1
|
Babacanoğlu Çakır E. Intra-amniotic injection of L-carnitine reveals age-related effects on tissue total antioxidant status and increases plasma testosterone levels in male broiler chicks. BMC Vet Res 2025; 21:210. [PMID: 40140967 PMCID: PMC11948921 DOI: 10.1186/s12917-025-04670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND L-carnitine, derived from methionine and lysine, is present in plasma and tissues as free active carnitine in poultry. L-carnitine (L-car) plays a role in mitochondrial metabolism by enhancing β-oxidation and as an antioxidant molecule in the mitochondria. L-car synthesis is limited during embryonic development of birds. Therefore, the aim of this study was to investigate the influence of intra-amniotic injection of L-car on total antioxidant status (TAS) in tissues, plasma testosterone level and developmental parameters in male broiler chicks at the posthatching stage. The 360 eggs used as experimental material were divided into 3 groups: a non-injection group (control group) and in ovo (IO) injection groups, which were pure water (PW) group, or pure water + L-carnitine (PW + L-car) group. The 2.5 mg of L-car in 500 µl of PW was injected to fluid of the amnion membrane at day 18 of incubation. The total antioxidant status in the yolk before incubation and yolk membranes at day 19 of incubation and at hatching was analysed. Blood plasma testosterone and liver TAS levels were measured at hatching and at days 3 and 7 of age. Organ development, morphological characteristics and relative asymmetry (RA) of bilateral lengths were quantified at the same measuring days. RESULTS The TAS levels of yolk and residual yolk membranes decreased in comparison to the TAS in the initial yolk. The TAS in yolk membrane was higher than in residual yolk membrane in the IOPW + L-car group. Male chicks in the IOL-car group had the lowest TAS level in the liver at day 3 of age. Plasma testosterone level was significantly found higher in the IOPW + L-car group than in the other groups at all the ages. The chick development was not affected by IOPW + L-car injection. At hatching, IOPW + L-car group had shorter beak, face and middle toe lengths and lower RA of face length than control group at day 7 of age. CONCLUSION In conclusion, IOPW + L-car injection reveals age-related effects on tissue TAS levels and increases testosterone level interacted with the formation of the hypothalamic-pituitary-testicular axis of male broiler chicks at posthatching stage.
Collapse
Affiliation(s)
- Elif Babacanoğlu Çakır
- Animal Science Department, Faculty of Agriculture, Van Yuzuncu Yil University, Van, Türkiye.
| |
Collapse
|
2
|
Oliveira GDS, McManus C, Salgado CB, Dos Santos VM. Bibliographical Mapping of Research into the Relationship between In Ovo Injection Practice and Hatchability in Poultry. Vet Sci 2023; 10:vetsci10040296. [PMID: 37104451 PMCID: PMC10143566 DOI: 10.3390/vetsci10040296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Recent advances in poultry practice have produced new tools enabling the poultry industry to increase productivity. Aiming at increasing production quality, varying protocols of in ovo injection facilitate the introduction of exogenous substances into the egg to complement the nutrients that support embryonic development up to hatching, which are already available in the internal and external compartments. Due to embryonic sensitivity, adding any substance into the egg can be either advantageous or disadvantageous for embryonic survival and can influence hatch rates. Thus, understanding the relationship between poultry practices and production rates is the first step towards successful commercial application. This review aims to assess the influence on hatch rates of injecting different substances in ovo, including effects on embryo and chick health parameters where these are reported. Bibliographic mappings of co-authorship of citations, co-occurrence of keywords, and bibliographic coupling based on the in ovo injection technique and hatchability parameters were also performed. Using the Scopus database, 242 papers were retrieved, reviewed, and submitted for bibliographic mapping using the VOSviewer® software. This review provides a broad overview of just over 38 years' research on the subject, revealing that studies have significantly increased and peaked in 2020, being produced primarily by US researchers and published primarily in the journal Poultry Science. It also reveals that despite negative reports relating to some substances in the embryo, in ovo delivery of substances may possibly change the poultry industry for the better in terms of production rates (hatchability) and/or poultry health.
Collapse
Affiliation(s)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Cristiane Batista Salgado
- Laboratory of Geosciences and Human Sciences, Federal Institute of Brasília-Campus Brasília, Brasília 70830-450, Brazil
| | | |
Collapse
|
3
|
Effects of In Ovo Injection of Inorganic Salts of Zinc and Copper on Performance and Serum Biochemical Indices of Two Strains of Broiler Chickens. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
This study was composed of two experiments which investigated the response of two strains (Arbor Acre and Cobb 500, respectively) of broiler chickens to in ovo injection of inorganic salts of zinc, copper and their combination. A total of 300 hatching eggs [only 148 (59.20 %) and 232 (90.27 %), respectively, were fertile] each of Arbor Acre and Cobb 500 strains of broiler chickens were used in both experiments. These eggs were distributed into four treatments: control, in ovo inorganic Zn (80 µg.egg−1), Cu (16 µg.egg−1) and combined Zn and Cu (80 µg.egg−1 Zn and 16 µg.egg−1 Cu). The data obtained in both experiments were subjected to Completely Randomized Design (CRD) at the 5 % probability level. The results showed increased hatchability (P < 0.05) in eggs injected with the combination of inorganic salts of Zn and Cu in Experiment I and daily intake was influenced in both experiments. The carcass traits, organ development and gut morphometry were not significantly influenced by the treatment groups. The total serum protein and albumin of the birds were significantly (P < 0.05) increased by in ovo injection of inorganic salts of Zn and Cu at day 49 in the Experiment I. The study concluded that in ovo injection of inorganic salts of Zn at 80 µg.egg−1 and/or Cu at 16 µg. egg−1 could be adopted to increase feed intake with: attendant enhanced growth, enhanced immune response, increased albumin and total protein contents of blood serum in the strains of broiler chickens used.
