1
|
Li C, Yan X, Yang Y, Nou X, Sun Z, Lillehoj HS, Lu M, Harlow K, Rivera I. In vitro and genomic mining studies of anti-Clostridium perfringens Compounds Derived from Bacillus amyloliquefaciens. Poult Sci 2024; 103:103871. [PMID: 38848632 PMCID: PMC11214307 DOI: 10.1016/j.psj.2024.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Clostridium perfringens is an important opportunistic microorganism in commercial poultry production that is implicated in necrotic enteritis (NE) outbreaks. This disease poses a severe financial burden on the global poultry industry, causing estimated annual losses of $6 billion globally. The ban on in-feed antibiotic growth promoters has spurred investigations into approaches of alternatives to antibiotics, among which Bacillus probiotics have demonstrated varying degrees of effectiveness against NE. However, the precise mechanisms underlying Bacillus-mediated beneficial effects on host responses in NE remain to be further elucidated. In this manuscript, we conducted in vitro and genomic mining analysis to investigate anti-C. perfringens activity observed in the supernatants derived from 2 Bacillus amyloliquefaciens strains (FS1092 and BaD747). Both strains demonstrated potent anti-C. perfringens activities in in vitro studies. An analysis of genomes from 15 B. amyloliquefaciens, 11 B. velezensis, and 2 B. subtilis strains has revealed an intriguing clustering pattern among strains known to possess anti-C. perfringens activities. Furthermore, our investigation has identified 7 potential antimicrobial compounds, predicted as secondary metabolites through antiSMASH genomic mining within the published genomes of B. amyloliquefaciens species. Based on in vitro analysis, BaD747 may have the potential as a probiotic in the control of NE. These findings not only enhance our understanding of B. amyloliquefaciens's action against C. perfringens but also provide a scientific rationale for the development of novel antimicrobial therapeutic agents against NE.
Collapse
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA.
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Yishan Yang
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - KaLynn Harlow
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | - Israel Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Lu S, Liao X, Lu W, Zhang L, Na K, Li X, Guo X. L-Alanine promotes anti-infectious properties of Bacillus subtilis S-2 spores via the germination receptor gerAA. Probiotics Antimicrob Proteins 2024; 16:1399-1410. [PMID: 37439954 DOI: 10.1007/s12602-023-10121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Bacillus species, which have two cell-type forms (vegetative cells and spores), demonstrate a variety of probiotic functions in animal feed additives and human nutrition. We previously found that the probiotic effect of Bacillus subtilis S-2 spores with high germination response to L-alanine was specifically enhanced by the L-alanine pretreatment. The germination response of Bacillus is highly associated with the germination receptors of spores. However, how L-alanine-induced germination of spores exerts anti-infectious effect in epithelial cells remains unclear. In this study, we constructed the mutant strain of B. subtilis S-2 with germination receptor gerAA knockout to further explore the role of spore germination in resisting pathogen infection to cells. The differential probiotic effects of B. subtilis S-2 and S-2ΔgerAA spores pretreated with L-alanine were evaluated in intestinal porcine epithelial cells (IPEC-J2) or Caco2 cells infected with enterotoxigenic Escherichia coli (ETEC) or following IL-1β stimulation. The results showed that the germination response of the S-2ΔgerAA spores to L-alanine was significantly reduced. Compared with the S-2ΔgerAA spores, the L-alanine-induced germination of B. subtilis S-2 spores significantly increased the activity of anti-adhesion of ETEC to IPEC-J2 cells and reduced the expression of inflammatory factors and cell receptors. L-alanine induction also significantly promoted the expression of autophagy-related proteins in the B. subtilis S-2 spores. These findings demonstrate that the gerAA germination receptor is essential for the probiotic function of Bacillus spores and that L-alanine treatment promotes the anti-infectious properties of the germinated spores in porcine intestinal epithelial IPEC-J2 cells. The result suggests the importance of germination receptor gerAA in helping spore germination and enhancing anti-infectious activity. The findings in the study benefit to screening of potential Bacillus probiotics and increasing probiotic efficacy induced by L-alanine as an adjuvant.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xianying Liao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Wei Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xiangyu Li
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan City, 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China.
| |
Collapse
|
3
|
Rodrigues RA, Silva LAM, Brugnera HC, Pereira N, Casagrande MF, Makino LC, Bragança CRS, Schocken-Iturrino RP, Cardozo MV. Association of Bacillus subtilis and Bacillus amyloliquefaciens: minimizes the adverse effects of necrotic enteritis in the gastrointestinal tract and improves zootechnical performance in broiler chickens. Poult Sci 2024; 103:103394. [PMID: 38194830 PMCID: PMC10792630 DOI: 10.1016/j.psj.2023.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
This study aimed to evaluate the efficiency and capacity of the probiotic composed of Bacillus subtilis and Bacillus amyloliquefaciens, in improving the zootechnical performance of broiler chickens challenged with Eimeria spp. and Clostridium perfringens. The broilers were distributed in a completely randomized design in poultry isolators (12 birds each), resulting in 3 treatments: T1 (control, no challenge and no Bacillus in diet), T2 (challenged with Eimeria spp., followed by Clostridium perfringens infection and no Bacillus in the diet), and T3 (challenged with Eimeria spp., Clostridium perfringens and treated with Bacillus subtilis and Bacillus amyloliquefaciens). They were evaluated for a period of 29 d, divided into preinitial (1-7 d of age), initial (8-21 d), and growth (22-29 d) phases. Assessments of body weight, weight gain, feed consumption, and feed conversion were conducted, along with the classification of the scores and optical microscopy of the tract gastrointestinal. The animals challenged and treated with the probiotic containing Bacillus spp. showed improved indicators of zootechnical performance. Additionally, the animals challenged and treated (T3) had a better score for intestinal lesions compared to the other treatment groups. Therefore, the probiotic consisting of Bacillus subtilis and Bacillus amyloliquefaciens could be considered an effective option for disease prevention and improving the zootechnical performance of broiler chickens.
