in their gut microbiota structure and host-microbiota crosstalk; microbes in high body weight (HBW) chickens contributed to chicken growth by regulating the gut function and homeostasis. We also verified that a specific bacterial consortium consisting of isolates from the HBW chickens has the potential to be used as chicken growth promoters. These findings provide new insights into the potential links between gut microbiota and chicken phenotypes, shedding light on future manipulation of chicken gut microbiota to improve chicken growth performance.
Collapse
Affiliation(s)
- Meihong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Lobo E, Bajagai YS, Kayal A, Ramirez S, Nikolić A, Valientes R, Stanley D. Precision Glycan Supplementation Improves Gut Microbiota Diversity, Performance, and Disease Outbreak Resistance in Broiler Chickens. Animals (Basel) 2023; 14:32. [PMID: 38200763 PMCID: PMC10778076 DOI: 10.3390/ani14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The poultry industry contributes significantly to the global meat industry but faces many production challenges like high-density housing, welfare issues, and pathogenic infections. While antibiotics have commonly been used to treat many of these issues, they are being removed from poultry production globally due to increased microbial resistance. Precision glycans offer a viable alternative to antibiotics by modulating microbial metabolic pathways. In this study, we investigated the effects of precision glycan supplementation on productivity and gut microbiota in broilers. The experiment was conducted in a commercial setting using 32,400 male Ross chickens randomly divided into three sheds with 10,800 birds each. One shed with 12 pen replicates of 900 birds was used as control, while the other two with an equal number of replicates and birds were assigned to precision glycan supplementation. The treatment significantly improved the average daily weight gain and feed conversion ratio, with a significant modification in the abundance of several bacterial taxa in the caecum, ileum, and ileum mucosa microbial communities. There was increased richness and diversity in the caecum, with a reduction in Proteobacteria and an increase in Firmicutes. Richness remained unchanged in the ileum, with an increase in diversity and reduction in pathogenic genera like Clostridium and Escherichia-Shigella. Ileum mucosa showed a lower abundance of mucin degraders and an increased presence of next-generation probiotics. Supplemented birds showed a high level of disease resistance when the farm experienced an outbreak of infectious bronchitis, evidenced by lower mortality. Histological analysis confirmed improvements in the ileum and liver health, where the precision glycan supplementation reduced the area of congested sinusoids compared to the control group in the liver and significantly improved ileum intestinal morphology by increasing crypt depth and surface area. These results collectively suggest that precision glycans offer substantial benefits in poultry production by improving productivity, gut health, and disease resistance.
Collapse
Affiliation(s)
- Edina Lobo
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (E.L.); (A.K.)
| | - Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (E.L.); (A.K.)
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (E.L.); (A.K.)
| | | | - Anja Nikolić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia;
| | | | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (E.L.); (A.K.)
| |
Collapse
|
11
|
Choi S, Kim EB. A comprehensive longitudinal study of gut microbiota dynamic changes in laying hens at four growth stages prior to egg production. Anim Biosci 2023; 36:1727-1737. [PMID: 37871901 PMCID: PMC10623045 DOI: 10.5713/ab.23.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE The poultry industry is a primary source of animal protein worldwide. The gut microbiota of poultry birds, such as chickens and ducks, is critical in maintaining their health, growth, and productivity. This study aimed to identify longitudinal changes in the gut microbiota of laying hens from birth to the pre-laying stage. METHODS From a total of 80 Hy-Line Brown laying hens, birds were selected based on weight at equal intervals to collect feces (n = 20 per growth) and ileal contents (n = 10 per growth) for each growth stage (days 10, 21, 58, and 101). The V4 regions of the 16S rRNA gene were amplified after extracting DNA from feces and ileal contents. Amplicon sequencing was performed using Illumina, followed by analysis. RESULTS Microbial diversity increased with growth stages, regardless of sampling sites. Microbial community analysis indicated that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in the feces and ileal. The abundance of Lactobacillus was highest on day 10, and that of Escherichia-shigella was higher on day 21 than those at the other stages at the genus level (for the feces and ileal contents; p<0.05). Furthermore, Turicibacter was the most abundant genus after changing feed (for the feces and ileal contents; p<0.05). The fecal Ruminococcus torques and ileal Lysinibacillus were negatively correlated with the body weights of chickens (p<0.05). CONCLUSION The gut microbiota of laying hens changes during the four growth stages, and interactions between microbiota and feed may be present. Our findings provide valuable data for understanding the gut microbiota of laying hens at various growth stages and future applied studies.
