1
|
Kim HW, Kim JH, Han GP, Kil DY. Increasing concentrations of dietary threonine, tryptophan, and glycine improve growth performance and intestinal health with decreasing stress responses in broiler chickens raised under multiple stress conditions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:145-153. [PMID: 39257858 PMCID: PMC11385068 DOI: 10.1016/j.aninu.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 09/12/2024]
Abstract
The current study aimed to compare the effects of increasing concentrations of dietary threonine (Thr), tryptophan (Trp), and glycine (Gly) on growth performance, stress biomarkers, and intestinal function in broiler chickens under multiple stress conditions. Five hundred sixty broiler chickens at 21 d old were randomly allotted to 5 treatments with 8 replicates. Birds in a positive control (PC) treatment were raised under low stock density (16.9 birds/m2 per cage) with recommended environmental conditions, whereas birds in 4 treatments were subjected to multiple stress conditions: a cyclic heat stress of 30 ± 0.3 °C for 10 h and 23 ± 0.2 °C for 14 h per day with high stock density (25.3 birds/m2 per cage). A basal diet was assigned to both PC and negative control (NC) treatments. Three additional diets were individually formulated to contain double concentrations of digestible Thr, Trp, or Gly + Ser compared with their concentrations in the basal diet. The experiment lasted for 14 d. Results showed that NC treatment had less growth performance (P < 0.001), jejunal goblet cell counts (P = 0.018), and trans-epithelial electrical resistance (TEER; P < 0.001), but greater (P = 0.026) feather corticosterone (CORT) concentrations than PC treatment. Thr treatment showed the least (P < 0.001) feed conversion ratio (FCR) among treatments under multiple stress conditions. Thr, Trp, and Gly treatments had less (P = 0.026) feather CORT concentrations, but had greater (P < 0.001) TEER than NC treatment. In conclusion, increasing concentrations of dietary Thr, Trp, or Gly improve the growth performance and intestinal health in broiler chickens with decreasing stress response under multiple stress conditions.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
2
|
Mamdouh M, Shehata SF, El-Keredy A, Awad DA, El-Rayes TK, Elsokary MMM, Baloza SH. The effects of Artemisia annua nutritional supplementation at varying concentrations on broiler growth, economic yield, and gene expression levels of certain antioxidant, inflammatory, and immune genes. Vet World 2024; 17:1318-1327. [PMID: 39077447 PMCID: PMC11283622 DOI: 10.14202/vetworld.2024.1318-1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Artemisia annua (AA), used as a growth promoter in poultry, lowers feed costs and enhances economic efficiency. This study aimed to assess the impact of varying AA concentrations on broiler chicken growth, gene expression, and profitability. Materials and Methods Two hundred 1-day-old male Cobb chicks were randomly allocated into four treatment groups, each containing five replicates and 10 birds. The experimental groups consisted of G1 (basal diet), G2 (basal diet with 0.3% AA), G3 (basal diet with 0.6% AA), and G4 (basal diet with 0.9% AA). The birds had continuous access to feed and water throughout the study. The experiment lasted for 42 days. We measured the growth performance (Feed intake, Life weight), carcass traits (weight after slaughter, dressed carcass, heart, gizzard, spleen, giblet and thymus weight), liver and spleen antioxidants (CAT, GSH, SOD), and gene expression of anti-inflammatory and immune- related genes. Results The primary findings revealed that the addition of 0.6% AA had a positive impact (p < 0.05) on all investigated variables compared with the control and other groups. Dietary supplementation with 0.6% AA led to increased breast, giblet, skeleton, and total yield, and net return compared with the control group. Supplementation with AA exhibited antioxidant, anti-inflammatory, and immunological effects through improved levels of antioxidant superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in tissue homogenates of the liver and spleen. It also upregulated the relative messenger RNA levels of anti-inflammatory interleukin (IL)-10, SOD, CAT, and GSH-Px, whereas IL-1β and tumor necrosis factor-alpha were downregulated. Conclusion The study found that AA is a promising replacement for antibiotics in poultry farming as a growth promoter for chickens. 0.6% AA in the broiler diet yielded the best results, striking a balance between superior performance and robust economic benefits.