Collapse
Affiliation(s)
- Romário A Rodrigues
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Leandro A M Silva
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Heloisa C Brugnera
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Natália Pereira
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Mariana F Casagrande
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lilian C Makino
- Department of Fisheries and Aquaculture Resources, School of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Caio R S Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Rubén Pablo Schocken-Iturrino
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marita V Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| |
Collapse
|
4
|
Zhou L, Abouelezz K, Momenah MA, Bajaber MA, Baazaoui N, Taha TF, Awad AE, Alamoudi SA, Beyari EA, Alanazi YF, Allohibi A, Saad AM. Dietary Paenibacillus polymyxa AM20 as a new probiotic: Improving effects on IR broiler growth performance, hepatosomatic index, thyroid hormones, lipid profile, immune response, antioxidant parameters, and caecal microorganisms. Poult Sci 2024; 103:103239. [PMID: 38035472 PMCID: PMC10698673 DOI: 10.1016/j.psj.2023.103239] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The search for a natural antimicrobial agent is ongoing and critical because of the rise and rapid proliferation of antibiotic-resistant pathogenic bacteria. The current study aims to examine the effect of Paenibacillus polymyxa AM20 as an alternative antibiotic and feed additive on Indian river broiler performance, digestive enzymes, thyroid hormones, lipid profile, hepatosomatic index, immunological response, gut bacteria, and antioxidant parameters. The bacterial isolate AM20 was identified at the gene level by isolating DNA and using PCR to detect genes. Based on 16S rRNA gene sequence analysis, the bacterial isolate was identified as Paenibacillus polymyxa. One hundred twenty Indian river broilers (1-day old) were randomly divided into 4 groups of 10 chicks each, with 3 replicates. The control group was fed a basal diet only, while the other 3 were administered control diets supplemented with P. polymyxa at 3 concentrations: 0.5, 1, and 1.5 mg/kg. The findings revealed that all groups that received graded amounts of P. polymyxa increased all growth parameters throughout the study. P. polymyxa treatment at 1.5 mg/kg increased body gain by 9% compared to the control due to increased feed intake (P = 0.0001), growth rate (P = 0.0001), and decreased feed conversion ratio. Compared to the control group, P. polymyxa (1.5 mg/kg) enhanced kidney functions in chickens by reducing uric acid and creatinine levels (P = 0.0451). Compared to the control group, alanine aminotransferase and aspartate transaminase levels in the liver were significantly reduced at all P. polymyxa doses. Liver function values were highest for P. polymyxa at 1.5 mg/kg. Compared to the control group, those whose diets included P. polymyxa had significantly better blood cholesterol levels, high-density lipoprotein, low-density lipoprotein, immunological response, thyroid function, and gut microbiota. In general, broiler chickens' economic efficiency was improved by including P. polymyxa in their diet, which also improved their growth performance, carcass dressing, specific blood biochemical levels and enzymes, and the composition of the gut microbiota.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Khaled Abouelezz
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Taha F Taha
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Awad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Soha A Alamoudi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Eman A Beyari
- Department of Biological Sciences, Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Yasmene F Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aminah Allohibi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
5
|
Reis MP, Couture C, Sakomura NK, Hauschild L, Angel CR, Narcy A, Létourneau-Montminy MP. A first model of the fate of dietary calcium and phosphorus in broiler chickens. Animal 2023; 17 Suppl 5:100896. [PMID: 37500377 DOI: 10.1016/j.animal.2023.100896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
To reduce P excretion and increase the sustainability of poultry farms, one needs to understand the mechanisms surrounding P metabolism and its close link with Ca metabolism to precisely predict the fate of dietary P and Ca and related requirements for birds. This study describes and evaluates a model developed to estimate the fate of Ca and P consumed by broilers. The Ca and P model relies on three modules: (1) digestion of Ca and P; (2) dynamics of Ca and P in soft tissue and feathers; and (3) dynamics of body ash. Exogenous phytase affects the availability of Ca and P; thus, to predict the absorption of those minerals, the model also accounts for the effect of phytase on Ca and P digestibility. We used a database to estimate the consequences of dietary Ca, P, and phytase over feed intake response. This study followed a four-step process: (1) Ca and P model development and its coupling with a growth broiler model; (2) model behavior assessment; (3) sensitivity analysis to identify the most influential parameters; and (4) external evaluation based on three databases. The proportion of P in body protein and the Ca to P ratio in bone are the most sensitive parameters of P deposition in soft tissue and bone, representing 91 and 99% of the total variation. The external evaluation results indicated that body water and protein had an overall mean square prediction error (rMSPE) of 7.22 and 12.3%, respectively. The prediction of body ash, Ca, and P had an rMSPE of 7.74, 11.0, and 6.56%, respectively, mostly errors of disturbances (72.5, 51.6, and 90.7%, respectively). The rMSPE for P balance was 13.3, 18.4, and 22.8%, respectively, for P retention, excretion, and retention coefficient, with respective errors due to disturbances of 69.1, 99.9, and 51.3%. We demonstrated a mechanistic model approach to predict the dietary effects of Ca and P on broiler chicken responses with low error, including detailed simulations to show the confidence level expected from the model outputs. Overall, this model predicts broilers' response to dietary Ca and P. The model could aid calculations to minimize P excretion and reduce the impact of broiler production on the environment. A model inversion is ongoing that will enable the calculation of Ca and P dietary quantities for a specific objective. This will simplify the use of the model and the feed formulation process.
Collapse
Affiliation(s)
- M P Reis
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal, SP 14884-900, Brazil
| | - C Couture
- Department of Animal Sciences, Université Laval, Québec City, QC, G1V0A6, Canada
| | - N K Sakomura
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal, SP 14884-900, Brazil
| | - L Hauschild
- Department of Animal Sciences, Faculty of Agrarian and Veterinary Science, São Paulo State University, Jaboticabal, SP 14884-900, Brazil
| | - C R Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742-2311, United States
| | - A Narcy
- INRA, UR83 Recherches Avicoles, Nouzilly F-37380, France
| | | |
Collapse
|
6
|
Osho S, Bolek K, Saddoris-Clemons K, Humphrey B, Garcia M. Impact of a direct-fed microbial supplementation on intestinal permeability and immune response in broiler chickens during a coccidia challenge. Front Microbiol 2023; 14:1283393. [PMID: 38029093 PMCID: PMC10644010 DOI: 10.3389/fmicb.2023.1283393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Maintaining intestinal health supports optimal gut function and influences overall performance of broilers. Microlife® Prime (MLP) contains a unique combination of four strains of Bacillus spp. selected to support a healthy gut which may improve performance. The aim of this study was to determine the effects of MLP supplementation on intestinal health and immunity of broilers challenged with a mixed coccidia infection during peak [0 to 6-day post-infection (dpi)] and recovery phases (6 to 13 dpi). A total of 120 male, 4 days-old Ross 708, broiler chicks were allotted to 3 treatment groups (8 replicate cages; 5 birds/cage) in a randomized complete block design. Treatments included a non-challenge (NEG), a coccidia challenge (POS), and coccidia challenge fed MLP (5 × 105 CFU/g of diet). Diets were corn-soybean meal-based. At 11 days of age, all birds, except for NEG, were orally gavaged with 15 doses (3 × the recommended commercial dose). On 6, 9, and 13 dpi, birds were orally gavaged with fluorescein isothiocyanate conjugate dextran (FITC-d). Plasma and mid-jejunum tissues were collected 2 h later. On 6 dpi, duodenal lesions from 2 birds/cage were scored and droppings were collected for oocyst enumeration. Body weight gain (BWG) and feed conversion ratio (FCR) were calculated over the experimental period. Data were analyzed with GLIMMIX procedure of SAS. During the peak phase, POS birds had reduced BWG (23%) and FCR (15%) compared to NEG birds (P < 0.05), while birds fed MLP had similar BWG (209 and 208 g) and FCR (1.17 and 1.21) compared to NEG (P > 0.05). On 6 dpi, POS birds had higher lesion scores and oocyst shedding, 2 × increase in serum FITC-d, and higher jejunum IL-10, and IFN-γ mRNA compared to NEG (P < 0.05). Birds fed MLP had reduced plasma FITC-d compared to POS birds (P < 0.05) and similar IL-10 and IFN-γ mRNA. On 13 dpi, birds fed MLP had lower plasma FITC-d, jejunum IL-10 and IFN-γ mRNA compared to POS birds (P < 0.05), but similar IL-10 to NEG birds (P > 0.05). This study confirms MLP improves intestinal health and positively modulates mucosal immune response post-coccidia challenge.
