1
|
Zhou S, Quan C, Zhang Z, Gong S, Nawaz S, Zhang Y, Kulyar MFEA, Mo Q, Li J. Leucine improves thiram-induced tibial dyschondroplasia and gut microbiota dysbiosis in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116260. [PMID: 38564867 DOI: 10.1016/j.ecoenv.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.
Collapse
Affiliation(s)
- Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Maritz-Olivier C, Ferreira M, Olivier NA, Crafford J, Stutzer C. Mining gene expression data for rational identification of novel drug targets and vaccine candidates against the cattle tick, Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:291-317. [PMID: 37755526 PMCID: PMC10562289 DOI: 10.1007/s10493-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Control of complex parasites via vaccination remains challenging, with the current combination of vaccines and small drugs remaining the choice for an integrated control strategy. Studies conducted to date, are providing evidence that multicomponent vaccines will be needed for the development of protective vaccines against endo- and ectoparasites, though multicomponent vaccines require an in-depth understanding of parasite biology which remains insufficient for ticks. With the rapid development and spread of acaricide resistance in ticks, new targets for acaricide development also remains to be identified, along with novel targets that can be exploited for the design of lead compounds. In this study, we analysed the differential gene expression of Rhipicephalus microplus ticks that were fed on cattle vaccinated with a multi-component vaccine (Bm86 and 3 putative Bm86-binding proteins). The data was scrutinised for the identification of vaccine targets, small drug targets and novel pathways that can be evaluated in future studies. Limitations associated with targeting novel proteins for vaccine and/or drug design is also discussed and placed into the context of challenges arising when targeting large protein families and intracellular localised proteins. Lastly, this study provide insight into how Bm86-based vaccines may reduce successful uptake and digestion of the bloodmeal and overall tick fecundity.
Collapse
Affiliation(s)
- Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Mariëtte Ferreira
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nicholas A Olivier
- DNA Microarray Laboratory, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jan Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Christian Stutzer
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
3
|
Chang WL, Su YH. Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo. Dev Biol 2022; 484:63-74. [DOI: 10.1016/j.ydbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
|
4
|
Kaundal RK, Kalvala AK, Kumar A. Neurological Implications of COVID-19: Role of Redox Imbalance and Mitochondrial Dysfunction. Mol Neurobiol 2021; 58:4575-4587. [PMID: 34110602 PMCID: PMC8190166 DOI: 10.1007/s12035-021-02412-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 or COVID-19 has been declared as a pandemic disease by the World Health Organization (WHO). Globally, this disease affected 159 million of the population and reported ~ 3.3 million deaths to the current date (May 2021). There is no definitive treatment strategy that has been identified, although this disease has prevailed in its current form for the past 18 months. The main challenges in the (SARS-CoV)-2 infections are in identifying the heterogeneity in viral strains and the plausible mechanisms of viral infection to human tissues. In parallel to the investigations into the patho-mechanism of SARS-CoV-2 infection, understanding the fundamental processes underlying the clinical manifestations of COVID-19 is very crucial for designing effective therapies. Since neurological symptoms are very apparent in COVID-19 infected patients, here, we tried to emphasize the involvement of redox imbalance and subsequent mitochondrial dysfunction in the progression of the COVID-19 infection. It has been articulated that mitochondrial dysfunction is very apparent and also interlinked to neurological symptoms in COVID-19 infection. Overall, this article provides an in-depth overview of redox imbalance and mitochondrial dysfunction involvement in aggravating COVID-19 infection and its probable contribution to the neurological manifestation of the disease.
Collapse
Affiliation(s)
- Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
- Icahn School of Medicine At Mount Sinai, 1470 Madison Ave, New York, NY, USA
| | - Anil K Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, North America, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India.