Collapse
Affiliation(s)
- Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, PO 137386, Benha, Egypt
| | - Seham F Shehata
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, PO 137386, Benha, Egypt
| | - Amira El-Keredy
- Department of Genetics, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Dina A Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, PO 13736, Benha, Egypt
| | - Talaat Khedr El-Rayes
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Mohamed M M Elsokary
- Veterinary Medicine and Food Security Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Abu Dhabi 17155, United Arab Emirates
- Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, PO 13786, Benha, Egypt
| | - Samar H Baloza
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, PO 137386, Benha, Egypt
| |
Collapse
|
3
|
Zhang W, Zhao G, Li X, Han M, Zhang S, Deng H, Yang K. Dietary supplementation with tryptophan increases the plasma concentrations of tryptophan, kynurenine, and melatonin in Yili mares. ANIMAL PRODUCTION SCIENCE 2023; 64. [DOI: doi.org/10.1071/an23113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Context Tryptophan (Trp) is the precursor of melatonin (MT) and the latter plays vital physiological roles in mares. Aims The purpose of this experiment was to investigate the effects of dietary Trp supplementation on the plasma Trp, kynurenine (Kyn), 5-hydroxytryptophan (5-HT), and melatonin (MT) concentrations in female Yili horses. Methods Twenty Yili mares aged 2 years with mean bodyweight (BW) of 263.5 ± 14.77 kg and of similar stature were selected and randomly allocated to the control (CON; basal diet), basal diet plus Trp at 20 mg/kg BW (TRP1), basal diet plus Trp at 40 mg/kg BW (TRP2), or basal diet plus Trp at 60 mg/kg BW (TRP3) group. Key results The plasma total Trp, Kyn, and MT concentrations in all Trp groups steadily increased, reached their peak values, and gradually decreased after Trp supplementation between 0 h and 12 h. However, the plasma 5-HT concentration displayed the opposite trend. Peak plasma total Trp and 5-HT concentrations were attained between 1 h and 3 h, while those of KYN and MT appeared between 4 h and 6 h after Trp supplementation. The plasma total Trp and Kyn concentrations were significantly higher in TRP2 and TRP3 than in CON between 1 h and 12 h (P < 0.05) after Trp supplementation. The plasma 5-HT concentration was significantly (P < 0.05) lower in TRP1 than in CON at 3 h, 4 h, 6 h, 9 h, and 12 h after Trp supplementation. The plasma MT concentrations in TRP1 and TRP2 were significantly (P < 0.05) higher than in CON at 3 h, 4 h, and 12 h, and at 0 h, 1 h, and 12 h after Trp supplementation (P < 0.05). Conclusions Dietary Trp supplementation can increase the plasma total Trp, Kyn, and MT concentrations in Yili mares and the optimal Trp dosage was 20 mg/kg BW. Implication The addition of Trp to a basal diet or feed may increase the plasma total Trp, Kyn, and MT concentrations in female horses.
Collapse
|
4
|
Dietary Supplementation with Chlorogenic Acid Enhances Antioxidant Capacity, Which Promotes Growth, Jejunum Barrier Function, and Cecum Microbiota in Broilers under High Stocking Density Stress. Animals (Basel) 2023; 13:ani13020303. [PMID: 36670842 PMCID: PMC9854556 DOI: 10.3390/ani13020303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Chlorogenic acids (CGA) are widely used as feed additives for their ability to improve growth performance and intestinal health in poultry. However, whether dietary CGAs could reverse the impaired intestinal condition caused by high stocking density (HD) in broiler chickens is unknown. We determined the effect of dietary CGA on growth, serum antioxidant levels, jejunum barrier function, and the microbial community in the cecum of broilers raised under normal (ND) or HD conditions. HD stress significantly decreased growth and body weight, which was restored by CGA. The HD group showed increased serum malondialdehyde, an oxidative byproduct, and decreased SOD and GSH-Px activity. CGA reduced malondialdehyde and restored antioxidant enzyme activity. HD stress also significantly decreased jejunal villus length and increased crypt depth. Compared with ND, the expression of tight-junction genes was significantly decreased in the HD group, but this decrease was reversed by CGA. HD also significantly upregulated TNF-α. Compared with ND, the cecal microbiota in the HD group showed lower alpha diversity with increases in the harmful bacteria Turicibacter and Shigella. This change was altered in the HD + CGA group, with enrichment of Blautia, Akkermansia, and other beneficial bacteria. These results demonstrated that HD stress decreased serum antioxidant capacity, inhibited the development of jejunal villi, and downregulated expression of tight-junction genes, which increased intestinal permeability during the rapid growth period (21 to 35 days). Dietary CGA enhanced antioxidant capacity, improved intestinal integrity, and enhanced beneficial gut bacteria in chickens raised under HD conditions.