Collapse
Affiliation(s)
- Saheed Osho
- Phibro Animal Health Corporation, Teaneck, NJ, United States
| | | | | | | | | |
Collapse
|
7
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Probiotic Bacillus Strains Enhance T Cell Responses in Chicken. Microorganisms 2023; 11:microorganisms11020269. [PMID: 36838233 PMCID: PMC9965164 DOI: 10.3390/microorganisms11020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Banning antibiotic growth promotors and other antimicrobials in poultry production due to the increasing antimicrobial resistance leads to increased feeding of potential alternatives such as probiotics. However, the modes of action of those feed additives are not entirely understood. They could act even with a direct effect on the immune system. A previously established animal-related in vitro system using primary cultured peripheral blood mononuclear cells (PBMCs) was applied to investigate the effects of immune-modulating feed additives. Here, the immunomodulation of different preparations of two probiotic Bacillus strains, B. subtilis DSM 32315 (BS), and B. amyloliquefaciens CECT 5940 (BA) was evaluated. The count of T-helper cells and activated T-helper cells increased after treatment in a ratio of 1:3 (PBMCs: Bacillus) with vital BS (CD4+: p < 0.05; CD4+CD25+: p < 0.01). Furthermore, vital BS enhanced the proliferation and activation of cytotoxic T cells (CD8+: p < 0.05; CD8+CD25+: p < 0.05). Cell-free probiotic culture supernatants of BS increased the count of activated T-helper cells (CD4+CD25+: p < 0.1). UV-inactivated BS increased the proportion of cytotoxic T cells significantly (CD8+: p < 0.01). Our results point towards a possible involvement of secreted factors of BS in T-helper cell activation and proliferation, whereas it stimulates cytotoxic T cells presumably through surface contact. We could not observe any effect on B cells after treatment with different preparations of BS. After treatment with vital BA in a ratio of 1:3 (PBMCs:Bacillus), the count of T-helper cells and activated T-helper cells increased (CD4+: p < 0.01; CD4+CD25+: p < 0.05). Cell-free probiotic culture supernatants of BA as well as UV-inactivated BA had no effect on T cell proliferation and activation. Furthermore, we found no effect of BA preparations on B cells. Overall, we demonstrate that the two different Bacillus strains enhanced T cell activation and proliferation, which points towards an immune-modulating effect of both strains on chicken immune cells in vitro. Therefore, we suggest that administering these probiotics can improve the cellular adaptive immune defense in chickens, thereby enabling the prevention and reduction of antimicrobials in chicken farming.
Collapse
|
9
|
Dietary Use of Methionine Sources and Bacillus amyloliquefaciens CECT 5940 Influences Growth Performance, Hepatopancreatic Histology, Digestion, Immunity, and Digestive Microbiota of Litopenaeus vannamei Fed Reduced Fishmeal Diets. Animals (Basel) 2022; 13:ani13010043. [PMID: 36611655 PMCID: PMC9817784 DOI: 10.3390/ani13010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
An 8-week feeding trial investigated the effect of Fishmeal (FM) replacement by soybean meal (SBM) and poultry by-product meal (PBM) in diets supplemented with DL-Met, MET-MET (AQUAVI®), Bacillus amyloliquefaciens CECT 5940 (ECOBIOL®) and their combinations on growth performance and health of juvenile Litopenaeus vannamei. A total of six experimental diets were formulated according to L. vannamei nutritional requirements. A total of 480 shrimp (0.30 ± 0.04 g) were randomly distributed into 24 tanks (4 repetitions/each diet, 20 shrimp/tank). Shrimp were fed with control diet (CD; 200 g/Kg fishmeal) and five diets with 50% FM replacement supplemented with different methionine sources, probiotic (B. amyloliquefaciens CECT 5940) and their combinations: D1 (0.13% DL-MET), D2 (0.06% MET-MET), D3 (0.19% MET-MET), D4 (0.13% DL-MET plus 0.10% B. amyloliquefaciens CECT 5940 and D5 (0.06% MET-MET plus 0.10% B. amyloliquefaciens CECT 5940). Shrimp fed D3 and D5 had significantly higher final, weekly weight gain, and final biomass compared to shrimp fed CD (p < 0.05). Shrimp fed D2 to D5 increased the hepatopancreas epithelial cell height (p < 0.05). Digestive enzymatic activities were significantly increased in shrimp hepatopancreas’ fed D3 (p < 0.05). Meanwhile, shrimp fed D1 had significant downregulation of immune-related genes (p < 0.05). Moreover, shrimp fed D3 and D5 increased the abundance of beneficial prokaryotic microorganisms such as Pseudoalteromonas and Demequina related to carbohydrate metabolism and immune stimulation. Also, shrimp fed D3 and D5 increased the abundance of beneficial eukaryotic microorganism as Aurantiochytrium and Aplanochytrium were related to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production which plays a role in growth promoting or boosting the immunity of aquatic organisms. Therefore, fishmeal could be partially substituted up to 50% by SBM and PBM in diets supplemented with 0.19% MET-MET (AQUAVI®) or 0.06% MET-MET (AQUAVI®) plus 0.10% B. amyloliquefaciens CECT 5940 (ECOBIOL®) and improve the productive performance, health, and immunity of white shrimp. Further research is necessary to investigate synergistic effects of amino acids and probiotics in farmed shrimp diets, as well as to evaluate how SBM and PBM influence the fatty acid composition of reduced fishmeal diets and shrimp muscle quality. Nevertheless, this information could be interesting to develop low fishmeal feeds for aquaculture without affecting the growth and welfare of aquatic organisms.