| |
Collapse
|
5
|
Jahejo AR, Tian WX. Cellular, molecular and genetical overview of avian tibial dyschondroplasia. Res Vet Sci 2020; 135:569-579. [PMID: 33066991 DOI: 10.1016/j.rvsc.2020.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Tibial dyschondroplasia (TD) is an intractable avian bone disease that causes severe poultry economic losses. The pathogenicity of TD is unknown. Therefore, TD disease has not been evacuated yet. Based on continuous research findings, we have gone through the molecular and cellular insight into the TD and proposed possible pathogenicity for future studies. Immunity and angiogenesis-related genes expressed in the erythrocytes of chicken, influenced the apoptosis of chicken chondrocytes to cause TD. TD could be defined as the irregular, unmineralized and un-vascularized mass of cartilage, which is caused by apoptosis, degeneration and insufficient blood supply at the site of the chicken growth plate. The failure of angiogenesis attributed improper nutrients supply to the chondrocytes; ultimately, bone development stopped, poor calcification of cartilage matrix, and apoptosis of chondrocytes occurred. Recent studies explore potential signaling pathways that regulated TD in broiler chickens, including parathyroid hormone-related peptide (PTHrP), transforming growth factor β (TGF- β)/bone morphogenic proteins (BMPs), and hypoxia-inducible factor (HIF). Several studies have reported many medicines to treat TD. However, recently, rGSTA3 protein (50 μg·kg-1) is considered the most proper TD treatment. The present review has summarized the molecular and cellular insight into the TD, which will help researchers in medicine development to evacuate TD completely.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
6
|
Qamar H, Waqas M, Li A, Iqbal M, Mehmood K, Li J. Plastrum Testudinis Extract Mitigates Thiram Toxicity in Broilers via Regulating PI3K/AKT Signaling. Biomolecules 2019; 9:biom9120784. [PMID: 31779199 PMCID: PMC6995622 DOI: 10.3390/biom9120784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Tibial dyschondroplasia (TD) negatively affects broilers all over the world, in which the accretion of the growth plate (GP) develops into tibial proximal metaphysis. Plastrum testudinis extract (PTE) is renowned as a powerful antioxidant, anti-inflammatory, and bone healing agent. The current study was conducted to evaluate the efficacy of PTE for the treatment of thiram-induced TD chickens. Broilers (day old; n = 300) were raised for 3 days with normal feed. On the 4th day, three groups (n = 100 each) were sorted, namely, the control (normal diet), TD, and PTE groups (normal diet+ thiram 50 mg/kg). On the 7th day, thiram was stopped in the TD and PTE group, and the PTE group received a normal diet and PTE (30 mg/kg/day). Plastrum testudinis extract significantly restored (p < 0.05) the liver antioxidant enzymes, inflammatory cytokines, serum biochemicals, GP width, and tibia weight as compared to the TD group. The PTE administration significantly increased (p < 0.05) growth performance, vascularization, AKT (serine/threonine-protein kinase), and PI3K expressions and the number of hepatocytes and chondrocytes with intact nuclei were enhanced. In conclusion, PTE has the potential to heal TD lesions and act as an antioxidant and anti-inflammatory drug in chickens exposed to thiram via the upregulation of AKT and PI3K expressions.
Collapse
Affiliation(s)
- Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, China
- Correspondence: ; Tel.: +86-027-87286251
| |
Collapse
|
7
|
Jahejo AR, Niu S, Zhang D, Ning GB, Khan A, Mangi RA, Qadir MF, Khan A, Li JH, Tian WX. Transcriptome analysis of MAPK signaling pathway and associated genes to angiogenesis in chicken erythrocytes on response to thiram-induced tibial lesions. Res Vet Sci 2019; 127:65-75. [PMID: 31678455 DOI: 10.1016/j.rvsc.2019.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/28/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
