1
|
Gowthaman V, Kumar S, Koul M, Dave U, Murthy TRGK, Munuswamy P, Tiwari R, Karthik K, Dhama K, Michalak I, Joshi SK. Infectious laryngotracheitis: Etiology, epidemiology, pathobiology, and advances in diagnosis and control - a comprehensive review. Vet Q 2021; 40:140-161. [PMID: 32315579 PMCID: PMC7241549 DOI: 10.1080/01652176.2020.1759845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious upper respiratory tract disease of chicken caused by a Gallid herpesvirus 1 (GaHV-1) belonging to the genus Iltovirus, and subfamily Alphaherpesvirinae within Herpesviridae family. The disease is characterized by conjunctivitis, sinusitis, oculo-nasal discharge, respiratory distress, bloody mucus, swollen orbital sinuses, high morbidity, considerable mortality and decreased egg production. It is well established in highly dense poultry producing areas of the world due to characteristic latency and carrier status of the virus. Co-infections with other respiratory pathogens and environmental factors adversely affect the respiratory system and prolong the course of the disease. Latently infected chickens are the primary source of ILT virus (ILTV) outbreaks irrespective of vaccination. Apart from conventional diagnostic methods including isolation and identification of ILTV, serological detection, advanced biotechnological tools such as PCR, quantitative real-time PCR, next generation sequencing, and others are being used in accurate diagnosis and epidemiological studies of ILTV. Vaccination is followed with the use of conventional vaccines including modified live attenuated ILTV vaccines, and advanced recombinant vector vaccines expressing different ILTV glycoproteins, but still these candidates frequently fail to reduce challenge virus shedding. Some herbal components have proved to be beneficial in reducing the severity of the clinical disease. The present review discusses ILT with respect to its current status, virus characteristics, epidemiology, transmission, pathobiology, and advances in diagnosis, vaccination and control strategies to counter this important disease of poultry.
Collapse
Affiliation(s)
- Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Monika Koul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Urmil Dave
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - T R Gopala Krishna Murthy
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Sunil K Joshi
- Department of Microbiology & Immunology, Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Affiliation(s)
- J. H. Wolford
- Poultry Science Department Michigan State University East Lansing, Michigan 48823 U.S.A
| | - K. Tanaka
- Department Poultry & Animal Sciences, Gifu University Kakamigahara, Gifu, Japan
| |
Collapse
|
3
|
Thilakarathne DS, Coppo MJC, Hartley CA, Diaz-Méndez A, Quinteros JA, Fakhri O, Vaz PK, Devlin JM. Attenuated infectious laryngotracheitis virus vaccines differ in their capacity to establish latency in the trigeminal ganglia of specific pathogen free chickens following eye drop inoculation. PLoS One 2019; 14:e0213866. [PMID: 30921344 PMCID: PMC6438565 DOI: 10.1371/journal.pone.0213866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/01/2019] [Indexed: 01/09/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is a respiratory disease that affects chickens. It is caused by the alphaherpesvirus, infectious laryngotracheitis virus (ILTV). This virus undergoes lytic replication in the epithelial cells of the trachea and upper respiratory tract (URT) and establishes latent infection in the trigeminal ganglia (TG) and trachea. Live attenuated vaccines are widely used to control ILT. At least one of these vaccines can establish latent infections in chickens, but this has not been demonstrated for all vaccines. The aim of the current study was to determine the capacity of three commercially available vaccines (SA2, A20 and Serva) and a glycoprotein G deletion mutant vaccine candidate (ΔgG ILTV) to establish latent infection in the TG of specific pathogen free (SPF) chickens. Five groups of 7-day-old SPF chickens were eye-drop vaccinated with either one of the vaccine strains or mock-vaccinated with sterile media and followed until 20 or 21 days post-vaccination (dpv). ILTV DNA was detected at 20–21 dpv in the TG of 23/40 (57.5%) vaccinated SPF chickens (SA2 = 10/10; A20 = 6/10; Serva = 3/10; ΔgG = 4/10) by PCR, but virus could not be reactivated from TG co-cultivated with primary chicken embryo kidney cells. In the birds from which ILTV DNA was detected in the TG, ILTV DNA could not be detected in the URT or trachea of 3 birds in each of the SA2, A20 and Serva vaccinated groups, and in 4 birds in the ΔgG vaccinated group, indicating that these birds were latently infected in the absence of active lytic replication and virus shedding. Results from this study demonstrate the capacity of commercial ILTV vaccines to establish latent infections and underline their importance in the epidemiology of this disease.