Collapse
Affiliation(s)
- Seojin Choi
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341,
Korea
| | - Eun Bae Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341,
Korea
- Institute of Animal Life Science, Kangwon National University, Chuncheon, 24341,
Korea
| |
Collapse
|
12
|
Liu W, Liu H, Wang Y, Zhao Z, Balasubramanian B, Jha R. Effects of Enteromorpha prolifera polysaccharides on growth performance, intestinal barrier function and cecal microbiota in yellow-feathered broilers under heat stress. J Anim Sci Biotechnol 2023; 14:132. [PMID: 37814279 PMCID: PMC10563363 DOI: 10.1186/s40104-023-00932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Global warming leading to heat stress (HS) is becoming a major challenge for broiler production. This study aimed to explore the protective effects of seaweed (Enteromorpha prolifera) polysaccharides (EPS) on the intestinal barrier function, microbial ecology, and performance of broilers under HS. A total of 144 yellow-feathered broilers (male, 56 days old) with 682.59 ± 7.38 g were randomly assigned to 3 groups: 1) TN (thermal neutral zone, 23.6 ± 1.8 °C), 2) HS (heat stress, 33.2 ± 1.5 °C for 10 h/d), and 3) HSE (HS + 0.1% EPS). Each group contained 6 replicates with 8 broilers per replicate. The study was conducted for 4 weeks; feed intake and body weights were measured at the end of weeks 2 and 4. At the end of the feeding trial, small intestine samples were collected for histomorphology, antioxidant, secretory immunoglobulin A (sIgA) content, apoptosis, gene and protein expression analysis; cecal contents were also collected for microbiota analysis based on 16S rDNA sequencing. RESULTS Dietary EPS promoted the average daily gain (ADG) of broilers during 3-4 weeks of HS (P < 0.05). At the end of HS on broilers, the activity of total superoxide dismutase (T-SOD), glutathione S-transferase (GST), and the content of sIgA in jejunum were improved by EPS supplementation (P < 0.05). Besides, dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers (P < 0.05). Addition of EPS in HS group broilers' diet upregulated the relative mRNA expression of Occludin, ZO-1, γ-GCLc and IL-10 of the jejunum (P < 0.05), whereas downregulated the relative mRNA expression of NF-κB p65, TNF-α and IL-1β of the jejunum (P < 0.05). Dietary EPS increased the protein expression of Occludin and ZO-1, whereas it reduced the protein expression of NF-κB p65 and MLCK (P < 0.01) and tended to decrease the protein expression of TNF-α (P = 0.094) in heat-stressed broilers. Furthermore, the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression (P < 0.05) and negatively correlated with jejunal Occludin level (P < 0.05). However, the proportions of Lactobacillus, Barnesiella, Subdoligranulum, Megasphaera, Collinsella, and Blautia among the three groups were positively related to ADG (P < 0.05). CONCLUSIONS EPS can be used as a feed additive in yellow-feathered broilers. It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression. These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.
Collapse
Affiliation(s)
- Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Huimei Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Yaoyao Wang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Zhongxiang Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | | | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
13
|
Ferrocino I, Biasato I, Dabbou S, Colombino E, Rantsiou K, Squara S, Gariglio M, Capucchio MT, Gasco L, Cordero CE, Liberto E, Schiavone A, Cocolin L. Lactiplantibacillus plantarum, lactiplantibacillus pentosus and inulin meal inclusion boost the metagenomic function of broiler chickens. Anim Microbiome 2023; 5:36. [PMID: 37537673 PMCID: PMC10399007 DOI: 10.1186/s42523-023-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The inclusion of alternative ingredients in poultry feed is foreseen to impact poultry gut microbiota. New feeding strategies (probiotics/prebiotics) must be adopted to allow sustainable productions. Therefore, the current study aimed to use metagenomics approaches to determine how dietary inclusion of prebiotic (inulin) plus a multi-strain probiotic mixture of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus affected microbiota composition and functions of the gastro-intestinal tract of the broilers during production. Fecal samples were collected at the beginning of the trial and after 5, 11 and 32 days for metataxonomic analysis. At the end of the trial, broilers were submitted to anatomo-pathological investigations and caecal content was subjected to volatilome analysis and DNAseq. RESULTS Probiotic plus prebiotic inclusion did not significantly influence bird performance and did not produce histopathological alterations or changes in blood measurements, which indicates that the probiotic did not impair the overall health status of the birds. The multi-strain probiotic plus inulin inclusion in broilers increased the abundance of Blautia, Faecalibacterium and Lachnospiraceae and as a consequence an increased level of butyric acid was observed. In addition, the administration of probiotics plus inulin modified the gut microbiota composition also at strain level since probiotics alone or in combination with inulin select specific Faecalibacterium prausnitzi strain populations. The metagenomic analysis showed in probiotic plus prebiotic fed broilers a higher number of genes required for branched-chain amino acid biosynthesis belonging to selected F. prausnitzi strains, which are crucial in increasing immune function resistance to pathogens. In the presence of the probiotic/prebiotic a reduction in the occurrence of antibiotic resistance genes belonging to aminoglycoside, beta-lactamase and lincosamide family was observed. CONCLUSIONS The positive microbiome modulation observed is particularly relevant, since the use of these alternative ingredients could promote a healthier status of the broiler's gut.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Turin, Italy
| | - Elena Colombino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simone Squara
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | | | - Erica Liberto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
14
|
Effects of fermented feed on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production and the microbiota community in broilers. Poult Sci 2023; 102:102629. [PMID: 37004289 PMCID: PMC10091030 DOI: 10.1016/j.psj.2023.102629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The aim of this study was to explore the effects of dietary fermented feed addition on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production, and the bacterial community in broilers. A total of 480 broiler chicks (1-day-old) were randomly assigned to 6 groups, including a basal diet (control group), a basal diet supplemented with 10, 15, 20, and 25% dried fermented feed, and 10% wet fermented feed. Each group contained 8 replicates of 10 chicks each. The results showed that fermentation increased (P < 0.05) the total acid level and the number of Lactobacillus, Yeast, and Bacillus. The 15% dried fermented feed group had an increased (P < 0.05) body weight (BW) than the control, while the 25% dried fermented feed group had the lowest (P < 0.05) BW on 42 d. Compared to the control group, the feed intake (FI) was increased (P < 0.05) in the 10, 15% dried and 10% wet fermented feed groups from 22 to 42 d and from 1 to 42 d. No significant difference (P > 0.05) was observed in feed conversion ratio (FCR) among all groups. Supplementation with fermented feed increased (P < 0.05) the bursa of Fabricius index but not (P > 0.05) the thymus and spleen indices. Compared with the control, the broilers fed fermented feed had increased (P < 0.05) serum total protein, albumin, globulin, IgA, IgG, IgM, lysozyme, complement 3, and complement 4 levels. The cecal concentrations of acetic acid, propionic acid, butyric acid, and lactic acid were increased and the pH values were decreased in the fermented feed groups (P < 0.05). Among the groups, the 15% dried fermented feed group showed the lowest concentrations of skatole and indole in the cecum (P < 0.05). The composition of the cecal microbiota was characterized, in which an increased abundance of Ruminococcaceae, Lactobacillaceae, and unclassified Clostridiales and a decreased abundance of Rikenellaceae, Lachnospiraceae, and Bacteroidaceae were found in the fermented feed groups. Taken together, dietary fermented feed supplementation can improve growth performance, immune organ development, and capacity and decrease cecal odorous compound production, which may be related to the regulation of microbial composition.