Collapse
|
10
|
Bao C, Zhang W, Wang J, Liu Y, Cao H, Li F, Liu S, Shang Z, Cao Y, Dong B. The Effects of Dietary Bacillus amyloliquefaciens TL106 Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immunity, Epithelial Barrier Integrity, and Intestinal Microbiota in Broilers. Animals (Basel) 2022; 12:ani12223085. [PMID: 36428313 PMCID: PMC9686771 DOI: 10.3390/ani12223085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
A total of 240 1-day-old Arbor Acres male broilers were randomly divided into five dietary treatments (control feed (CON), supplemented with 75 mg/kg aureomycin (ANT), supplemented with 7.5 × 108 CFU/kg (Ba1) and 2.5 × 109 CFU/kg (Ba1), and 7.5 × 109 CFU/kg (Ba3) Bacillus amyloliquefaciens TL106, respectively) to investigate the probiotic effect of TL106 instead of antibiotics in broilers. On days 1−21, the average daily gain of broilers in the Ba groups was increased compared with the CON group (p < 0.05). In addition, the feed/gain ratio of broilers in the Ba groups was lower than that of broilers in the CON and ANT groups on days 22−42 and days 1−42 (p < 0.05). Compared with the CON group, dietary TL106 increased the digestibility of crude fiber and crude protein (p < 0.05), and the effect was similar to that of the ANT group. The levels of IL-1β, IFN-γ, and IL-6 in serum, jejunum, and ileum of broilers fed TL106 were decreased compared with the control group (p < 0.05). The mRNA expression of tight junction proteins in broilers of ANT and Ba groups was higher than the control group (p < 0.05). After 21 days, villus height and the ratio of villus height to crypt depth of duodenum and jejunum of broilers fed TL106 were higher than the control group (p < 0.05). The concentrations of short-chain fatty acids such as lactate, acetate, propionate, and butyrate in cecal digesta of broilers dietary TL106 were higher than the control group (p < 0.05). The supplementation with TL106 altered the compositions and diversity of the cecal microbiota of broilers. Moreover, supplementation with TL106 improved the ratio of Firmicutes to Bacteroidetes and decreased the relative abundance of Proteobacteria on days 21 and 28, while the abundance of Peptostreptococcaceae, Ruminococcaceae and Lactobacillaceae was increased. On days 35 and 42, broilers fed TL106 had an increased total abundance of Firmicutes and Bacteroidetes and decreased abundances of Lactobacillaceae, while the abundance of Barnesiellaceae was increased. In conclusion, dietary supplementation with TL106 improved the broiler’s growth performance, immune response capacity, gut health, modulated development, and composition of the gut microbiota in broilers. It is suggested that Bacillus amyloliquefaciens TL106 may be a suitable alternative to in-feed antibiotics to improve broiler health and performance.
Collapse
Affiliation(s)
- Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenxiu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Zhengda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
11
|
Lu S, Na K, Li Y, Zhang L, Fang Y, Guo X. Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr 2022; 64:1701-1714. [PMID: 36066454 DOI: 10.1080/10408398.2022.2118659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacillus probiotics have a sporulation capacity that makes them more suitable for processing and storage and for surviving passage through the gastrointestinal tract. The probiotic functions and regulatory mechanisms of different Bacillus have been exploited in many reports, but little is known about how various Bacillus probiotics perform different functions. This knowledge gap results in a lack of specificity in the selection and application of Bacillus. The probiotic properties are strain-specific and cell-type-specific, and are related to the germination potential and to the diversity of metabolites produced following intestinal germination, as this causes the variation in probiotic function and mechanisms. In this review, we discuss the Bacillus metabolites produced during germination and sporulation in the GI tract, as well as possible processes affecting intestinal homeostasis. We conclude that the oxygen-capturing capability and the production of antimicrobials, exoenzymes, competence and sporulation factors (CSF), exopolysaccharides, lactic acid, and cell components are specifically associated with the functional mechanisms of probiotic Bacillus. The aim of this review is to guide the screening of potential Bacillus strains for probiotics and their application in nutrition research. The information provided will also promote further research on Bacillus-derived functional metabolites in human nutrition.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Yuanrong Li
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Ying Fang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Hubei Province, China
| |
Collapse
|
12
|
Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022; 11:pathogens11060692. [PMID: 35745546 PMCID: PMC9229159 DOI: 10.3390/pathogens11060692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, particularly in broiler populations. Amongst several non-antibiotic strategies for NE control tried so far, probiotics seem to offer promising avenues. The current review focuses on studies that have evaluated probiotic effects on C. perfringens growth and NE development. Several probiotic species, including Lactobacillus, Enterococcus, Bacillus, and Bacteroides bacteria as well as some yeast species have been tested in chickens against C. perfringens and NE development. These findings have shown to improve bird performance, reduce C. perfringens colonization and NE-associated pathology. The underlying probiotic mechanisms of NE control suggest that probiotics can help maintain a healthy gut microbial balance by modifying its composition, improve mucosal integrity by upregulating expression of tight-junction proteins, and modulate immune responses by downregulating expression of inflammatory cytokines. Collectively, these studies indicate that probiotics can offer a promising platform for NE control and that more investigations are needed to study whether these experimental probiotics can effectively prevent NE in commercial poultry operational settings.