Collapse
Affiliation(s)
- Dulari S. Thilakarathne
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Mauricio J. C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - José A. Quinteros
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Omid Fakhri
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Aras Z, Yavuz O, Sanioğlu Gölen G. Occurrence of infectious laryngotracheitis outbreaks in commercial layer hens detected by ELISA. J Immunoassay Immunochem 2018; 39:190-195. [PMID: 29424631 DOI: 10.1080/15321819.2018.1428991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infectious laryngotracheitis (ILT) is an acute respiratory disease of chickens and a cause of great economic loss in commercial layers. The aims of this study were to investigate the prevalence of ILT in the field outbreaks and to compare the characteristics of ILT-infected and free flocks of commercial layers. A total of 625 blood serum samples were collected from 25 different layer flocks. The presence of antibodies against infectious laryngotracheitis virus (ILTV) in each sample was determined by ELISA. Of the 625 serum samples, 266 (42.56%) were found to be positive for ILTV antibodies. A total of 16 (64%) flocks were detected ILT positive by ELISA method. The mortality of infected flocks was statistically higher (P < 0.05) than uninfected flocks. The egg production of positive flocks was lower than that of the free flocks, but this difference was not statistically significant. The average live weight of hens in infected flocks was lower (P > 0.05) than hens in free flocks. In conclusion, the results of this study indicated a high prevalence of ILT infection in the commercial layer flocks in Konya region, Turkey. In outbreaks, ILT significantly increased the mortality rate and decreased the average live weight in layer hens.
Collapse
Affiliation(s)
- Zeki Aras
- a Department of Microbiology, Faculty of Veterinary Medicine , Aksaray University , Aksaray , Turkey
| | - Orhan Yavuz
- b Department of Pathology, Faculty of Veterinary Medicine , Aksaray University , Aksaray , Turkey
| | - Gökçenur Sanioğlu Gölen
- a Department of Microbiology, Faculty of Veterinary Medicine , Aksaray University , Aksaray , Turkey
| |
Collapse
|
5
|
Parra SHS, Nuñez LFN, Ferreira AJP. Epidemiology of Avian Infectious Laryngotracheitis with Special Focus to South America: an update. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2016-0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Humberd J, García M, Riblet SM, Resurreccion RS, Brown TP. Detection of infectious laryngotracheitis virus in formalin-fixed, paraffin-embedded tissues by nested polymerase chain reaction. Avian Dis 2002; 46:64-74. [PMID: 11922350 DOI: 10.1637/0005-2086(2002)046[0064:doilvi]2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infectious laryngotracheitis virus (ILTV) is routinely diagnosed by histopathologic examination of trachea, eyelid, and lung tissues. Lesions consistent with infectious laryngotracheitis (ILT) infection include syncytial cell formation with intranuclear inclusion bodies. These changes are present during the acute phase of infection. To increase the sensitivity of detecting ILT, a nested polymerase chain reaction (PCR) was developed for detection of ILTV DNA. Nested PCR assay was specific for the amplification of ILTV DNA and did not amplify a variety of other avian pathogens. To further validate the ability of this assay to detect ILT, nested PCR was performed in formalin-fixed, paraffin-embedded tissues from 35 cases of respiratory disease. Of the 35 cases, 12 were considered ILT suspects on the basis of initial clinical observation. Eleven of the 12 ILT-suspect cases were diagnosed as ILT, and the remaining 24 were diagnosed as nonspecific tracheitis (NST) by histopathologic examination. Histopathologically positive samples were confirmed by direct fluorescent antibody test and virus isolation. Of the 11 ILT-positive cases, 10 were positive by nested PCR. In addition, ILTV DNA was detected in 7 of the 24 samples diagnosed as NST upon histopathologic examination. Therefore, by nested PCR, ILTV DNA was detected in tissues independently of the presence of syncytial cells, intranuclear inclusions, or both. ILT nested PCR is a specific and sensitive assay capable of detecting ILT at different stages of infection and can be utilized in combination with histopathological examination to accelerate the diagnosis of ILT infection.
Collapse
Affiliation(s)
- Jennifer Humberd
- Department of Avian Medicine, College of Veterinary Medicine, University of Georgia, Athens 30602, USA
| | | | | | | | | |
Collapse
|