Collapse
|
15
|
Liu X, Ma Z, Wang Y, Li L, Jia H, Zhang L. Compound probiotics can improve intestinal health by affecting the gut microbiota of broilers. J Anim Sci 2023; 101:skad388. [PMID: 37982805 PMCID: PMC10724112 DOI: 10.1093/jas/skad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/18/2023] [Indexed: 11/21/2023] Open
Abstract
Probiotics, as a widely used additive, have played a unique advantage in replacing antibiotic products. As a result, the probiotic effects on broiler development, intestinal flora, intestinal barrier, and immunity were assessed by this investigation. Four hundred and eighty 1-day-old Arbor Acres broilers were randomly allotted to 4 groups of 5 replicates with 24 broilers each. The control was fed only a basal corn-soybean meal diet. Probiotics I, probiotics II, and probiotics III were fed basal diet and 1, 5, and 10 g/kg compound probiotics (Lactobacillus casei: Lactobacillus acidophilus: Bifidobacterium = 1:1:2), respectively. We found that broilers in the compound probiotic group exhibited better growth performance and carcass characteristics compared with control, especially among probiotics III group. The intestinal barrier-related genes relative expression of Claudin, Occludin, MUC2, and ZO-1 mRNA in the probiotic group increased at 21 and 42 d compared with control, especially among probiotics III group (P < 0.05). The early gut immune-related genes (TLR2, TLR4, IL-1β, and IL-2) mRNA increased compared with control, while the trend at 42 d was completely opposite to that in the earlier stage (P < 0.05). Among them, probiotics III group showed the most significant changes compared to probiotics II group and probiotics I group. Select probiotics III group and control group for 16S rDNA amplicon sequencing analysis. The 16S rDNA amplicon sequencing results demonstrated that probiotics increased the relative abundance of beneficial microbes such as o_Bacteroidales, f_Rikenellaceae, and g_Alistipes and improved the cecum's gut microbiota of 42-day-old broilers. Additionally, adding the probiotics decreased the relative abundance of harmful microbes such as Proteobacteria. PICRUSt2 functional analysis revealed that most proteins were enriched in DNA replication, transcription, and glycolysis processes. Therefore, this study can provide theoretical reference value for probiotics to improve production performance, improve intestinal barrier, immunity, intestinal flora of broilers, and the application of probiotics.
Collapse
Affiliation(s)
- Xuan Liu
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zhenhua Ma
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yanfei Wang
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Li Li
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hao Jia
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Lihuan Zhang
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
16
|
Bao C, Zhang W, Wang J, Liu Y, Cao H, Li F, Liu S, Shang Z, Cao Y, Dong B. The Effects of Dietary Bacillus amyloliquefaciens TL106 Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immunity, Epithelial Barrier Integrity, and Intestinal Microbiota in Broilers. Animals (Basel) 2022; 12:ani12223085. [PMID: 36428313 PMCID: PMC9686771 DOI: 10.3390/ani12223085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
A total of 240 1-day-old Arbor Acres male broilers were randomly divided into five dietary treatments (control feed (CON), supplemented with 75 mg/kg aureomycin (ANT), supplemented with 7.5 × 108 CFU/kg (Ba1) and 2.5 × 109 CFU/kg (Ba1), and 7.5 × 109 CFU/kg (Ba3) Bacillus amyloliquefaciens TL106, respectively) to investigate the probiotic effect of TL106 instead of antibiotics in broilers. On days 1−21, the average daily gain of broilers in the Ba groups was increased compared with the CON group (p < 0.05). In addition, the feed/gain ratio of broilers in the Ba groups was lower than that of broilers in the CON and ANT groups on days 22−42 and days 1−42 (p < 0.05). Compared with the CON group, dietary TL106 increased the digestibility of crude fiber and crude protein (p < 0.05), and the effect was similar to that of the ANT group. The levels of IL-1β, IFN-γ, and IL-6 in serum, jejunum, and ileum of broilers fed TL106 were decreased compared with the control group (p < 0.05). The mRNA expression of tight junction proteins in broilers of ANT and Ba groups was higher than the control group (p < 0.05). After 21 days, villus height and the ratio of villus height to crypt depth of duodenum and jejunum of broilers fed TL106 were higher than the control group (p < 0.05). The concentrations of short-chain fatty acids such as lactate, acetate, propionate, and butyrate in cecal digesta of broilers dietary TL106 were higher than the control group (p < 0.05). The supplementation with TL106 altered the compositions and diversity of the cecal microbiota of broilers. Moreover, supplementation with TL106 improved the ratio of Firmicutes to Bacteroidetes and decreased the relative abundance of Proteobacteria on days 21 and 28, while the abundance of Peptostreptococcaceae, Ruminococcaceae and Lactobacillaceae was increased. On days 35 and 42, broilers fed TL106 had an increased total abundance of Firmicutes and Bacteroidetes and decreased abundances of Lactobacillaceae, while the abundance of Barnesiellaceae was increased. In conclusion, dietary supplementation with TL106 improved the broiler’s growth performance, immune response capacity, gut health, modulated development, and composition of the gut microbiota in broilers. It is suggested that Bacillus amyloliquefaciens TL106 may be a suitable alternative to in-feed antibiotics to improve broiler health and performance.