This study was planned to investigate TD (Tibial dyschondroplasia) on the potential MAPK signaling pathway and angiogenesis related genes. Forty-eight broilers were allotted into control (C) and treatment (T) groups of 2, 6 and 15 days as C1, C2, C3, T1, T2 and T3. The histopathology results revealed that tibiotarsus bone of chickens had more lesions on day 6 (T2 group). The chondrocytes were disordered, and the size, shape and proliferation were affected. Transcriptome results revealed that differentially expressed genes (DEGs) identified were 63, 1026, 623, 130, 141 and 146 in C1 (2 days control vs 6 days control); C2 (2 days control vs 15 days control); C3 (6 days control vs 15 days control); T1 (2 days treatment vs 6 days treatment); T2 (2 days treatment vs 15 days treatment) and T3 (6 days treatment vs 15 days treatment) groups respectively. Whereas, 10 angiogenesis related-genes RHOC, MEIS2, BAIAP2, TGFBI, KLF2, CYR61, PTPN11, PLXNC1, HSPH1 and NRP2 were downregulated on day 6 in the treatment group. The pathway which was found enriched in the control and treatment groups was MAPK signaling pathway. Therefore selected 10 MAPK signaling pathway-related genes RAC2, MAP3K1, PRKCB, FLNB, IL1R1, PTPN7, RPS6KA, MAP3K6, GNA12 and HSPA8 which were found significantly downregulated in the treatment group on day 6. It is concluded that angiogenesis and MAPK signaling pathway related genes has an essential role in TD, as those top screened genes found downregulated in the thiram fed chickens when TD observed severed on day 6.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Guan-Bao Ning
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Jian-Hui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
8
|
Lilburn M, Griffin J, Wick M. From muscle to food: oxidative challenges and developmental anomalies in poultry breast muscle. Poult Sci 2019; 98:4255-4260. [DOI: 10.3382/ps/pey409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
9
|
Mehmood K, Zhang H, Jiang X, Yao W, Tong X, Iqbal MK, Rehman MU, Iqbal M, Waqas M, Qamar H, Zhang J, Li J. Ligustrazine recovers thiram-induced tibial dyschondroplasia in chickens: Involvement of new molecules modulating integrin beta 3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:205-211. [PMID: 30388538 DOI: 10.1016/j.ecoenv.2018.10.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate, which is extensively used in agriculture as pesticide and fungicide for treating grains intended for seed purposes and also for storing food grains. One of the most evident and detrimental effect produced by thiram is tibial dyschondroplasia (TD) in many avian species, by feeding diets containing thiram, a growth plate cartilage disease. TD is characterized by the lack of blood vessels and impaired vascular invasion of the hypertrophic chondrocyte resulting in the massive cell death. This study investigated the effects of ligustrazine on the treatment and control of thiram induced-TD. A total of 210 chicks were divided into three equal groups (n = 70): control group (received standard diet), TD group (feed on thiram containing diet from day 3-7), and ligustrazine group (feed on thiram containing diet from day 3-7 and after that ligustrazine @ 30 mg/kg from day 8 to day 18). During the experiment, the lameness, production parameters, tibia bone indicators, pathological index changes and integrin beta 3 (ITGB3) expressions were examined. The results reveal that ligustrazine plays an important role in improving angiogenesis and decreasing chondrocytes damage in TD chicks via a new molecule modulating ITGB3. So, the administration of ligustrazine can be an important way to cope with the losses and costs associated with TD in commercial poultry farming and animal welfare issue due to environmental contamination of thiram.
Collapse
Affiliation(s)
- Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Three Gorges Polytechnic, Yichang 443000, Hubei, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mujahid Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350 Azad Jammu & Kashmir, Pakistan
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, PR China.
| |
Collapse
|
10
|
Kapakin KAT, Kapakin S, Imik H, Gumus R, Eser G. The Investigation of the Relationship Between HSP-27 Release and Oxidative DNA Damage in Broiler Chickens with Tibial Dyschondroplasia by Using Histopathological and Immunohistochemical Methods. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2019-1091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - H Imik
- Atatürk University, Turkey
| | - R Gumus
- Cumhuriyet University, Turkey
| | - G Eser
- Atatürk University, Turkey
| |
Collapse
|
11
|