Collapse
|
5
|
Hafez MH, El-Kazaz SE, Alharthi B, Ghamry HI, Alshehri MA, Sayed S, Shukry M, El-Sayed YS. The Impact of Curcumin on Growth Performance, Growth-Related Gene Expression, Oxidative Stress, and Immunological Biomarkers in Broiler Chickens at Different Stocking Densities. Animals (Basel) 2022; 12:ani12080958. [PMID: 35454205 PMCID: PMC9024619 DOI: 10.3390/ani12080958] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The primary goal of global poultry production is to optimize the amount of chicken produced per square meter of floor area. Consequently, stocking density (SD) and curcumin supplementation on broiler performance were investigated. Our results revealed that supplemental curcumin improved birds’ growth, behaviours, and immunity by lowering oxidative stress, enhancing humoral immune response, and modulating the suppression of growth-related gene expressions in broilers raised in high stocking density circumstances. Abstract Curcumin’s antioxidant properties reduce free radicals and may improve broiler growth. Therefore, the influence of stocking density (SD) and administration of curcumin in the diet on broiler performance was explored to clarify the impact of HSD and curcumin on the performance of growth, behavioural patterns, haematological, oxidant/antioxidant parameters, immunity markers, and the growth-related genes expression in broiler chickens. A total of 200 broiler chickens (Cobb 500, 2-weeks old) were allotted into 4 groups; SD (moderate and high) and curcumin (100 and 200 mg/kg diet)-supplemented HSD, respectively. Behavioural observations were performed. After a 28-day experimental period, tissue and blood samples were collected for analysis. Expressions of mRNA for insulin-like growth factor-1 (IGF-1), growth hormone receptor (GHR), myostatin (MSTN), and leptin in liver tissues were examined. HSD birds exhibited lower growth performance measurements, haematological parameters, circulating 3,5,3-triiodothyronine and thyroxine levels, antioxidant activities (GSH-Px, catalase, superoxide dismutase), immunoglobulins (A, G, M), and hepatic GHR and IGF-1 expression values. However, HSD birds even had an increment of serum corticosterone, malondialdehyde, pro-inflammatory cytokine (TNF-a, IL-2, IL-6) levels, hepatic leptin and MSTN expression. Moreover, HSD decreased drinking, feeding, crouching, body care, and increased standing and walking behaviour. The addition of curcumin, particularly at a 200 mg/kg diet, alleviated the effect of HSD through amending growth-related gene expression in the chickens. In conclusion, curcumin can enhance birds’ growth performance, behavioural patterns, and immunity by reducing oxidative stress and up-regulating the growth-related gene expressions of broilers under stressful conditions due to a high stocking density.
Collapse
Affiliation(s)
- Mona H. Hafez
- Physiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
- Correspondence: (M.H.H.); (M.S.)