Collapse
|
4
|
Eskandani M, Navidshad B, Eskandani M, Vandghanooni S, Aghjehgheshlagh FM, Nobakht A, Shahbazfar AA. The effects of L-carnitine-loaded solid lipid nanoparticles on performance, antioxidant parameters, and expression of genes associated with cholesterol metabolism in laying hens. Poult Sci 2022; 101:102162. [PMID: 36191516 PMCID: PMC9529590 DOI: 10.1016/j.psj.2022.102162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the production performance, antioxidant parameters, egg yolk cholesterol content, and expression of genes related to cholesterol metabolism in laying hens fed L-carnitine (LC) and L-carnitine-loaded solid lipid nanoparticles (LC-SLNs). A total of 350 Hy-Line (w-36) laying hens at 50 wk of age (1520.0 ± 0.7 g) were randomly assigned to 35 units (5 replicates and 50 hens in each treatment) with seven dietary treatments as a completely randomized design. The dietary treatments were corn-soybean meal-based diets, including 1) Control (basal diet); 2) Basal diet +50 mg/kg LC (50LC); 3) Basal diet +100 mg/kg LC (100LC); 4) Basal diet +150 mg/kg LC (150LC); 5) Basal diet +50 mg/kg LC-SLNs (50LC-SLNs); 6) Basal diet +100 mg/kg LC-SLNs (100LC-SLNs) and 7) Basal diet +150 mg/kg LC-SLNs (150LC-SLNs). Results showed that the 50LC-SLNs had the least feed conversion ratio (FCR) in all groups (P < 0.05). The dietary supplementation of 100LC-SLNs decreased (P < 0.01) the egg yolk cholesterol concentration from 14.71 to 11.76 mg/g yolk (25%). The 50LC-SLNs group produced the most total antioxidant capacity with a difference of 58.44% compared to the control group (P < 0.01). The greatest amount of total superoxide dismutase was found for 50LC-SLNs (P < 0.05), while the glutathione peroxidase was not affected by the experimental treatments (P > 0.05). Serum malondialdehyde levels were reduced by 50.52% in laying hens fed 50LC-SLNs compared to the control group (P < 0.05). The transcript level of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased (P < 0.01) in the LC and LC-SLNs groups. The expression of cholesterol 7α-hydroxylase was significantly increased (P < 0.01) in the plain LC (∼83%) and LC-SLNs (∼91%) groups. The inclusion of LC-SLNs in the diet increased (P < 0.05) the villus height and decreased villus width in all three parts of the small intestine. Dietary inclusion of LC was found to reduce egg yolk and serum cholesterol content by improving the production performance and antioxidant status. The LC-SLNs groups were more affected than the plain LC groups, which may be attributed to the increased bioavailability of LC.
Collapse
|
5
|
Huang KJ, Li CH, Tsai PK, Lai CC, Kuo YR, Hsieh MK, Cheng CW. Electromagnetic Force-Driven Needle-Free in Ovo Injection Device. Vet Sci 2022; 9:vetsci9030147. [PMID: 35324876 PMCID: PMC8951732 DOI: 10.3390/vetsci9030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Needle-free injections are mainly used for administering human or mammalian vaccines or drugs. However, poultry vaccines, in ovo injections to embryos, subcutaneous injections to chickens, and intramuscular injections are administered using needle injections. This article presents a new needle-free in ovo injection device method that uses push-pull solenoids to eject liquid jets, mainly for embryonic eggs of chickens. Furthermore, our study investigated the suitable jet pressures for using this method and the post-injection hatching rates in 18-day-old embryonic eggs. Using this method, we could deliver the liquid to the allantoic and amniotic cavities or the muscle tissue through the egg membrane of the air chamber using a jet pressure of ~6–7 MPa or ~8 MPa. After injecting 0.25 mL of 0.9% saline into 18-day-old Lohmann breed layer embryonic eggs and specific pathogen-free (SPF) embryonic eggs at a jet pressure of ~7 MPa, we observed hatching rates of 98.3% and 85.7%, respectively. This study’s electromagnetic needle-free in ovo injection device can apply vaccine or nutrient solution injection for embryo eggs and serve as a reference for future studies on needle-free in ovo injection automation systems, jet pressure control, and injection pretreatment processes.