Collapse
|
13
|
Park C, Sun S. Effect of dietary metallo-protease and Bacillus velezensis CE 100 supplementations on growth performance, footpad dermatitis and manure odor in broiler chickens. Anim Biosci 2022; 35:1628-1634. [PMID: 35507846 PMCID: PMC9449376 DOI: 10.5713/ab.22.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
|
14
|
Effects of a direct fed microbial (DFM) on broiler chickens exposed to acute and chronic cyclic heat stress in two consecutive experiments. Poult Sci 2022; 101:101705. [PMID: 35183990 PMCID: PMC8861399 DOI: 10.1016/j.psj.2022.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Two consecutive 35 d experiments were conducted to investigate the effects of a multistrain DFM fed continuously to broiler chickens exposed to HS from 28 to 35 d on broiler performance, body composition, ileal digestibility, and intestinal permeability using serum Fluorescein Isothiocyanate Dextran (FITC-d) concentration. The treatments were arranged as a 2 × 2 factorial with temperature: Elevated (HS: 33 ± 2°C for 6 h and 27.7°C for the remaining 18 h from 28 to 35 days of age) and Thermoneutral (TN: 22 to 24°C over the entire 24-h day from 28 to 35 days of age) and diet: corn-soybean meal based with and without DFM (3-strain Bacillus; Enviva PRO) fed over the entire 35-d period as the two factors. Experimental diets were formulated to meet all nutrient recommendations based on breed standards using a starter (0–10 d), grower (10–21 d), and finisher (21–35 d) period. For each of the 2 experiments, 648 Ross 708 broiler chicks were allotted among the treatments with 9 replicate pens of 18 broilers. Data were analyzed as a 2 × 2 factorial within each experiment in JMP 14. In both experiments, cloacal temperatures were increased (P ≤ 0.05) in the broilers subjected to the HS treatment at both 28 d (acute) and 35 d (chronic). Supplementing birds with DFM reduced cloacal temperatures in the Experiment 1 at 28 d, but not at the other time periods. The HS treatment reduced body weight gain and lean tissue accretion from 0 to 35 d in both experiments (P ≤ 0.05). In Experiment 2, when the litter was reused BWG was increased by 36 g/bird with supplementation of DFM (P ≤ 0.05). Ileal digestibility at 28 d (2 h post HS) was improved with DFM supplementation in both experiments (P ≤ 0.05). Serum FITC-d increased with HS at both 28 and 35 d. Serum FITC-d was generally decreased with DFM at 28 d but the response was inconsistent at 35 d. Overall, the results suggest that HS reduced broiler performance and DFM treatment improved intestinal permeability and nutrient digestibility responses to HS in both experiments but did not improve performance until built up litter was used in Experiment 2.
Collapse
|
15
|
Live Performance and Microbial Load Modulation of Broilers Fed a Direct-Fed Microbials (DFM) and Xylanase Combination. Vet Sci 2022; 9:vetsci9030142. [PMID: 35324870 PMCID: PMC8955989 DOI: 10.3390/vetsci9030142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
The animal industry, which focuses on producing protein for human consumption, is continuously seeking solutions that can enhance both animal performance and health at a low cost. Several feed additives are currently being used to improve the nutritive value of feed as well as replacing the subtherapeutic levels of antibiotic growth promoters (AGP). This study was designed to investigate the effect of a feed additive that is a blend of multi-strain Bacillus spp. probiotics and a xylanase in a 2 × 2 factorial dietary treatments design, testing two levels of the feed additive blend (0 and 100 g/MT) and two cereal grain types (corn and wheat) on live performance, gut lesions, environmental Clostridium perfringens load, and pathogen load in the digesta of broiler chickens (E. tenella, total aerobic count cells (APC), E. coli, and C. perfringens). Day-old chicks were randomly placed in 10 replicate pens per treatment with 52 birds per replicate and grown to 42 d of age. Data were analyzed by two-way ANOVA. At 42 d, birds fed EnzaPro were heavier (p < 0.0004) than unsupplemented birds. An improvement in FCR (p = 0.03) was observed from 1 to 42 d by approximately two points in both corn- and wheat-based diets supplemented with EnzaPro. In wheat-based diets, supplementing EnzaPro reduced (p < 0.0001) a 21 d lesion score of intestines with a further reduction (p < 0.02) at 42 d. EnzaPro reduced (p < 0.03) litter moisture by approximately 1% compared to non-supplemented EnzaPro in both corn- and wheat-based diets. Pathogen load in digesta (C. perfringens, E. tenella, APC, and E. coli) was reduced (p < 0.0002) when EnzaPro was supplemented in diets. It can be concluded that EnzaPro (a blend of DFM Bacillus spp (1 × 105 CFU/g feed) and xylanase (10 XU/g feed)) may be used in both corn- and wheat-based diets to improve the performance and gut health of broilers.
Collapse
|
16
|
Hu J, Mohammed A, Murugesan G, Cheng H. Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poult Sci 2022; 101:101769. [PMID: 35247651 PMCID: PMC8892129 DOI: 10.1016/j.psj.2022.101769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine if synbiotics can function as alternatives to antibiotics in broiler production under heat stress (HS). Day-old broiler chicks (528 birds) were randomly placed in floor pens within 2 identical temperature-controlled rooms (11 birds/pen and 24 pens/room). The pens of each room were evenly divided among 3 treatments (n = 8): basal diet (CON), the basal diet mixed with 50 ppm of bacitracin methylene disalicylate (BMD) or a synbiotic (50 ppm of PoultryStar meUS, SYN). From d 15, room 2 was under thermoneutral (TN) conditions (TN-CON, TN-BMD, and TN-SYN), while HS was applied to room 1 at 32oC for 9 hrs/d (0800 to 1700) (HS-CON, HS-BMD, and HS-SYN). Treatment effects on footpad dermatitis and gait score were measured on 5 birds/pen, and latency to lie (LTL) test was measured on 2 birds/pen at d 27 and d 41; and 1 broiler/pen was sampled on d 28 and d 42, respectively. Body, liver, and spleen weight were determined. Plasma levels of interleukins (IL), heat shock protein 70, immunoglobulin (Ig)Y, liver superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were examined. Heat stress suppressed BW and IgY concentrations on both d 28 and d 42, while suppressed plasma IL-6 concentrations, SOD activities, and LTL duration on d 28 only (P < 0.05). Among all treatments, SYN birds had the best foot and skeletal health scores on both d 27 and d 41 (P < 0.05). On d 42, SYN increased BW, and TN-SYN birds had higher relative spleen weight than both TN-BMD and TN-CON birds (P < 0.05). Antibiotic BMD increased BW (P < 0.05) but decreased SOD activities (P < 0.05) on d 42. These results indicate that the SYN supplementation decreases HS negative effect on broilers by improving BW, foot, and skeletal health, while BMD improves BW but also increases oxidative stress in broilers. The data suggest that synbiotic supplement may function as an alternative to antibiotics in broiler production during summer seasons, especially in the tropical and subtropical regions.