Collapse
Affiliation(s)
- Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenxiu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Zhengda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
17
|
Adıgüzel E, Çiçek B, Ünal G, Aydın MF, Barlak-Keti D. Probiotics and prebiotics alleviate behavioral deficits, inflammatory response, and gut dysbiosis in prenatal VPA-induced rodent model of autism. Physiol Behav 2022; 256:113961. [PMID: 36100109 DOI: 10.1016/j.physbeh.2022.113961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorders are neuropsychiatric conditions characterized by social interaction and communication disorders and repetitive stereotypical behaviors. These disorders are also accompanied by an inflammatory status. Bidirectional communication between microbiome, gut, and brain has been discovered as a major mechanism influencing core symptoms and biomarkers of autism. Therefore, the modulation of the gut microbiota in autism has recently attracted interest. In this study, probiotic- and prebiotic-mediated modulation of the gut microbiota was compared in terms of different symptoms and findings in an experimental autism model. Valproic acid (VPA) (500 mg/kg) was administered to Wistar rats (on prenatal day 12.5) to induce autistic-like behaviors. Based on the supply of probiotics and prebiotics, animals were grouped as control (saline), autistic-like (prenatal VPA), probiotic (prenatal VPA + 22.5 × 109 cfu/day probiotic), prebiotic (prenatal VPA + 100 mg/day prebiotic), and combined treatment (prenatal VPA + 22.5 × 109 cfu/day probiotic + 100 mg/day prebiotic). After the treatment process, behavioral tests (social behaviors, anxiety, stereotypical behavior, sensorimotor gating, and behavioral despair) and biochemical analyses (serum and brain tissue) were conducted, and the quantities of some phyla and genera were determined in stool samples. Significant positive effects of probiotic and combined treatments were observed on the sociability, social interaction, and anxiety parameters. In addition, all three treatments had positive effects on stereotypical behavior. However, the treatments did not affect sensorimotor gating deficits and behavioral despair. Further, probiotic treatment reversed the VPA-induced increase and decrease in serum IL-6 and IL-10 levels, respectively. Combined treatment also significantly increased the IL-10 levels. Prenatal VPA exposure decreased 5-hydroxytryptamine (5-HT) levels in the prefrontal cortex of the brain; however, combined treatment reversed this decrease. Prenatal VPA exposure also caused a decrease in Bacteroidetes/Firmicutes ratio in the gut microbiota, while the probiotic treatment significantly increased this ratio. These findings indicate that probiotic- and prebiotic-mediated microbial modulation may represent a new therapeutic approach to alleviate autistic-like symptoms.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, İbrahim Öktem Street, Karaman 70200, Turkey.
| | - Betül Çiçek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey.
| | - Gökhan Ünal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Mehmet Fatih Aydın
- Department of Public Health, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey,.
| | - Didem Barlak-Keti
- Department of Medical Biochemistry, Medical School, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
18
|
Abdel-Wahab AA, Elnesr SS, Abdel-Kader IA. Effect of dietary supplementation of Jerusalem Artichoke extract on performance, blood biochemistry, antioxidant parameters, and immune response of growing Japanese quail. J Anim Physiol Anim Nutr (Berl) 2022; 107:920-927. [PMID: 36245301 DOI: 10.1111/jpn.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to examine the impact of the Jerusalem Artichoke extract (JAEx) as a feed additive on the performance, blood biochemistry, antioxidant indices, immunity, and intestinal microbiota in growing Japanese quails. In total, 270 birds were randomly divided into three groups, with six replicates of 15 birds each. The first group was fed a control diet without JAEx. The second and third groups received the control diet plus 200 and 400 ppm JAEx, respectively. The groups fed the diet containing 200 and 400 ppm JAEx had the best body weight, body weight gain and feed conversion ratio, and faster growth rate with the best performance index, compared with the control group (p < 0.05). The control quails had a lower feed intake than the JAEx-treated quails. The groups fed JAEx 200 and 400 ppm had the lowest lipid profile, blood glucose, liver enzymes, Salmonella and Escherichia coli population and the highest antioxidant indices, immune responses and Lactobacilli population number compared to the control group (p < 0.05). In conclusion, the addition of JAEx at 400 ppm followed by 200 ppm improved the productive performance, antioxidant capacity, blood biochemical and immunological indices, and intestinal microbiota in growing Japanese quails.
Collapse
Affiliation(s)
- A A Abdel-Wahab
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - I A Abdel-Kader
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
19
|
Burakova I, Smirnova Y, Gryaznova M, Syromyatnikov M, Chizhkov P, Popov E, Popov V. The Effect of Short-Term Consumption of Lactic Acid Bacteria on the Gut Microbiota in Obese People. Nutrients 2022; 14:3384. [PMID: 36014890 PMCID: PMC9415828 DOI: 10.3390/nu14163384] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a problem of modern health care that causes the occurrence of many concomitant diseases: arterial hypertension, diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. New strategies for the treatment and prevention of obesity are being developed that are based on using probiotics for modulation of the gut microbiota. Our study aimed to evaluate the bacterial composition of the gut of obese patients before and after two weeks of lactic acid bacteria (Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and Lactobacillus delbrueckii) intake. The results obtained showed an increase in the number of members of the phylum Actinobacteriota in the group taking nutritional supplements, while the number of phylum Bacteroidota decreased in comparison with the control group. There has also been an increase in potentially beneficial groups: Bifidobacterium, Blautia, Eubacterium, Anaerostipes, Lactococcus, Lachnospiraceae ND3007, Streptococcus, Escherichia-Shigella, and Lachnoclostridium. Along with this, a decrease in the genera was demonstrated: Faecalibacterium, Pseudobutyrivibrio, Subdoligranulum, Faecalibacterium, Clostridium sensu stricto 1 and 2, Catenibacterium, Megasphaera, Phascolarctobacterium, and the Oscillospiraceae NK4A214 group, which contribute to the development of various metabolic disorders. Modulation of the gut microbiota by lactic acid bacteria may be one of the ways to treat obesity.