Collapse
Affiliation(s)
- Ko-Jung Huang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Cheng-Han Li
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
- Correspondence: (C.-H.L.); (C.-W.C.); Tel.: +886-4-2219-5795 (C.-H.L. & C.-W.C.)
| | - Ping-Kun Tsai
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Chia-Chun Lai
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Yu-Ren Kuo
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (K.-J.H.); (P.-K.T.); (C.-C.L.); (Y.-R.K.)
| | - Ming-Kun Hsieh
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ching-Wei Cheng
- Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taichung 404, Taiwan
- Correspondence: (C.-H.L.); (C.-W.C.); Tel.: +886-4-2219-5795 (C.-H.L. & C.-W.C.)
| |
Collapse
|
6
|
Paradowska M, Dunislawska A, Siwek M, Slawinska A. Avian Cell Culture Models to Study Immunomodulatory Properties of Bioactive Products. Animals (Basel) 2022; 12:670. [PMID: 35268238 PMCID: PMC8909239 DOI: 10.3390/ani12050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance is becoming a greater danger to both human and animal health, reducing the capacity to treat bacterial infections and increasing the risk of morbidity and mortality from resistant bacteria. Antimicrobial efficacy in the treatment of bacterial infections is still a major concern in both veterinary and human medicine. Antimicrobials can be replaced with bioactive products. Only a small number of plant species have been studied in respect to their bioactive compounds. More research is needed to characterize and evaluate the therapeutic properties of the plant extracts. Due to the more and more common phenomenon of antimicrobial resistance, poultry farming requires the use of natural alternatives to veterinary antibiotics that have an immunomodulatory effect. These include a variety of bioactive products, such as plant extracts, essential oils, probiotics, prebiotics, and synbiotics. This article presents several studies on bioactive products and their immunomodulatory effects tested in vitro and ex vivo using various avian cell culture models. Primary cell cultures that have been established to study the immune response in chickens include peripheral blood mononuclear cells (PBMCs), intestinal epithelial cells (IEC), and bone marrow-derived dendritic cells (BMDCs). Chicken lymphatic lines that can be used to study immune responses are mainly: chicken B cells infected with avian leukemia RAV-1 virus (DT40), macrophage-like cell line (HD11), and a spleen-derived macrophage cell line (MQ-NCSU). Ex vivo organ cultures combine in vitro and in vivo studies, as this model is based on fragments of organs or tissues grown in vitro. As such, it mimics the natural reactions of organisms, but under controlled conditions. Most ex vivo organ cultures of chickens are derived from the ileum and are used to model the interaction between the gastrointestinal tract and the microbiota. In conclusion, the use of in vitro and ex vivo models allows for numerous experimental replications in a short period, with little or no ethical constraints and limited confounding factors.
Collapse
Affiliation(s)
- Michelle Paradowska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Anna Slawinska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
7
|
Lu J, Weil JT, Maharjan P, Manangi MK, Cerrate S, Coon CN. The effect of feeding adequate or deficient vitamin B 6 or folic acid to breeders on methionine metabolism in 18-day-old chick embryos. Poult Sci 2021; 100:101008. [PMID: 33610900 PMCID: PMC7905477 DOI: 10.1016/j.psj.2020.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 11/25/2022] Open
Abstract
Three isotopic tracers ([2,3,3-2H3]-L-serine, [2H11]-L-betaine, and [1-13C]-L-methionine) were administered by amnion injection into 18-day-old chick embryos to investigate the kinetics of methionine metabolism. The embryos utilized were from eggs collected from 34-week-old Cobb 500 broiler breeders that were fed either a control diet containing folic acid (1.25 mg/kg diet) and pyridoxine HCl (5 mg/kg diet) or diets devoid of supplemental pyridoxine or folic acid. Intermediate metabolites of methionine metabolism and polyamines were analyzed in 18-day-old chick embryos. There were no differences in hepatic [2H2] methionine or [2H3] cysteine enrichments or in physiological concentrations of sulfur amino acids for chick embryos from breeders fed the control diet and embryos from breeders fed diets containing no pyridoxine or folic acid. Supplementation of B6 or folic acid did not affect the production of methionine and cysteine in chick embryos. However, breeders fed the control diet with both folic acid and pyridoxine supplementation produced embryos with a two-fold reduction of hepatic homocysteine and increased spermine compared with embryos from breeders fed diets containing no supplemental pyridoxine or folic acid (P < 0.05). Hepatic S-adenosylmethionine for embryos from breeders fed no supplemental B6 was half the concentration compared with embryos from breeders fed the control diet. Embryos from breeders fed the control diet were utilized to determine the proportion of homocysteine going through remethylation and transsulfuration and also to determine the pathway of remethylation. Sixty-five percent of the methyl groups used for homocysteine remethylation from control embryos was via the MFMT pathway. Alternatively, 61% of homocysteine from control embryos was remethylated via the MFMT and the BHMT reactions and 39% of homocysteine was catabolized to cysteine via the transsulfuration pathway. These data show that in embryos, intermediate metabolites of methionine and polyamines increase in concentration when pyridoxine levels are provided in deficient concentrations to the breeder hen. In addition, this research demonstrates that folic acid deficient embryos conserve methionine, rather than catabolize it to cysteine.