Collapse
|
17
|
Sun Y, Zhang Y, Liu M, Li J, Lai W, Geng S, Yuan T, Liu Y, Di Y, Zhang W, Zhang L. Effects of dietary Bacillus amyloliquefaciens CECT 5940 supplementation on growth performance, antioxidant status, immunity, and digestive enzyme activity of broilers fed corn-wheat-soybean meal diets. Poult Sci 2022; 101:101585. [PMID: 34920383 PMCID: PMC8686056 DOI: 10.1016/j.psj.2021.101585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
This experiment was conducted to investigate the effects of dietary supplementation with Bacillus amyloliquefaciens CECT 5940 (BA-5940) on growth performance, antioxidant capacity, immunity, and digestive enzyme activity of broiler chickens. A total of 720 one-day-old Arbor Acres male broiler chicks (average body weight, 45.87 ± 0.86 g) were randomly allocated to 5 treatments of 8 replicates with 18 chicks in each replicate. Broilers in the control group were fed a corn-wheat-soybean basal diet, the other 4 groups were fed the same basal diet supplemented with 500, 1,000, 1,500, or 2,000 mg/kg Ecobiol (1.27 × 109 CFU/g BA-5940) for 42 d, respectively. Broilers fed diets supplemented with BA-5940 showed a quadratic response (P < 0.05) of average daily gain (ADG) and feed to gain ratio (F:G) during d 22 to 42 and d 0 to 42. The glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities in serum and liver, and total antioxidant capacity (T-AOC) in liver of broilers on d 42 increased linearly (P < 0.05) with increasing levels of BA-5940, while malondialdehyde (MDA) level in serum decreased linearly (P < 0.05). Concentrations of serum immunoglobulin (Ig) A and IgM on d 21, and IgM on d 42 increased linearly (P < 0.05) as BA-5940 levels increased. Supplementation with increasing levels of BA-5940 linearly decreased serum tumor necrosis factor-α (TNF-α) levels on d 21 and 42, while increased interleukin (IL)-10 concentration (linear, P < 0.05) on d 21. Meanwhile, the levels of IL-1β, IL-6, and TNF-α in the mucosa of jejunum and ileum were decreased (linear, P < 0.05) on d 42 as dietary supplementation of BA-5940 increased. Additionally, supplementation with BA-5940 also increased the activities of amylase (linear, P < 0.01), lipase (linear, P < 0.05) and chymotrypsin (linear, P < 0.01) in jejunal digesta, and lipase (linear, P < 0.05) in ileal digesta of broilers on d 42. To summarize, inclusion of BA-5940 in corn-wheat-soybean meal-based diet improved growth performance of broilers through improving antioxidant capacity, immunity, and digestive enzyme activity. Based on the results of this study, 1.1-1.6 × 109 CFU/kg BA-5940 is recommended for supplementation in broiler diets.
Collapse
Affiliation(s)
- Yongbo Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuxin Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Miaoyi Liu
- Evonik (China) Co., Ltd., Beijing 100600, China
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Wenqing Lai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Shixia Geng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Tianyao Yuan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuting Di
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | | | - Liying Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Sandvang D, Skjoet-Rasmussen L, Cantor MD, Mathis GF, Lumpkins BS, Blanch A. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens. Poult Sci 2021; 100:100982. [PMID: 33647715 PMCID: PMC7921869 DOI: 10.1016/j.psj.2021.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/07/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022] Open
Abstract
The application of probiotics in broiler feed, to alleviate performance deficiencies due to mild infections by coccidia and Clostridium perfringens, is of increasing interest for the poultry industry. Therefore, our objective was to evaluate the capacity of 3 Bacillus strains and their combination as probiotics in vitro and in vivo. Thus, protein and carbohydrate degradation and C. perfringens growth inhibition capabilities were assessed by colometry measurement and an agar diffusion bioassay, respectively. A total of 2,250 1-day-old male broiler chicks were assigned to 5 dietary treatments: 1) non-probiotic-supplemented control (control); 2) control + DSM 32324 at 0.8 × 106 cfu/g of feed; 3) control + DSM 32325 at 0.5 × 106 cfu/g of feed; 4) control + DSM 25840 at 0.3 × 106 cfu/g of feed; and 5) control + DSM 32324 + DSM 32325 + DSM 25840 at 1.6 × 106 cfu/g of feed. A pathogenic field strain of C. perfringens was used to induce the necrotic enteritis challenge on day 19, 20, and 21. All birds and remaining feed were weighed on pen basis on day 0, 21, 35, and 42, to calculate BW gain and mortality-adjusted feed conversion. Mortality and mortality due to necrotic enteritis were recorded daily. On day 21, 45 birds per treatment were evaluated for macroscopic intestinal necrotic enteritis lesions. Performance data were statistically analyzed using an ANOVA and subjected to a least significant difference comparison. Necrotic enteritis lesion scores were statistically analyzed using nonparametric Kruskal-Wallis test. Dunn's test was used for treatment comparison. The tested strains showed different abilities of degrading protein and carbohydrates and inhibiting C. perfringens growth in vitro. The birds fed the multi-train combination presented significantly better performance and lower necrotic enteritis lesion score than those in the control group. Dietary supplementation with probiotics resulted in significantly lower necrotic enteritis mortality. The results demonstrate the suitability of the evaluated Bacillus multistrain combination as an effective probiotic in C. perfringens-challenged chickens.
Collapse
Affiliation(s)
| | | | | | - Greg F Mathis
- Southern Poultry Feed and Research, Inc. 30607-3153 Georgia, USA
| | - Brett S Lumpkins
- Southern Poultry Feed and Research, Inc. 30607-3153 Georgia, USA
| | - Alfred Blanch
- Addimus, Providing Trust, S.L., 08012 Barcelona, Spain
| |
Collapse
|
19
|
Eckert J, Carrisosa M, Hauck R. Network meta-analysis comparing the effectiveness of anticoccidial drugs and anticoccidial vaccination in broiler chickens. Vet Parasitol 2021; 291:109387. [PMID: 33667988 DOI: 10.1016/j.vetpar.2021.109387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
With the trend to organic production and concerns about using antibiotic feed additives, the control of infections with Eimeria spp. in broiler flocks has become more difficult. Vaccination against coccidia is an alternative, but there are concerns that the live vaccines used might have negative effects on production parameters and intestinal health. Reports of experiments directly comparing anticoccidial drugs and anticoccidial vaccines are rare. This network meta-analysis (NMA) identified and analyzed 61 articles reporting 63 experiments testing anticoccidial drugs and anticoccidial vaccines under conditions resembling commercial broiler production. The effect sizes were mean differences in body weight/body weight gain (BW/BWG) and feed conversion rate (FCR) between the 175 included groups. The results show that groups vaccinated against coccidia have a similar BW/BWG and FCR at processing age compared to groups given anticoccidial drugs. However, the results tended to be more favorable for anticoccidial drugs than for vaccines. The analysis of eight subsets, containing only groups (1) groups that had not received an AGP in addition to an anticoccidial drug, (2) groups that had not received ionophores, (3) groups that had not received chemicals, (4) groups that had not received an attenuated vaccine, (5) groups that had not received a fully virulent vaccine, (6) groups that were not additionally challenged with bacteria or not challenged, (7) groups that had received a severe challenge as defined by a total infection dose of more than 100,000 oocysts or were not challenged, (8) groups that were challenged on day 15 or earlier or not challenged brought similar results and confirmed the robustness of the NMA. In addition, the analysis exposes unnecessary, as well as inherent, problems with data quality, which every researcher working with coccidia should carefully consider, and identifies under-researched areas that should be addressed in future research.