Nabi F, Iqbal MK, Zhang H, Rehman MU, Shahzad M, Huang S, Han Z, Mehmood K, Ahmed N, Chachar B, Arain MA, Li J. Clinical efficiency and safety of Hsp90 inhibitor Novobiocin in avian tibial dyschondroplasia. J Vet Pharmacol Ther 2018; 41:902-911. [PMID: 30004119 DOI: 10.1111/jvp.12692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Tibial dyschondroplasia (TD) is a bone defect of broilers and other poultry birds that disturbs growth plate and it causes lameness. Previously we evaluated differential expression of multiple genes involved in growth plate angiogenesis and reported the safety and efficacious of medicinal plant root extracted for controlling TD. In this study, clinical and protective effect of an antibiotic Novobiocin (Hsp90 inhibitor) and expression of Hsp90 and proteoglycan aggrecan was examined. The chicks were divided into three groups; Control, thiram-induced TD, and Novobiocin injected TD. After the induction of TD, the Novobiocin was administered through intraperitoneal route to TD-affected birds until the end of the experiment. The expressions and localization of Hsp90 were evaluated by qRT-PCR, immunohistochemistry (IHC) and western blot, respectively. Morphological, histological examinations, and serum biomarker levels were evaluated to assess specificity and protective effects of Novobiocin. The results showed that TD causing retarded growth, enlarged growth plate, distended chondrocytes, irregular columns of cells, decreased antioxidant capacity, reduced protein levels of proteoglycan aggrecan, and upregulated in Hsp90 expression (p < 0.05) in dyschondroplastic birds as compared with control. Novobiocin treatment restored growth plate morphology, reducing width, stimulated chondrocyte differentiation, sprouting blood vessels, corrected oxidative imbalance, decreased Hsp90 expressions and increased aggrecan level. Novobiocin treatment controlled lameness and improved growth in broiler chicken induced by thiram. In conclusion, the accumulation of the cartilage and up-regulated Hsp90 are associated with TD pathogenesis and irregular chondrocyte morphology in TD is along with reduced aggrecan levels in the growth plate. Our results indicate that Novobiocin treatment has potential to reduce TD by controlling the expression of Hsp90 in addition to improve growth and hepatic toxicity in broiler chicken.
Collapse
Affiliation(s)
- Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Muhammad K Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahzad
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nisar Ahmed
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Bahram Chachar
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Muhammad A Arain
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Veterinary Medicine, Tibet Agricultural and Animal Husbandry College, Tibet, China
| |
Collapse
|
12
|
Mehmood K, Zhang H, Iqbal MK, Rehman MU, Shahzad M, Li K, Huang S, Nabi F, Zhang L, Li J. In VitroEffect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells. Avian Dis 2017; 61:372-377. [DOI: 10.1637/11641-032817-regr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, People's Republic of China
| |
Collapse
|
13
|
Abstract
Fertile eggs from Cobb 500 broiler breeder hens were incubated to provide low starting egg shell temperatures (EST; 36.9°C to 37.3°C) which were gradually increased to 37.8°C during the first 7 to 15 days of incubation compared with eggs incubated with a constant EST of 37.8°C (standard conditions) over the first 18 days of incubation. Time of individual chick hatching (measured at 6 h intervals from 468 h of incubation), chick weight, chick length and yolk weight were measured at take-off and BW was measured at 7, 14, 28, 34 and 42 days of age. Male birds at 34 and 42 days of age were assessed for their ability to remain standing in a latency-to-lie test. At 34 and 42 days, male birds were examined for leg symmetry, foot pad dermatitis, hock bruising and scored (scale 0 to 4, where 0=no lesion and 4=lesions extending completely across the tibial growth plate) for tibial dyschondroplasia (TD) lesions. The lower EST profiles caused chicks to hatch later than those incubated under the standard EST profile. Chicks which hatched at ⩽498 h incubation grew faster over the first 7 days than those that hatched later. There were significantly more birds (only males were studied) that hatched from the lower EST profiles with TD scores of 0 and 1 and fewer with score 4 at 34 days than those hatched under the standard profile. Male birds at 34 days with TD lesions ⩾3 stood for significantly shorter times than males with TD scores ⩽2. Moreover, male birds at 34 and 42 days with TD lesion scores of ⩾3 hatched significantly earlier and grew significantly faster over the first 2 weeks of age than did male birds with TD scores ⩽2. It appears possible to decrease the severity and prevalence of TD in the Cobb 500 broiler by ensuring that the birds do not hatch before 498 h of incubation.
Collapse
|
14
|
Green JD, Tollemar V, Dougherty M, Yan Z, Yin L, Ye J, Collier Z, Mohammed MK, Haydon RC, Luu HH, Kang R, Lee MJ, Ho SH, He TC, Shi LL, Athiviraham A. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes Dis 2015; 2:307-327. [PMID: 26835506 PMCID: PMC4730920 DOI: 10.1016/j.gendis.2015.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.