Collapse
Affiliation(s)
- J Lu
- Analytics & Data Science, Syngenta, Greensboro, NC 27409, USA
| | - J T Weil
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - P Maharjan
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - M K Manangi
- Research and Development, Novus International, Inc., St. Charles, MO, 63304, USA
| | - S Cerrate
- Credinser LLC, Madison, AL 35756, USA
| | - C N Coon
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
8
|
Manders TTM, Matthijs MGR, Veraa S, van Eck JHH, Landman WJM. Success rates of inoculation of the various compartments of embryonated chicken eggs at different incubation days. Avian Pathol 2020; 50:61-77. [PMID: 33034512 DOI: 10.1080/03079457.2020.1834503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inoculation of embryonated chicken eggs has been widely used during the past decades; however, inoculation success rates have not been investigated systematically. In this study named success rates were assessed in brown eggs incubated between 5 and 19 days, which were inoculated with 0.2 ml methylene blue per egg. Inoculations were performed in a simple and fully standardized way. Five embryonic compartments were targeted blindly (amniotic cavity, embryo, allantoic cavity, albumen and yolk) with needles of four different lengths; albumen and yolk were targeted with eggs in upside down position. Three compartments were inoculated within sight (air chamber, chorioallantoic membrane and blood vessel). Twenty embryos were used per incubation day, intended deposition site and needle length. Success rates were assessed by visual inspection after breaking the eggs. The inoculations targeting albumen, yolk, amniotic cavity and embryo yielded low scores. Magnetic resonance imaging was performed to elucidate the reason(s) for these low success rates: needles used were of appropriate length, but embryo and amniotic cavity had variable positions in the eggs, while albumen and yolk rapidly changed position after turning the eggs upside down. The latter led to adjustment of the inoculation method for albumen and yolk. Failures to inoculate compartments within sight were immediately visible; therefore, these eggs could be discarded. Except for the amniotic cavity, full scores (20/20) were obtained for all compartments although not always on every day of incubation. In conclusion, the present study may serve as a guide to more accurately inoculate the various chicken embryo compartments. RESEARCH HIGHLIGHTS Blind inoculation of embryonated egg compartments was successful, except for the amniotic cavity. MRI showed rapid position change of albumen and yolk after turning eggs upside down. In ovo vaccination against Marek's disease might be improved by using 38 mm needles.
Collapse
Affiliation(s)
- T T M Manders
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - M G R Matthijs
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - S Veraa
- Division of Diagnostic Imaging, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J H H van Eck
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
9
|
|
10
|
|
11
|
|
12
|
Taha AE, AbdAllah OA, Attia KM, El-Karim REA, El-Hack MEA, El-Edel MA, Saadeldin IM, Hussein EOS, Swelum AA. Does in Ovo Injection of Two Chicken Strains with Royal Jelly Impact Hatchability, Post-Hatch Growth Performance and Haematological and Immunological Parameters in Hatched Chicks? Animals (Basel) 2019; 9:ani9080486. [PMID: 31349720 PMCID: PMC6720311 DOI: 10.3390/ani9080486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The present investigation examined improvements in egg hatchability and the growth performance of hatched chicks of two strains upon injection with increasing concentrations of royal jelly (RJ). The results showed positive effects of RJ injection on all parameters. Limited impacts of the different chicken strains were observed on the tested parameters. The study revealed that varying the chicken strain could alter the response to the in ovo injection with RJ. Abstract The hypothesis of the present work was that the effects of in ovo injection may differ in different chicken strains. The influence of in ovo royal jelly (RJ) injection on hatching, growth and blood parameters in two chicken strains (Dokki-4 and El-Salam as example for different strains) was evaluated. A total of 1080 eggs were used. On the seventh day of incubation, the eggs were randomly allocated into six experimental groups in a 2 × 3 arrangement that included the two chicken strains and three concentrations of RJ (0, 0.25 and 0.5 mL RJ/egg). Injection with 0.5 mL RJ/egg improved hatchability compared to the other treatments. The El-Salam strain exhibited significantly higher body weight and body weight gain than the Dokki-4 strain. Injection with 0.5 mL RJ/egg significantly (p < 0.05) improved chicken body weight and daily weight gain compared to the control treatment. RJ injection decreased blood lipid profile parameters and the numbers of monocytes and eosinophils and increased total protein, globulin, haemoglobin (Hb) and lymphocyte levels compared to the control treatment. The Dokki-4 strain showed significantly higher antibody titres against avian influenza virus (AIV) (p < 0.05) and sheep red blood cells (SRBCs) (p < 0.0001) than the El-Salam strain and RJ injection enhanced antibody titres against AIV, Newcastle disease virus (NDV) and SRBCs. Therefore, the Dokki-4 strain was superior to the El-Salam strain for the tested parameters and injection with 0.5 mL RJ/egg produced the best hatching parameters, growth performance and health-related traits. RJ in ovo injection was much more effective in the Dokki-4 strain than in the El-Salam strain, which supported the hypothesis of the study that varying the chicken strain could alter the response to the in ovo injection with RJ.