Collapse
Affiliation(s)
- Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
20
|
Zhang X, Akhtar M, Chen Y, Ma Z, Liang Y, Shi D, Cheng R, Cui L, Hu Y, Nafady AA, Ansari AR, Abdel-Kafy ESM, Liu H. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. MICROBIOME 2022; 10:107. [PMID: 35836252 PMCID: PMC9284917 DOI: 10.1186/s40168-022-01299-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/05/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal inflammation is prevalent in chicken, which results in decreased growth performance and considerable economic losses. Accumulated findings established the close relationship between gut microbiota and chicken growth performance. However, whether gut microbiota impacts chicken growth performance by lessening intestinal inflammation remains elusive. RESULTS Seven-weeks-old male and female chickens with the highest or lowest body weights were significantly different in breast and leg muscle indices and average cross-sectional area of muscle cells. 16S rRNA gene sequencing indicated Gram-positive bacteria, such as Lactobacilli, were the predominant species in high body weight chickens. Conversely, Gram-negative bacteria, such as Comamonas, Acinetobacter, Brucella, Escherichia-Shigella, Thermus, Undibacterium, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were significantly abundant in low body weight chickens. Serum lipopolysaccharide (LPS) level was significantly higher in low body weight chickens (101.58 ± 5.78 ng/mL) compared with high body weight chickens (85.12 ± 4.79 ng/mL). The expression of TLR4, NF-κB, MyD88, and related inflammatory cytokines in the jejunum was significantly upregulated in low body weight chickens, which led to the damage of gut barrier integrity. Furthermore, transferring fecal microbiota from adult chickens with high body weight into 1-day-old chicks reshaped the jejunal microbiota, mitigated inflammatory response, and improved chicken growth performance. CONCLUSIONS Our findings suggested that jejunal microbiota could affect chicken growth performance by mitigating intestinal inflammation. Video Abstract.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Muhammad Akhtar
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yan Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ziyu Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yuyun Liang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ranran Cheng
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Lei Cui
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yafang Hu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Abdallah A. Nafady
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M. Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
21
|
Dietary Supplementation of a New Probiotic Compound Improves the Growth Performance and Health of Broilers by Altering the Composition of Cecal Microflora. BIOLOGY 2022; 11:biology11050633. [PMID: 35625361 PMCID: PMC9138300 DOI: 10.3390/biology11050633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In most countries, antibiotic growth promoters are restricted or banned in the livestock industry, and probiotics have been widely explored to replace them. Lactobacillus LP184 and Yeast SC167 were selected as probiotic strains that could remain viable in feed and the gastrointestinal tract and were combined to form a compound to act as a substitute for antibiotics in broilers’ diets. This study aimed to investigate the effects of the compound probiotics as a potential alternative to antibiotics in broiler production. The feeding trial contained three dietary treatments and lasted for 42 days. The negative control group was fed the basal diet. The positive control group was fed the basal diet supplemented with commercial antibiotics. The probiotics group was fed the basal diet containing the compound probiotics. The results showed that the compound probiotics were a competent alternative for synthetic antibiotics to improve the production of broilers. The compound probiotics enhanced the immune and antioxidant capacities of broilers, which could not be achieved using antibiotics. The positive effects of the compound probiotics on the growth performance and health of broilers can likely be attributed to the improvement of intestinal morphology and cecal microbial diversity, effects which are distinct from those of antibiotics. These findings demonstrate the feasibility of replacing antibiotics with compound probiotics in broilers’ diets. Abstract The current study aimed to investigate the effects of a new probiotic compound developed as a potential alternative to synthetic antibiotics for broilers. A total of 360 newly hatched Arbor Acres male chicks were randomly divided into three treatment groups. Each treatment consisted of six replicates with 20 birds in each replicate. The negative control group was fed the basal diet. The positive control group was fed the basal diet supplemented with a commercial antimicrobial, virginiamycin, at 30 mg/kg of basal feed. The compound probiotics group was fed a basal diet containing 4.5 × 106 CFU of Lactobacillus LP184 and 2.4 × 106 CFU of Yeast SC167 per gram of basal feed. The feeding trial lasted for 42 days. The results showed that the compound probiotics were a competent alternative to synthetic antibiotics for improving the growth performance and carcass traits of broilers. The compound probiotics enhanced the immune and antioxidant capacities of the broilers, while antibiotics lacked such merits. The positive effects of compound probiotics could be attributed to an improvement in the intestinal morphology and cecal microbial diversity of broilers, effects which are distinct from those of antibiotics. These findings revealed the differences between probiotics and antibiotics in terms of improving broilers’ performance and enriched the basic knowledge surrounding the intestinal microbial structure of broilers.
Collapse
|
22
|
Ma H, Liang S, Wu H, Du C, Ren Z, Yang X, Yang X. Effects of in ovo feeding and dietary addition oils on growth performance and immune function of broiler chickens. Poult Sci 2022; 101:101815. [PMID: 35339935 PMCID: PMC8960950 DOI: 10.1016/j.psj.2022.101815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of in ovo feeding (IOF) and dietary addition (DA) oils on growth, development and immune function of broiler chickens. In experiment 1, a total of 500 eggs were randomly assigned to 3 treatments: non-injected group (CON) with 100 eggs; soybean oil injected group (SO) with 200 eggs and linseed oil injected group (LO) with 200 eggs. Results showed that there were no detrimental effects of IOF of oils on embryonic development. In experiment 2, a two factor experimental design was adopted. After hatching, 120 chicks which came from each oil-injected group were divided into 2 treatments with 6 replicates, and chickens were fed soybean oil diet and linseed oil diet, respectively. The results showed that DA linseed oil increased final body weight (FBW) of broilers at d 21 post hatch, IOF of linseed oil decreased average daily feed intake (ADFI) and feed conversion ratio (FCR) of broilers from d 1 to 21 (P < 0.05), while the plasma leptin level of 21-day-old broilers was increased by IOF or DA linseed oil (P < 0.05). Main effect analysis showed that DA linseed oil increased the spleen index and mRNA expression of IFN-γ in spleen of broilers at 7 d of age (P < 0.05). IOF of linseed oil upregulated the mRNA expression of IFN-γ in the spleen of chicks at 1 d and mRNA expression of IL-2 and IL-4 in spleen of broilers at 21 d (P < 0.05), and the interaction effect showed that IOF and DA linseed oil synergically increased the expression of IL-2 and IL-4 in spleen of broilers at 21 d. Compared with SO group, LO increased the Shannon index of hatching-day cecum microflora (P < 0.05). Principal co-ordinates analysis (PcoA) showed that LO group clearly separated from CON and SO groups. Finally, Spearman correlation analysis also manifested that Alkalicoccus was significantly correlated with spleen index and mRNA expression of IL-2, and Phreatobacter was significantly correlated with the mRNA expression of IL-2 and IFN-γ in spleen, Acinetobacter had a positive correlation with thymus index (P < 0.05). In conclusion, IOF of linseed oil reduced the ADFI and FCR of broilers and increased the species diversity and changed the structure of cecal microflora of chicken embryos at the 19th day of incubation (E19). Immune function of broilers spleen was also regulated by IOF and DA linseed oil.