| | - Sara E. El-Kazaz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Mohammed A. Alshehri
- Biology Department, College of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (M.H.H.); (M.S.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
6
|
Comparison of stress biomarkers in laying hens raised under a long-term multiple stress condition. Poult Sci 2022; 101:101868. [PMID: 35477135 PMCID: PMC9058573 DOI: 10.1016/j.psj.2022.101868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
The objective of the current experiment was to compare various stress biomarkers including the heterophil to lymphocyte ratio (H:L ratio) in blood and the corticosterone (CORT) concentrations in feathers, claws, and egg yolk and to find the potential stress biomarkers in laying hens exposed to a long-term multiple stress condition. A total of 24 Hy-Line Brown laying hens at 47 wk of age were allotted to 2 distinct conditions including normal condition (NC) and multiple stress condition (MC) with 8 replicated cages. In NC treatment, 8 hens were raised individually in the cage (0.16 m2/hen) under the temperature of 21 ± 0.6°C. In MC treatment, 16 hens were raised with 2 hens per cage to decrease space allowance (0.08 m2/hen) and the temperature was maintained at 31 ± 1.6°C. The experiment lasted for 8 wk. The common diets and water were fed on an ad libitum basis during the experiment. Results indicated no interactions between stress conditions and duration of stress exposure for all measurements. Hens in MC treatment had a greater (P < 0.01) blood H:L ratio than those in NC treatment. The greater (P < 0.05) H:L ratio for MC treatment was observed at all weeks. Hens in MC treatment had greater (P < 0.05) feather CORT concentrations than those in NC treatment. Feather CORT concentrations were increased (P < 0.05) with duration of the experiment. However, stress conditions did not influence claw CORT concentrations. A tendency (P = 0.081) was observed for greater yolk CORT concentrations in MC treatment than in NC treatment. In conclusion, the H:L ratio in blood and CORT concentrations in feathers and egg yolks are considered potential stress biomarkers in laying hens exposed to stress conditions, although each measurement has its respective limitations. However, CORT concentrations in the claw appear to be insensitive to a long-term stress exposure.
Collapse
|
7
|
Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines (Basel) 2022; 10:vaccines10020172. [PMID: 35214631 PMCID: PMC8875638 DOI: 10.3390/vaccines10020172] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
“Gut health” refers to the physical state and physiological function of the gastrointestinal tract and in the livestock system; this topic is often focused on the complex interacting components of the intestinal system that influence animal growth performance and host-microbial homeostasis. Regardless, there is an increasing need to better understand the complexity of the intestinal system and the various factors that influence gut health, since the intestine is the largest immune and neuroendocrine organ that interacts with the most complex microbiome population. As we face the post-antibiotic growth promoters (AGP) era in many countries of the world, livestock need more options to deal with food security, food safety, and antibiotic resilience to maintain agricultural sustainability to feed the increasing human population. Furthermore, developing novel antibiotic alternative strategies needs a comprehensive understanding of how this complex system maintains homeostasis as we face unpredictable changes in external factors like antibiotic-resistant microbes, farming practices, climate changes, and consumers’ preferences for food. In this review, we attempt to assemble and summarize all the relevant information on chicken gut health to provide deeper insights into various aspects of gut health. Due to the broad and complex nature of the concept of “gut health”, we have highlighted the most pertinent factors related to the field performance of broiler chickens.
Collapse
Affiliation(s)
- Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Kyungwoo Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Woo H. Kim
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Correspondence: ; Tel.: +1-301-504-8771
| |
Collapse
|
8
|
Shehata SF, Baloza SH, Elsokary MMM, Hashem NM, Khawanda MM. Effect of stocking density and vitamin E or zinc supplementation on growth, physiology, gene expression, and economic efficiency of growing broiler chicks. Trop Anim Health Prod 2022; 54:403. [PMID: 36435954 PMCID: PMC9701174 DOI: 10.1007/s11250-022-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
A total of 636 1-day-old male Cobb chicks were randomly assigned to seven treatments. The chicks were offered feed and water ad libitum throughout the experimental period. The first three groups included different stocking densities of broiler birds (low stocking density, LSD: 23 kg/m2; medium stocking density, MSD: 34 kg birds/m2; and high stocking density HSD: 39 kg birds/m2). The LSD group was considered a control group. The other four groups included MSD or HSD broiler birds supplemented with either Vit E (100 mg/kg DM diet; MSDVE and HSDVE) or Zn (100 mg/kg DM diet; MSDZn and HSDZn) in their basal diet. The main findings indicated that HSD and MSD negatively affected (p < 0.05) all variables under investigation compared with LSD. Compared with LSD, broiler birds in the MSD and HSD groups had lower body weights and higher feed conversion ratios, higher concentrations of blood plasma hormones (triiodothyronine thyroxine and corticosterone), and downregulated expression levels of hepatic growth hormone and insulin-like growth factor-l. In addition, broiler birds stocked at medium or high densities resulted in less economic return and profit. Vit E or Zn supplementation to broiler birds stocked at medium or high densities significantly reversed all adverse effects of HSD (> 23 kg/m2) on growth performance, hormones, and gene expression. It could be recommended that adding Zn at a level of 100 mg/kg per DM diet allows increasing the stocking density of broiler birds from 23 kg/m2 to 34 birds/m2 while maintaining the birds, welfare and economic profit.