Collapse
Affiliation(s)
- Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Behira, Rasheed, Edfina 22758, Egypt
| | - Osama A AbdAllah
- Animal Production Research Institute, Ministry of Agriculture, Dokki, Cairo 12618, Egypt
| | - Khalil M Attia
- Animal Production Research Institute, Ministry of Agriculture, Dokki, Cairo 12618, Egypt
| | - Ragaa E Abd El-Karim
- Animal Production Research Institute, Ministry of Agriculture, Dokki, Cairo 12618, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed A El-Edel
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
13
|
Saeed M, Babazadeh D, Naveed M, Alagawany M, Abd El-Hack ME, Arain MA, Tiwari R, Sachan S, Karthik K, Dhama K, Elnesr SS, Chao S. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3727-3739. [PMID: 30637739 DOI: 10.1002/jsfa.9593] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The technique of delivering various nutrients, supplements, immunostimulants, vaccines, and drugs via the in ovo route is gaining wide attention among researchers worldwide for boosting production performance, immunity and safeguarding the health of poultry. It involves direct administration of the nutrients and biologics into poultry eggs during the incubation period and before the chicks hatch out. In ovo delivery of nutrients has been found to be more effective than post-hatch administration in poultry production. The supplementation of feed additives, nutrients, hormones, probiotics, prebiotics, or their combination via in ovo techniques has shown diverse advantages for poultry products, such as improved growth performance and feed conversion efficiency, optimum development of the gastrointestinal tract, enhancing carcass yield, decreased embryo mortality, and enhanced immunity of poultry. In ovo delivery of vaccination has yielded a better response against various poultry pathogens than vaccination after hatch. So, this review has aimed to provide an insight on in ovo technology and its potential applications in poultry production to deliver different nutrients, supplements, beneficial microbes, vaccines, and drugs directly into the developing embryo to achieve an improvement in post-hatch growth, immunity, and health of poultry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, PR China
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad A Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Swati Sachan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shaaban S Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Sun Chao
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
| |
Collapse
|
14
|
Genc M, Kandemir FM, Coban O. Effects of In-Ovo Rutin Injection to Fertile Japanese Quail (Coturnix Coturnix Japonica) Egg on Hatchability, Embryonic Death, Hatchling Weight, and Hatchling Liver Oxidative and Nitrosative Stress. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- M Genc
- Ataturk University, Turkey
| | | | | |
Collapse
|
15
|
Effect of in ovo feeding of vitamin C on antioxidation and immune function of broiler chickens. Animal 2019; 13:1927-1933. [DOI: 10.1017/s1751731118003531] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
16
|
Peebles ED. In ovo applications in poultry: A review,. Poult Sci 2018; 97:2322-2338. [PMID: 29617899 DOI: 10.3382/ps/pey081] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The various methods employed for the in ovo administration of different materials for promoting the health and productivity of poultry are discussed in this review article. The amnion has proven to be an effective site for injection and the timing of in ovo injection has commonly occurred at transfer. However, the volumes and dosages or concentrations of the materials administered vary depending on bird type, egg size, timing and site of injection, incubation system and regimen, and the type of material. Both manual and automated injections have been shown to be effective. Nevertheless, commercial application mandates automation. Materials described in the literature over the past 20 years or more for in ovo use in avian species include vaccines, drugs, hormones, competitive exclusion cultures and prebiotics, and supplemental nutrients. Vaccines approved for in ovo delivery include those for Marek's disease, infectious bursal disease, fowl pox, Newcastle disease, and coccidiosis. Some of the materials listed above have been shown to be viable candidates for enhancing immunity and for promoting embryonic and posthatch development. Several reports have indicated that probiotics may be effectively used to fight intestinal bacterial infections, and folic aid, as well as egg white protein and various amino acids, including L-arginine, L-lysine, L-histidine, HMB, and threonine alone or in combination, have been shown to benefit embryonic development or posthatch performance. Furthermore, CpG oligodeoxynucleotides, vitamins C and E, and thyme and savory have the potential to enhance immunity, carbohydrates can be used to increase tissue glycogen stores, and creatine can be used to promote muscle growth. Trace minerals and vitamin D3 have shown potential to improve bone strength, and potassium chloride may be an effective alternative electrolyte in vaccine diluent. The in ovo application of these and other materials will continue to expand and provide further benefits to the poultry industry.
Collapse
Affiliation(s)
- E D Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
17
|
Triplett M, Zhai W, Peebles E, McDaniel C, Kiess A. Investigating commercial in ovo technology as a strategy for introducing probiotic bacteria to broiler embryos. Poult Sci 2018; 97:658-666. [DOI: 10.3382/ps/pex317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
|
18
|
Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination. Food Microbiol 2017; 63:12-21. [DOI: 10.1016/j.fm.2016.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/28/2016] [Accepted: 10/20/2016] [Indexed: 01/17/2023]
|
19
|
Abousaad S, Lassiter K, Piekarski A, Chary P, Striplin K, Christensen K, Bielke L, Hargis B, Bottje W, Dridi S. Effects of In Ovo feeding of dextrin-iodinated casein in broilers: I. Hatch weights and early growth performance. Poult Sci 2017; 96:1473-1477. [DOI: 10.3382/ps/pew438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/21/2016] [Indexed: 11/20/2022] Open
|
20
|
Roto SM, Kwon YM, Ricke SC. Applications of In Ovo Technique for the Optimal Development of the Gastrointestinal Tract and the Potential Influence on the Establishment of Its Microbiome in Poultry. Front Vet Sci 2016; 3:63. [PMID: 27583251 PMCID: PMC4987676 DOI: 10.3389/fvets.2016.00063] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
As the current poultry production system stands, there is a period of time when newly hatched chicks are prevented from access to feed for approximately 48-72 h. Research has indicated that this delay in feeding may result in decreased growth performance when compared to chicks that are fed immediately post-hatch. To remedy this issue, in ovo methodology may be applied in order to supply the embryo with additional nutrients prior to hatching and those nutrients will continue to be utilized by the chick post-hatch during the fasting period. Furthermore, in ovo injection of various biologics have been researched based on the ability of not only supplying the chick embryo with additional nutrients that would promote improved growth but also compounds that may benefit the future health of the chicken host. Such compounds include various immunostimulants, live beneficial bacteria, prebiotics, and synbiotics. However, it is important to determine the site and age of the in ovo injection for the most productive effects. The primary focus of the current review is to address these two issues [the most effective site(s) and age(s) of in ovo injection] as well as provide the framework for the development of the gastrointestinal tract (GIT) of the chick embryo. Additionally, recent research suggests the colonization of the microbiota in the developing chick may occur during the late stages of embryogenesis. Therefore, we will also discuss the potentials of the in ovo injection method in establishing a healthy and diverse community of microorganisms to colonize the developing GIT that will provide both protection from pathogen invasion and improvement in growth performance to developing chicks.