Collapse
Affiliation(s)
- Haiyan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Hanyue Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Caiyun Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
23
|
Zhang B, Liu N, Hao M, Zhou J, Xie Y, He Z. Plant-Derived Polysaccharides Regulated Immune Status, Gut Health and Microbiota of Broilers: A Review. Front Vet Sci 2022; 8:791371. [PMID: 35155646 PMCID: PMC8831899 DOI: 10.3389/fvets.2021.791371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
In modern intensive breeding system, broilers are exposed to various challenges, such as diet changes and pathological environment, which may cause the increase in the incidence rate and even death. It is necessary to take measures to prevent diseases and maintain optimal health and productivity of broilers. With the forbidden use of antibiotics in animal feed, polysaccharides from plants have attracted much attention owing to their lower toxicity, lower drug resistance, fewer side effects, and broad-spectrum antibacterial activity. It had been demonstrated that polysaccharides derived from plant exerted various functions, such as growth promotion, anti-inflammation, maintaining the integrity of intestinal mucosa, and regulation of intestinal microbiota. Therefore, the current review aimed to provide an overview of the recent advances in the impacts of plant-derived polysaccharides on anti-inflammation, gut health, and intestinal microbiota community of broilers in order to provide a reference for further study on maintaining the integrity of intestinal structure and function, and the related mechanism involved in the polysaccharide administration intervention.
Collapse
|
24
|
Association of Probiotic Supplementation with Improvements in the Gut Microbes, Blood Lipid Profile and Caecal Villus Morphology of Broilers. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Meng Y, Huo H, Zhang Y, Bai S, Wang R, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Xuan Y. Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals (Basel) 2021; 11:ani11102909. [PMID: 34679930 PMCID: PMC8532941 DOI: 10.3390/ani11102909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glucose oxidase was used as a potential additive to improve intestinal health in livestock and poultry industry. This study aimed to investigate the effects of glucose oxidase supplementation on performance, ileal microbiota, ileal short-chain fatty acids profile, and apparent ileal digestibility in grower broilers. Our findings will provide a valuable insight into the possibility of glucose oxidase as an alternative of antibiotic growth promoters in broiler diets. Abstract This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22–42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22–42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition.
Collapse
Affiliation(s)
- Yong Meng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Haonan Huo
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yang Zhang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Shiping Bai
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Correspondence: ; Tel.: +86-28-86290922
| | - Ruisheng Wang
- Chongqing Academy of Animal Science, Chongqiang 402460, China;
| | - Keying Zhang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Xuemei Ding
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Jianping Wang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Qiufeng Zeng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Huanwei Peng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yue Xuan
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| |
Collapse
|
26
|
Wu Z, Yang K, Zhang A, Chang W, Zheng A, Chen Z, Cai H, Liu G. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult Sci 2021; 100:101323. [PMID: 34280647 PMCID: PMC8319008 DOI: 10.1016/j.psj.2021.101323] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
We studied the effects of Lactobacillus acidophilus (L. acidophilus) on the growth performance, intestinal morphology, barrier function, and immune response of broilers challenged with Escherichia coli O157 (E. Coli). A total of 360 1-day-old Cobb male broilers were tested in a 3 × 2 factorial arrangement with 3 dietary L. acidophilus levels (0, 5 × 108 CFU/kg, and 10 × 108 CFU/kg of diet) and 2 disease challenge treatments (control or E. coli challenged). Results showed that E. coli challenge decreased the ADG, ADFI, and BW of broilers from 15 to 21 d (P < 0.05), increased the jejunum intestinal wall thickness, and significantly increased the mortality rate. E. coli challenge significantly (P < 0.05) decreased the serum IgA and IgM contents and peripheral blood CD3+ T cell counts (P < 0.05), increased the serum CRP, DAO, and LPS levels at 21 d; upregulated the mRNA expression of iNOS, IL-8, IL-1β in the jejunum and iNOS in the spleen, and downregulated the occludin and ZO-1 mRNA expression in the ileum at 21 d compared with uninfected birds (P < 0.05). Dietary L. acidophilus supplementation consistently showed higher BW, ADG, ADFI, and jejunum and ileum V:C ratio at 14 d and 21 d in the presence and absence of E. coli challenge (P < 0.05). L. acidophilus supplementation reduced the mortality rate caused by E. coli challenge (P < 0.05), decreased the serum CRP, DAO, and LPS levels at 14 d and 21 d; upregulated the mRNA expression of occludin and ZO-1 in the jejunum and ileum, and downregulated the mRNA expression of iNOS, IL-8, and IL-1β in the jejunum in E. coli challenged birds at 21 d (P < 0.05). Dietary supplementation with L. acidophilus can improve the growth performance, intestinal health, and survival of broilers challenged with E. coli.