Collapse
Affiliation(s)
- Jordan Eckert
- Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, United States
| | - Miranda Carrisosa
- Department of Poultry Science, Auburn University, Auburn, AL 36849, United States
| | - Rüdiger Hauck
- Department of Poultry Science, Auburn University, Auburn, AL 36849, United States; Department of Pathobiology, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
20
|
Nooreh Z, Taherpour K, Akbari Gharaei M, Shirzadi H, Ghasemi HA. Effects of a dietary direct-fed microbial and Ferulago angulata extract on growth performance, intestinal microflora, and immune function of broiler chickens infected with Campylobacter jejuni. Poult Sci 2021; 100:100942. [PMID: 33518316 PMCID: PMC7936196 DOI: 10.1016/j.psj.2020.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Colonization of the gastrointestinal tract by potentially pathogenic bacteria and their shedding in animal feces is a fundamental factor for both animal health and human food safety. This study was conducted to evaluate the efficacy of salinomycin (Sal), direct-fed microbial (DFM), and Ferulago angulata hydroalcoholic extract (FAE) against Campylobacter jejuni in broiler chickens in a 6-week pilot-scale study. A total of six hundred and seventy two 1-day-old broiler chickens were equally divided into 6 groups (each consisting of 8 replicates of 14 birds): negative control (NC; untreated and uninfected); positive control (PC; untreated, infected with C. jejuni); PC + Sal; PC + DFM; PC + 200 mg/kg of FAE (FAE200); or PC + 400 mg/kg of FAE (FAE400). All these groups (except NC) were challenged with C. jejuni on day 15. The results showed that all experimental treatments improved (P < 0.05) average daily gain compared with the PC group, and the best value was observed in the NC and FAE400 groups throughout the entire experimental period (day 1-42). The overall feed conversion ratio and mortality rate, as well as the population of C. jejuni (day 24 and 42) and Coliforms (day 42) in the ileum and cecum, were higher (P < 0.05) in broiler chickens fed with the PC diet than for chickens in the other groups, except those in the FAE200 group. Immune responses revealed that among challenged birds, those that were fed diets DFM and FAE400 had significantly higher IgG (day 24 and 42), IgA (day 24), IL-6 (day 24), and gamma interferon (day 24 and 42) concentrations than the PC group. In conclusion, dietary FAE, especially at a high level of inclusion in broiler diet (400 mg/kg), could beneficially influence the immune status, as well as improve growth performance and intestinal microflora under Campylobacter challenge, which was comparable to those of Sal and DFM supplements.
Collapse
Affiliation(s)
- Zahra Nooreh
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | | | - Hassan Shirzadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| |
Collapse
|
21
|
Gharib-Naseri K, Dorigam JCP, Doranalli K, Morgan N, Swick RA, Choct M, Wu SB. Bacillus amyloliquefaciens CECT 5940 improves performance and gut function in broilers fed different levels of protein and/or under necrotic enteritis challenge. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:185-197. [PMID: 33997347 PMCID: PMC8110864 DOI: 10.1016/j.aninu.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022]
Abstract
Two studies were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) as a probiotic on growth performance, amino acid digestibility and bacteria population in broiler chickens under a subclinical necrotic enteritis (NE) challenge and/or fed diets with different levels of crude protein (CP). Both studies consisted of a 2 × 2 factorial arrangement of treatments with 480 Ross 308 mix-sexed broiler chickens. In study 1, treatments included 1) NE challenge (+/-), and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/-). In study 2, all birds were under NE challenge, and treatments were 1) CP level (Standard/Reduced [2% less than standard]) and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/-). After inducing NE infection, blood samples were taken on d 16 for uric acid evaluation, and cecal samples were collected for bacterial enumeration. In both studies, ileal digesta was collected on d 35 for nutrient digestibility evaluation. In study 1, the NE challenge reduced body weight gain (BWG), supressed feed conversion ratio (FCR) and serum uric acid levels (P < 0.001). Supplementation of BA increased BWG (P < 0.001) and reduced FCR (P = 0.043) across dietary treatments, regardless of challenge. Bacillus (P = 0.030) and Ruminococcus (P = 0.029) genomic DNA copy numbers and concentration of butyrate (P = 0.017) were higher in birds fed the diets supplemented with BA. In study 2, reduced protein (RCP) diets decreased BWG (P = 0.010) and uric acid levels in serum (P < 0.001). Supplementation of BA improved BWG (P = 0.001) and FCR (P = 0.005) and increased Ruminococcus numbers (P = 0.018) and butyrate concentration (P = 0.033) in the ceca, regardless of dietary CP level. Further, addition of BA reduced Clostridium perfringens numbers only in birds fed with RCP diets (P = 0.039). At d 35, BA supplemented diets showed higher apparent ileal digestibility of cystine (P = 0.013), valine (P = 0.020), and lysine (P = 0.014). In conclusion, this study suggests positive effects of BA supplementation in broiler diets via modulating gut microflora and improving nutrient uptake.
Collapse
Affiliation(s)
- Kosar Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Juliano C P Dorigam
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Kiran Doranalli
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Natalie Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Robert A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Mingan Choct
- University of New England, Armidale 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
22
|
WoldemariamYohannes K, Wan Z, Yu Q, Li H, Wei X, Liu Y, Wang J, Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14709-14727. [PMID: 33280382 DOI: 10.1021/acs.jafc.0c06396] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacillus amyloliquefaciens belongs to the genus Bacillus and family Baciliaceae. It is ubiquitously found in food, plants, animals, soil, and in different environments. In this review, the application of B. amyloliquefaciens in probiotic and prebiotic microbes in fermentation, synthesis, and hydrolysis of food compounds is discussed as well as further insights into its potential application and gaps. B. amyloliquefaciens is also a potential microbe in the synthesis of bioactive compounds including peptides and exopolysaccharides. In addition, it can synthesize antimicrobial compounds (e.g., Fengycin, and Bacillomycin Lb), which makes its novelty in the food sector greater. Moreover, it imparts and improves the functional, sensory, and shelf life of the end products. The hydrolysis of complex compounds including insoluble proteins, carbohydrates, fibers, hemicellulose, and lignans also shows that B. amyloliquefaciens is a multifunctional and potential microbe which can be applied in the food industry and in functional food processing.