Collapse
Affiliation(s)
- Stephanie M. Roto
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
- Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Young Min Kwon
- Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Steven C. Ricke
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
- Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
21
|
Joshua PP, Valli C, Balakrishnan V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet World 2016; 9:287-94. [PMID: 27057113 PMCID: PMC4823290 DOI: 10.14202/vetworld.2016.287-294] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Materials and Methods: Nano form of zinc at 20, 40, 60 and 80 µg/egg, nano form of copper at 4, 8, 12 and 16 µg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 µg/egg were in ovo supplemented (18th day incubation, amniotic route) in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. Results: In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05) best feed efficiency for nano forms of zinc (2.16), copper (2.46) and selenium (2.51) were observed, when 40, 4 and 0.225 µg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 µg per egg which had significantly (p<0.05) highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Conclusion: Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18th day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability.
Collapse
Affiliation(s)
- P Patric Joshua
- Department of Pharmacology, Sri Muthukumaran Medical College Hospital and Research Institute, Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India
| | - C Valli
- Department of Animal Nutrition, Institute of Animal Nutrition, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - V Balakrishnan
- Department of Animal Nutrition, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler. Br J Nutr 2015; 115:411-21. [DOI: 10.1017/s0007114515004511] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractThis study was conducted to investigate the effect of in ovo feeding (IOF) of folic acid on the folate metabolism, immune function and the involved epigenetic modification of broilers. A total of 400 (Cobb) hatching eggs were randomly divided into four groups (0, 50, 100 and 150 µg injection of folic acid at embryonic age 11 d), and chicks hatched from each treatment were randomly divided into six replicates with 12 broilers/replicate after incubation. The results indicated that, in ovo, 100- and 150-µg folic acid injections improved the hatchability. The average daily gain and feed conversion ratio increased in the 150-µg group during the late growth stage. Simultaneously, in the 100- and 150-µg groups, an increase was observed in hepatic folate content and the expression of methylenetetrahydrofolate reductase (d1 and 42) and methionine synthase reductase (d21). IgG and IgM concentrations, as well as plasma lysozyme activity of broilers, showed a marked increase along with increasing folic acid levels. The splenic expression levels of IL-2 and IL-4 were up-regulated, whereas that of IL-6 was down-regulated, in the 100- and 150-µg folic acid treatment groups. In addition, histone methylation in IL-2 and IL-4 promoters exhibited an enrichment of H3K4m2 but a loss of H3K9me2 with the increased amount of folic acid additive. In contrast, a decrease in H3K4m2 and an increase in H3K9me2 were observed in the IL-6 promoter in folic acid treatments. Furthermore, in ovo, the 150-µg folic acid injection improved the chromatin tightness of the IL-2 and IL-4 promoter regions. Our findings suggest that IOF of 150 µg of folic acid can improve the growth performance and folate metabolism of broilers, and enhance the relationship between immune function and epigenetic regulation of immune genes, which are involved with the alterations in chromatin conformation and histone methylation in their promoters.
Collapse
|
23
|
Effect of in ovo injection of threonine on Mucin2 gene expression and digestive enzyme activity in Japanese quail (Coturnix japonica). Res Vet Sci 2015; 100:257-62. [DOI: 10.1016/j.rvsc.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/28/2015] [Accepted: 03/14/2015] [Indexed: 01/17/2023]
|
24
|
Li F, Shan A, Hu J, Zheng Y, Xu L, Chen Z. Changes to daily feed intake during the laying period alters embryonicMSTNandMYOGgene expression in genetically fat and lean lines of chickens. Br Poult Sci 2013; 54:728-37. [DOI: 10.1080/00071668.2013.853868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Kadam MM, Barekatain MR, Bhanja SK, Iji PA. Prospects of in ovo feeding and nutrient supplementation for poultry: the science and commercial applications--a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3654-3661. [PMID: 23847062 DOI: 10.1002/jsfa.6301] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/03/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
In ovo supplementation of poultry embryos was first reported several decades ago, but it is only recently that concerted research has been directed at developing the technology for this process to be routinely used by the poultry industry. Although the technology of in ovo feeding was patented more than 10 years ago, it has not been widely adopted by the poultry industry. This review examines the early development of the enteric system of the poultry embryo; defines and distinguishes between in ovo feeding and in ovo nutrient administration; highlights the importance of early feeding of the chick; and discusses the development of in ovo feeding technology and its effects on hatchability, growth, gut health and immune response of chicks. The range of possible nutrients that can be administered is also explored. The limitations associated with embryo development and nutrient metabolism are highlighted, leading to the prediction of the future role of in ovo feeding in the poultry industry.