Collapse
Affiliation(s)
- Zhengke Wu
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Kexin Yang
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Anrong Zhang
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Wenhuan Chang
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Aijuan Zheng
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Zhimin Chen
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Huiyi Cai
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China; National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Guohua Liu
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
27
|
Effect of fiber source and carbohydrase enzyme on chukar partridge growth performance, blood characteristics, digestive enzyme activity, cecal microbial population and ileal morphology. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Gutiérrez-Falcón AI, Ramos-Nuez AM, de Los Monteros Y Zayas AE, Castillo DFP, García-Laorden MI, Chamizo-López FJ, Real Valcárcel F, Campelo FA, Benítez AB, Salgueiro PN, Cabrera CD, Rivero-Vera JC, González-Martín JM, Caballero JM, Frías-Beneyto R, Villar J, Martín-Barrasa JL. Probiotic Properties of Alcaligenes faecalis Isolated from Argyrosomus regius in Experimental Peritonitis (Rat Model). Probiotics Antimicrob Proteins 2021; 13:1326-1337. [PMID: 33713309 PMCID: PMC8463381 DOI: 10.1007/s12602-021-09767-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
A strain of Alcaligenes faecalis A12C (A. faecalis A12C) isolated from Argyrosomus regius is a probiotic in fish. Previous experiments showed that A. faecalis A12C had inhibitory effects on the growth of multidrug-resistant bacteria. We aimed to confirm whether A. faecalis A12C is safe and has adequate intestinal colonization in experimental rats, and evaluate its efficacy in an animal model of peritonitis. We used 30 male rats, randomly divided into 6 groups (n = 5): three groups (HA7, HA15, HA30) received A. faecalis A12C in drinking water (6 × 108 CFU/mL) for 7 days, and three control groups received drinking water only. All groups were evaluated at 7, 15, and 30 days. Survival after A. faecalis A12C administration was 100% in all groups. Mild eosinophilia (1.5%, p < 0.01) and increased aspartate aminotransferase (86 IU/L, p < 0.05) were observed in HA7, followed by progressive normalization. No histological signs of organ injury were found. We observed significant E. coli decline in faeces, parallel to an increase in A. faecalis A12C at 7 days. E. coli had a tendency to recover initial values, while A. faecalis A12C disappeared from the intestinal microbiota at 30 days. To evaluate its efficacy against peritonitis, we studied two additional groups of animals: IA group pretreated with A. faecalis A12C before E. coli intra-abdominal inoculation, and IC group inoculated with no A. faecalis A12C. We found an increase in C-reactive protein, alanine aminotransferase, urea, and eosinophils in IC animals when compared with IA. Peritonitis was more evident in IC than in IA animals. Our findings suggest that A. faecalis A12C altered clinically relevant parameters in sepsis and was associated with a lesser spread of infection.
Collapse
Affiliation(s)
- A I Gutiérrez-Falcón
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain
| | - A M Ramos-Nuez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - A Espinosa de Los Monteros Y Zayas
- Morphology Department, Universitary Institute of Animal Health and Food Safety (IUSA), Universidad de Las Palmas de Gran Canaria. Arucas, Las Palmas, Spain
| | - D F Padilla Castillo
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain
| | - M Isabel García-Laorden
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - F J Chamizo-López
- Microbiology Department. Hospital,, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - F Real Valcárcel
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain
| | - F Artilles Campelo
- Microbiology Department. Hospital,, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - A Bordes Benítez
- Microbiology Department. Hospital,, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - P Nogueira Salgueiro
- Clinical Biochemistry Department, Hosital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - C Domínguez Cabrera
- Clinical Biochemistry Department, Hosital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - J C Rivero-Vera
- Pathology Service. Hospital, Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | - J M González-Martín
- Statistics Service. Research Unit, Hospital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain
| | | | - R Frías-Beneyto
- Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - J L Martín-Barrasa
- Group of Fish Health and Infectious Diseases, Universitary Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Carretera de Trasmontaña s/n, 35416, Arucas, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain. .,Animal Facility, Research Unit, Hospital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena S/N, 35019, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
29
|
Szczypka M, Suszko-Pawłowska A, Kuczkowski M, Gorczykowski M, Lis M, Kowalczyk A, Łukaszewicz E, Poradowski D, Zbyryt I, Bednarczyk M, Stefaniak T. Effects of Selected Prebiotics or Synbiotics Administered in ovo on Lymphocyte Subsets in Bursa of the Fabricius, Thymus, and Spleen in Non-Immunized and Immunized Chicken Broilers. Animals (Basel) 2021; 11:ani11020476. [PMID: 33670391 PMCID: PMC7917990 DOI: 10.3390/ani11020476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Probiotics, prebiotics, and synbiotics may be used as feed additives instead of banned antibiotic-based growth promoters. These bioactive compounds applied in ovo have beneficial effects on intestinal bifidobacteria, decrease the number of detrimental bacteria in the gut, stimulate the development of gut-associated lymphoid tissues (GALT), and modulate the development of lymphoid organs. The aim of our study was to determine whether the specific in ovo-delivered prebiotics and synbiotics affected the lymphocyte subsets of the bursa of the Fabricius, thymus, and spleen in non-immunized chicken broilers and in birds immunized with T-dependent (sheep red blood cells—SRBC) and T-independent (dextran—DEX) antigens. This study demonstrated that in ovo administration of prebiotics and synbiotics is a promising approach for enhancing chicken immune system functions. We conclude that a combination of inulin and Lactococcus lactis subsp. lactis IBB SL1 was the most effective of the tested compounds in the stimulation of the chicken immune system. Abstract The effects of in ovo-delivered prebiotics and synbiotics on the lymphocyte subsets of the lymphoid organs in non-immunized 7-day-old broiler chickens and in non-immunized, sheep red blood cells (SRBC)-immunized, and dextran (DEX)-immunized 21- and 35-day-old birds were studied. The substances were injected on the 12th day of egg incubation: Prebiotic1 group (Pre1) with a solution of inulin, Prebiotic2 group (Pre2) with a solution of Bi2tos (non-digestive transgalacto-oligosaccharides), Synbiotic1 group (Syn1) with inulin and Lactococcus lactis subsp. lactis IBB SL1, and Synbiotic2 group (Syn2) with Bi2tos and Lactococcus lactis subsp. cremoris IBB SC1. In 7-day-old chicks, a decrease in T splenocytes was noticed in all groups. The most pronounced effect in 21- and 35-day-old birds was an increase in TCRγδ+ cells in Syn1 and Syn2 groups. A decrease in bursal B cells was observed in DEX-immunized Pre1 group (21-day-old birds), and in the Syn1 group in non-immunized and SRBC-immunized 35-day-old birds. An increase in double-positive lymphocytes was observed in Pre1 (35-day-old birds) and Pre2 (immunized 21-day-old birds) groups. In Pre1 and Syn1 groups (21- and 35-day-old), an increase in B splenocytes and a decrease in T splenocytes were observed. We concluded that Syn1 was the most effective in the stimulation of the chicken immune system.