Collapse
Affiliation(s)
- Kalekristos WoldemariamYohannes
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhen Wan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qinglin Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
23
|
Nusairat B, Wang JJ. Xylanase and Direct-Fed Microbials (DFM) Potential for Improvement of Live Performance, Energy Digestibility, and Reduction of Environmental Microbial Load of Broilers. Front Vet Sci 2020; 7:606415. [PMID: 33365337 PMCID: PMC7750451 DOI: 10.3389/fvets.2020.606415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 02/02/2023] Open
Abstract
The challenge of identifying alternatives to subtherapeutic levels of antibiotic growth promoters (AGP) in animal feed has led to increased interest in feed additives such as exogenous enzymes and direct-fed microbials (DFM). Six corn soy-based dietary treatments were designed to investigate the effect of high-efficiency xylanase alone, Bacillus spp. probiotics alone, and their combination vs. a commonly used antibiotic growth promoter (bacitracin methylene disalicylate; BMD) on live performance and environmental Clostridium perfringens load of broiler chickens with eight replicate pens per treatment. Diets were as follows: standard diet (positive control; PC); 130 kcal/kg reduced-energy diet (negative control; NC); NC with xylanase (NC + Xy); NC with probiotics (NC + Pro); NC with xylanase and probiotics mix (NC + XyPro); and NC with BMD (NC + BMD). Data were analyzed as one-way ANOVA. At 35 and 42 days, birds fed with NC + XyPro and NC + BMD were heavier (P < 0.05) than birds fed with NC. Improvement in feed conversion ratio (FCR) (P = 0.0001) was observed from 1 to 42 days by ~3 points in both NC + XyPro and NC + BMD compared to NC. The NC + XyPro reduced lesion scores by 66% compared to PC and NC. Litter C. perfringens cell count was reduced by ~16% with supplementation of XyPro or BMD. It can be concluded that a blend of xylanase (10 XU/g feed) and Bacillus spp. [1 × 105 colony forming units (CFU)/g feed] can be used as an alternative to AGP in low-energy broiler diets.
Collapse
Affiliation(s)
- Basheer Nusairat
- Department of Animal Production, College of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Jeng-Jie Wang
- BioResource International, Inc., Durham, NC, United States
| |
Collapse
|
24
|
Modulations of genes related to gut integrity, apoptosis, and immunity underlie the beneficial effects of Bacillus amyloliquefaciens CECT 5940 in broilers fed diets with different protein levels in a necrotic enteritis challenge model. J Anim Sci Biotechnol 2020; 11:104. [PMID: 33088501 PMCID: PMC7566066 DOI: 10.1186/s40104-020-00508-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background The ban of in-feed antimicrobial additives has negatively affected the poultry industry by causing necrotic enteritis (NE) to emerge in the flocks. Alternatives such as Bacillus probiotics have shown to be effective on eliminating the negative effects of this disease. Two experiments were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) in broiler chickens under NE challenge and/or fed diets with different protein levels. Methods In both experiments, 480 day-old mix-sexed Ross-308 broilers were arranged in a 2 × 2 factorial arrangement of treatments. In experiment 1, the factors were NE challenge (yes or no) and probiotic (yes or no). In experiment 2, the factors were dietary crude protein levels (standard or reduced) and probiotic (yes or no) and were used under NE challenge condition. Oral administration of Eimeria oocysts (day 9) followed by inoculation with Clostridium perfringens (day 14 and 15) was used to induce NE challenge. On day 16, two birds from each treatment were gavaged with fluorescein isothiocyanate-dextran (FITC-d) and blood samples were collected for gut integrity evaluation, and jejunal samples were collected for gene expression assay. Results In experiment 1, BA supplementation decreased caspase-3 (CASP3) (P < 0.001) and caspase-8 (CASP8) (P < 0.05) and increased occludin (OCLD) (P < 0.05) expression regardless of the challenge. Additionally, BA supplementation downregulated interfron-γ (IFN-γ) expression (P < 0.01) and upregulated immunoglobulin-G (IgG) (P < 0.01) and immunoglobulin-M (IgM) (P < 0.05) only in challenged birds. In experiment 2, the expression of genes encoding mucin-2 (MUC2) (P < 0.001), tight junction protein-1 (TJP1) (P < 0.05) and OCLD (P < 0.05) were upregulated by the addition of BA in the diet, regardless of the crude protein level. Further, BA supplementation downregulated INF-γ (P < 0.01) and upregulated immunoglobulin-A (IgA) (P < 0.05), IgM (P < 0.05) and IgG (P < 0.01) regardless of the crude protein level. Conclusion These findings suggest that supplementation of BA in broiler diets can improve gut health by modulation of genes related to the mucosal barrier, tight junction, and immunity in broilers challenged by unfavourable conditions such as NE challenge.
Collapse
|
25
|
Wang B, Hussain A, Zhou Y, Zeng Z, Wang Q, Zou P, Gong L, Zhao P, Li W. Saccharomyces boulardii attenuates inflammatory response induced by Clostridium perfringens via TLR4/TLR15-MyD8 pathway in HD11 avian macrophages. Poult Sci 2020; 99:5356-5365. [PMID: 33142452 PMCID: PMC7647824 DOI: 10.1016/j.psj.2020.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
Macrophages are professional phagocytic cells that play a critical role in initiating immune responses by presenting antigen and phagocytic clearance. The macrophages can be targeted for immunomodulation by beneficial microbes, such as probiotics. The aim of this study is to investigate the protective effect of Saccharomyces boulardii against Clostridium perfringens infection in avian macrophage cell line HD11. In this study, HD11 macrophages were prestimulated with S. boulardii for 6 h and then infected with C. perfringens for 3 h. Results showed that S. boulardii enhanced phagocytosis and bactericidal capacity against C. perfringens by HD11 cells. The S. boulardii effectively promoted the mRNA expression of CD80, CD83, and CD197 cell-surface molecules in C. perfringens-infected HD11 cells. Moreover, we found that prestimulation with S. boulardii reduced the mRNA expression of CD40, toll-like receptor [TLR] 4, and TLR15 induced by C. perfringens and thereby downregulated the mRNA expression of myeloid differentiation primary response 88, TNF receptor associated factor 6, nuclear factor kappa-B p65 subunit, and c-Jun N-terminal kinase genes in HD11 cells. The upregulation of cytokines (interleukin [IL]-6, tumor necrosis factor alpha, and IL-10) and inducible nitric oxide synthase mRNA expression in C. perfringens-infected HD11 cells were noticeably inhibited by S. boulardii pretreatment. Conclusively, these results might provide a new insight into the role of S. boulardii in regulating avian immune defense against C. perfringens invasion and immune escape.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Altaf Hussain
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Department of Poultry Science, University of Agriculture Faisakabad, Faisalabad 38000, Pakistan
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province 528225, China
| | - Pengwei Zhao
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|