Collapse
Affiliation(s)
- Mukund M Kadam
- Department of Poultry Science, Nagpur Veterinary College, Maharashtra Animal and Fishery Science University, Nagpur, 440 006, India; School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | | | | | | |
Collapse
|
26
|
Bello A, Zhai W, Gerard P, Peebles E. Effects of the commercial in ovo injection of 25-hydroxycholecalciferol on the hatchability and hatching chick quality of broilers. Poult Sci 2013; 92:2551-9. [DOI: 10.3382/ps.2013-03086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Liu HH, Wang JW, Zhang RP, Chen X, Yu HY, Jin HB, Li L, Han CC, Xu F, Kang B, He H, Xu HY. In ovo feeding of IGF-1 to ducks influences neonatal skeletal muscle hypertrophy and muscle mass growth upon satellite cell activation. J Cell Physiol 2012; 227:1465-75. [PMID: 21618537 DOI: 10.1002/jcp.22862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To investigate reasons for the muscle increase observed when eggs are treated by IGF-1 and whether or not satellite cell activation is specific to different types of myofibers, duck eggs were administrated with IGF-1. After injection, during the neonatal stages, the duck breast muscle and leg muscle were isolated for analysis. The muscle weight, muscle fiber diameter (MFD), cross-sectional area (CSA), the number of myofibers per unit area (MFN) and frequency of satellite cell activation and mitosis at the embryo stage of 27 days (27E) and the postnatal stage of 2 days after hatching (P2D) were determined. In addition, expression of two important myogenic transcription factors MyoD and Myf5 were detected and compared in the two types of muscle tissues. Results indicated that IGF-1 administration increased the duck body weight, MFD, CSA, MFN, and quantity of activated satellite cells and mitotic nuclei in the two types of muscle tissues. The MyoD and Myf5 expressed at a higher level in IGF-1-treated muscle. IGF-1 stimulated muscle weight growth more in the leg muscle than in the breast muscle. These results indicate that in ovo feeding of IGF-1 can stimulate duck growth and, especially, lead to increased muscle hypertrophy. These increases appear to be mainly dependent on the activation of satellite cells, some of which proliferate and fuse to the myofiber, enabling increased muscle mass. IGF-1 can indirectly affect satellite cells by regulating the expression of two important myogenic transcription factors, MyoD and Myf5, which help activate satellite cells.
Collapse
Affiliation(s)
- He-He Liu
- Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Ya'an, Sichuan, P R China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dooley M, Peebles E, Zhai W, Mejia L, Zumwalt C, Corzo A. Effects of l-carnitine via in ovo injection with or without l-carnitine feed supplementation on broiler hatchability and posthatch performance. J APPL POULTRY RES 2011. [DOI: 10.3382/japr.2010-00280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Zhai W, Gerard PD, Pulikanti R, Peebles ED. Effects of in ovo injection of carbohydrates on embryonic metabolism, hatchability, and subsequent somatic characteristics of broiler hatchlings. Poult Sci 2011; 90:2134-43. [PMID: 21933993 DOI: 10.3382/ps.2011-01418] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The effects of the in ovo injection of different carbohydrate solutions on the internal egg temperature (IT), hatchability, and time of hatch of embryonated Ross × Ross 708 broiler hatching eggs were determined. In addition, the BW, liver weight, yolk sac weight (YSW), and yolk-free BW (YFBW) of the embryos on d 19.5 of incubation and of the chicks on day of hatch were determined. Eggs containing live embryos were injected in the amnion on d 18.5 of incubation using an automated multiple-egg injector. Solution injections delivered 1.2 mL of physiological saline (0.85%) alone or with a supplemental carbohydrate. The following supplemental carbohydrates were separately dissolved in saline at a concentration of 0.3 g/mL: glucose, fructose, sucrose, maltose, and dextrin. Temperature transponders were implanted in the air cells of embryonated and nonembryonated eggs after in ovo injection for the detection of IT at 6, 14, and 22 h after injection. The IT of embryonated eggs was significantly greater than that of nonembryonated eggs at all 3 times after the treatment period. Eggs that were injected with saline with or without supplemental carbohydrates experienced a reduction in IT when compared with control eggs whose shells were perforated without solution delivery, and the decrease in IT was associated with a delay in hatch time. Liver weight was negatively related to YSW and positively related to YFBW, and YSW was negatively related to YFBW. Although the saline and carbohydrate solution injections increased chick BW compared with noninjected controls, chick YFBW was decreased in the maltose- and sucrose-injected groups. In conclusion, the injection of 1.2 mL of saline with or without supplemental carbohydrates lowered embryonic metabolism, as reflected by a lower IT and a delay in time of hatch. However, effects of the different carbohydrate solutions on yolk absorption and tissue deposition in yolk-free embryos varied. These results suggest that lower volumes for solutions containing maltose, sucrose, or fructose should be considered for in ovo injection.