Collapse
Affiliation(s)
- Marianna Szczypka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (A.S.-P.); (M.L.)
- Correspondence: ; Tel.: +48-71-320-5215
| | - Agnieszka Suszko-Pawłowska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (A.S.-P.); (M.L.)
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (I.Z.)
| | - Michał Gorczykowski
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Division of Parasitology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
| | - Magdalena Lis
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (A.S.-P.); (M.L.)
| | - Artur Kowalczyk
- Institute of Animal Breeding, Division of Poultry Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (A.K.); (E.Ł.)
| | - Ewa Łukaszewicz
- Institute of Animal Breeding, Division of Poultry Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (A.K.); (E.Ł.)
| | - Dominik Poradowski
- Department of Animal Physiology and Biostructure, Division of Animal Anatomy, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wrocław, Poland;
| | - Iwona Zbyryt
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (I.Z.)
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland;
| | - Tadeusz Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
| |
Collapse
|
30
|
Dunislawska A, Herosimczyk A, Lepczynski A, Slama P, Slawinska A, Bednarczyk M, Siwek M. Molecular Response in Intestinal and Immune Tissues to in Ovo Administration of Inulin and the Combination of Inulin and Lactobacillus lactis Subsp. cremoris. Front Vet Sci 2021; 7:632476. [PMID: 33614758 PMCID: PMC7886801 DOI: 10.3389/fvets.2020.632476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023] Open
Abstract
Intestinal microbiota are a key factor in maintaining good health and production results in chickens. They play an important role in the stimulation of immune responses, as well as in metabolic processes and nutrient digestion. Bioactive substances such as prebiotics, probiotics, or a combination of the two (synbiotic) can effectively stimulate intestinal microbiota and therefore replace antibiotic growth promoters. Intestinal microbiota might be stimulated at the early stage of embryo development in ovo. The aim of the study was to analyze the expression of genes related to energy metabolism and immune response after the administration of inulin and a synbiotic, in which lactic acid bacteria were combined with inulin in the intestines and immune tissues of chicken broilers. The experiment was performed on male broiler chickens. Eggs were incubated for 21 days in a commercial hatchery. On day 12 of egg incubation, inulin as a prebiotic and inulin with Lactobacillus lactis subsp. cremoris as a synbiotic were delivered to the egg chamber. The control group was injected with physiological saline. On day 35 post-hatching, birds from each group were randomly selected and sacrificed. Tissues (spleen, cecal tonsils, and large intestine) were collected and intended for RNA isolation. The gene panel (ABCG8, HNF4A, ACOX2, APBB1IP, BRSK2, APOA1, and IRS2) was selected based on the microarray dataset and biological functions of genes related to the energy metabolism and immune responses. Isolated RNA was analyzed using the RT-qPCR method, and the relative gene expression was calculated. In our experiment, distinct effects of prebiotics and synbiotics following in ovo delivery were manifested in all analyzed tissues, with the lowest number of genes with altered expression shown in the large intestines of broilers. The results demonstrated that prebiotics or synbiotics provide a potent stimulation of gene expression in the spleen and cecal tonsils of broiler chickens. The overall number of gene expression levels and the magnitude of their changes in the spleen and cecal tonsils were higher in the group of synbiotic chickens compared to the prebiotic group.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Adam Lepczynski
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
31
|
Yao J, Wang L, Zhang W, Liu M, Niu J. Effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves. Open Life Sci 2020; 15:1033-1041. [PMID: 33817289 PMCID: PMC7874550 DOI: 10.1515/biol-2020-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022] Open
Abstract
Background This study was conducted to investigate the effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves. Methods In total, 20 1-day-old Holstein calves with similar body weight (BW) and good health condition were randomly assigned into two groups with ten replicates per group and one calf per replicate. The control group (CON group) was fed a basal diet, whereas the B. megaterium group (BM group) was fed the basal diet supplemented with 500 mg/day/head of B. megaterium (1010 CFU/g) for 28 days. Results The results revealed that the BM group showed an increase in final BW, daily weight gain, and feed-to-gain ratio (p < 0.05) and a decrease in diarrhea rate. Moreover, the concentrations of serum cholesterol and high-density lipoprotein decreased (p < 0.05) in the BM group compared with the CON group at 28 days. The level of serum glutathione was higher (p < 0.05) in the BM group than that of the CON group at 14 days, whereas the level of serum malondialdehyde decreased (p < 0.01) in the BM group compared with the CON group at 28 days. In addition, compared with the CON group (p < 0.05), the concentrations of serum IgA, IgM, IgG, and IL-4 were higher, whereas the concentration of serum TNF-α decreased in the BM group at 28 days. Conclusion B. megaterium had beneficial effects on the improvement of growth performance, immune function, and intestinal oxidative status of suckling calves.
Collapse
Affiliation(s)
- Jun Yao
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116000, China
| | - Wenju Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| | - Mengjian Liu
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| | - Junli Niu
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
32
|
Chen J, Kuang Y, Qu X, Guo S, Kang K, He C. The effects and combinational effects of Bacillus subtilis and montmorillonite supplementation on performance, egg quality, oxidation status, and immune response in laying hens. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|