Collapse
Affiliation(s)
- Seham F. Shehata
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha, PO 137386 Egypt
| | - Samar H. Baloza
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha, PO 137386 Egypt
| | - Mohamed M. M. Elsokary
- Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, Benha, PO 137386 Egypt ,Veterinary Medicine & Food Security Research Group, Faculty of Health Sciences, Higher Colleges of Technology, 17155 Abu Dhabi, United Arab Emirates
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, 21545 Egypt
| | - Maha M. Khawanda
- Physiology Department, Faculty of Veterinary Medicine, Benha University, Benha, PO 137386 Egypt
| |
Collapse
|
9
|
Zhang YN, Ruan D, Wang S, Huang XB, Li KC, Chen W, Xia WG, Wang SL, Zheng CT. Estimation of dietary tryptophan requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, reproductive organ and ovarian follicle development and serum biochemical indices. Poult Sci 2021; 100:101145. [PMID: 34174564 PMCID: PMC8242034 DOI: 10.1016/j.psj.2021.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/14/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to determine the dietary tryptophan (Trp) requirement for laying duck breeders. A total of 504 Longyan duck breeders (body weight: 1.20 ± 0.02 kg) aged 22 wk were randomly allocated to 6 treatments, each with 6 replicates of 14 ducks. During the next 16 wk, birds were fed the basal diet with total Trp contents of 1.00, 2.00, 3.00, 4.00, 5.00 and 6.00 g/kg, respectively. Dietary Trp levels increased egg production, egg mass and feed intake of duck breeders from 22 to 37 wk (P < 0.05), and there were linear and quadratic effects of Trp level (P < 0.05). The feed conversion ratio (FCR) quadratically decreased with dietary Trp levels (P < 0.05). Dietary Trp levels decreased (P < 0.05) egg albumen height and Haugh unit at wk 8 or 12, and the responses were linear and quadratic (P < 0.05). The body weight of breeders, absolute and relative weight of oviduct, number and total weight of preovulatory follicles (POF), and its proportion relative to ovarian weight were increased (P < 0.05), and the responses were linear (P < 0.01) and quadratic (P < 0.001). Ovarian weight increased quadratically (P < 0.05), and the mean weight of POF increased (P < 0.05), linearly and quadratically. The proportion of small yellow follicles relative to ovary weight decreased (P < 0.01) linearly and quadratically. At wk 16 of the trial period, the serum albumin content and alanine aminotransferase activity decreased (P < 0.05) and the creatinine content increased (P < 0.01) linearly and quadratically. The Trp requirements were estimated to be 3.14 g/kg for optimizing egg production, 2.93 g/kg for egg mass, and 2.92 g/kg for FCR. Overall, dietary Trp levels (1 to 6 g/kg) affected productive performance, egg quality, reproductive organ and ovarian follicle development, and serum biochemical indices of layer duck breeders, and a diet containing 2.9 to 3.1 g Trp per kg feed was adequate during the laying period (22 to 37 wk of age).
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640, Guangzhou, China.
| |
Collapse
|
10
|
Fouad AM, El-Senousey HK, Ruan D, Wang S, Xia W, Zheng C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2021; 105:1146-1153. [PMID: 33655568 DOI: 10.1111/jpn.13515] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
Many studies have shown that productivity, immune system, antioxidant status, and meat and egg quality can be optimized by dietary supplementation with amino acids that are not usually added to poultry diets. Understanding the effects of these amino acids may encourage feed manufacturers and poultry producers to include them as additives. One of these amino acids is tryptophan (Trp). The importance of Trp is directly related to its role in protein anabolism and indirectly related to its metabolites such as serotonin and melatonin. Thus, Trp could affect the secretion of hormones, development of immune organs, meat and egg production, and meat and egg quality in poultry raised under controlled or stressed conditions. Therefore, this review discusses the main roles of Trp in poultry production and its mode (s) of action in order to help poultry producers decide whether they need to add Trp to poultry diets. Further areas of research are also identified to address information gaps.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuang Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Xia
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|