Collapse
Affiliation(s)
- W Zhai
- Department of Poultry Science, Mississippi State University, Mississipi State, MS, USA
| | | | | | | |
Collapse
|
30
|
Zhai W, Rowe DE, Peebles ED. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis. Poult Sci 2011; 90:1295-301. [PMID: 21597071 DOI: 10.3382/ps.2010-01130] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of in ovo injection of different carbohydrate solutions on hatchability of fertilized eggs (HF), rate of hatch, BW, body moisture, yolk sac weight, and yolk sac moisture of Ross × 708 broiler chicks, hatched from eggs laid by a 34-wk-old breeder flock, were investigated. Eggs containing live embryos were injected, using an automated multiple-egg injector, in the amnion on d 18.5 of incubation with 0.1, 0.4, 0.7, or 1.0 mL of commercial diluent or a carbohydrate dissolved in diluent. The commercial diluent containing 0.25 g/mL of one of the following carbohydrates was injected into eggs: glucose, fructose, sucrose, maltose, or dextrin. The results showed that no carbohydrate type or solution volume affected rate of hatch. Absolute and proportional BW on day of hatch were positively related to injection volume (P < 0.001). However, HF was negatively related to injection volume (P < 0.001). To realize an HF of 90%, the injection volume could not exceed 0.4 mL for fructose or sucrose and could not exceed 0.7 mL for glucose, maltose, or dextrin. Yolk-free BW was negatively related to injection volume of fructose and sucrose (P < 0.004), but was not related to injection volume of diluent, glucose, maltose, and dextrin. Conversely, absolute and proportional yolk sac weights were positively related to injection volume of fructose, sucrose, and dextrin (P < 0.01), but were also not significantly related to injection volume of diluent, glucose, and maltose. Yolk sac moisture was positively related to injection volume for all injectables, including the diluent (P < 0.03). However, body moisture and yolk-free body moisture were not related to injection type or volume. In conclusion, the use of carbohydrates added to a commercial diluent for the in ovo injection of broiler hatching eggs requires the use of appropriate volumes to promote growth and nutrient utilization without adversely affecting HF.
Collapse
Affiliation(s)
- W Zhai
- Department of Poultry Science, Mississippi State University, Mississipi State, MS, USA
| | | | | |
Collapse
|
31
|
McGruder B, Zhai W, Keralapurath M, Bennett L, Gerard P, Peebles E. Effects of in ovo injection of electrolyte solutions on the pre- and posthatch physiological characteristics of broilers
,. Poult Sci 2011; 90:1058-66. [DOI: 10.3382/ps.2010-00893] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Keralapurath M, Corzo A, Pulikanti R, Zhai W, Peebles E. Effects of in ovo injection of L-carnitine on hatchability and subsequent broiler performance and slaughter yield. Poult Sci 2010; 89:1497-501. [DOI: 10.3382/ps.2009-00551] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Keralapurath M, Keirs R, Corzo A, Bennett L, Pulikanti R, Peebles E. Effects of in ovo injection ofl-carnitine on subsequent broiler chick tissue nutrient profiles. Poult Sci 2010; 89:335-41. [DOI: 10.3382/ps.2009-00333] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Shafey T, Al-Batshan H, Al-Owaimer A, Al-Samawei K. Effects ofin ovoadministration ofL-carnitine on hatchability performance, glycogen status and insulin-like growth factor-1 of broiler chickens. Br Poult Sci 2010; 51:122-31. [DOI: 10.1080/00071660903271190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Zhai W, Neuman SL, Latour MA, Hester PY. The effect of male and female supplementation of L-carnitine on reproductive traits of white leghorns. Poult Sci 2008; 87:1171-81. [PMID: 18493008 DOI: 10.3382/ps.2007-00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work in our laboratory showed that including 125 ppm of l-carnitine in the diets of roosters increased sperm concentration. The objective of this experiment was to determine whether reproductive efficiency could be improved by feeding l-carnitine to both parents over that of feeding l-carnitine to only the male or female. Diets formulated to contain 0 or 125 ppm of l-carnitine were fed to male and female birds from hatch until 37 wk of age. Eighty-four roosters were used, with the semen of 2 roosters constituting an experimental unit. Pools of semen from either l-carnitine-supplemented or control roosters were artificially inseminated into each of 288 hens with 23.5 muL of semen at weekly intervals, in a 2 x 2 factorial arrangement, resulting in a mean insemination dose of 1.2 and 1.1 x 10(8) sperm/hen for l-carnitine and control hens, respectively. Dietary l-carnitine, as compared with the control diet, increased egg yolk l-carnitine concentration (P = 0.001), decreased hatchling yolk sac weights (P = 0.0001), decreased yolk sac lipid content at hatch (P = 0.01), and culminated in compositional changes of yolk fatty acids, but it did not affect hatch rate, egg production, and egg traits. Although supplementing diets with l-carnitine improved sperm concentration, it did not result in a subsequent improvement in hatch rate, most likely because of the high numbers of sperm that were inseminated artificially in both the control and l-carnitine-supplemented hens. The higher concentrations of l-carnitine in the yolk of hatching eggs obtained from hens consuming l-carnitine as compared with controls may have encouraged the utilization of fat by developing embryos, as indicated by the decreased hatchling yolk sac weights and yolk sac lipid content, perhaps leading to the selective utilization of linoleic (C18:2n-6) and alpha-linolenic (C18:3n-3) acids for growth and development over myristic (C14:0) and oleic (C18:1n-9) acids.
Collapse
Affiliation(s)
- W Zhai
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|