Collapse
Affiliation(s)
- Jordan D. Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mark Dougherty
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhengjian Yan
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangjun Yin
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zachary Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Shahzad M, Liu J, Gao J, Wang Z, Zhang D, Nabi F, Li K, Li J. Differential expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in avian tibial dyschondroplasia. Avian Pathol 2014; 44:13-8. [PMID: 25402545 DOI: 10.1080/03079457.2014.987210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tibial dyschondroplasia (TD) is an avian bone disorder of different aetiologies that may be associated with lameness. The disorder is characterized by focal disruption of endochondral bone formation, with a lack of matrix proteolysis and an accumulation of non-mineralized avascular cartilage. The aim of this study was to determine the expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in normal, thiram-induced TD lesions and in the process of recovery from TD in broiler chickens. An extracellular matrix (ECM) degrading enzyme, matrix metalloproteinase-9 (MMP-9), was selected to investigate the effects of CD147 in the degradation of ECM. Gene expression was analysed by quantitative real-time polymerase chain reaction and protein levels by immunohistochemistry and western blotting. The birds were divided into three groups: thiram fed; recovery; and controls. Genes encoding CD147 and MMP-9 were down-regulated during the development of the disease, and were up-regulated during recovery. Western blotting also showed lower protein levels of CD147 in TD, which increased during the recovery phase associated with ECM degradation and growth plate repair. The findings of this study suggest that ECM has a crucial role in the occurrence of TD and that CD147 appears to play a pivotal role in matrix proteolysis in the chicken, similar to that in other species.
Collapse
Affiliation(s)
- Muhammad Shahzad
- a College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsuchida S, Arai Y, Takahashi KA, Kishida T, Terauchi R, Honjo K, Nakagawa S, Inoue H, Ikoma K, Ueshima K, Matsuki T, Mazda O, Kubo T. HIF-1α-induced HSP70 regulates anabolic responses in articular chondrocytes under hypoxic conditions. J Orthop Res 2014; 32:975-80. [PMID: 24677016 DOI: 10.1002/jor.22623] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/04/2014] [Indexed: 02/04/2023]
Abstract
We assessed whether heat shock protein 70 (HSP70) is involved in hypoxia inducible factor 1 alpha (HIF-1α)-dependent anabolic pathways in articular chondrocytes under hypoxic conditions. Primary rabbit chondrocytes were cultured under normoxia (20% oxygen condition) or hypoxia (1% oxygen condition). Alternatively, cells cultured under normoxia were treated with CoCl2 , which induces HIF-1α, to simulate hypoxia, or transfected with siRNAs targeting HIF-1α (si-HIF-1α) and HSP70 (si-HSP70) under hypoxia. HSP70 expression was enhanced by the increased expression of HIF-1α under hypoxia or simulated hypoxia, but not in the presence of si-HIF-1α. Hypoxia-induced overexpression of ECM genes was significantly suppressed by si-HIF-1α or si-HSP70. Cell viability positively correlated with hypoxia, but transfection with si-HIF-1α or si-HSP70 abrogated the chondroprotective effects of hypoxia. Although LDH release from sodium nitroprusside-treated cells and the proportion of TUNEL positive cells were decreased under hypoxia, transfection with si-HIF-1α or si-HSP70 almost completely blocked these effects. These findings indicated that HIF-1α-induced HSP70 overexpression increased the expression levels of ECM genes and cell viability, and protected chondrocytes from apoptosis. HIF-1α may regulate the anabolic effects of chondrocytes under hypoxic conditions by regulating HSP70 expression.
Collapse
Affiliation(s)
- Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tian WX, Li JK, Qin P, Wang R, Ning GB, Qiao JG, Li HQ, Bi DR, Pan SY, Guo DZ. Screening of differentially expressed genes in the growth plate of broiler chickens with tibial dyschondroplasia by microarray analysis. BMC Genomics 2013; 14:276. [PMID: 23617778 PMCID: PMC3648502 DOI: 10.1186/1471-2164-14-276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 04/18/2013] [Indexed: 12/18/2022] Open
Abstract
Background Tibial dyschondroplasia (TD) is a common skeletal disorder in broiler chickens. It is characterized by the presence of a non-vascularized and unmineralized cartilage in the growth plate. Previous studies have investigated differential expression of genes related to cartilage development during latter stages of TD. The aim of our study was to identify differentially expressed genes (DEGs) in the growth plate of broiler chickens, which were associated with early stage TD. We induced TD using tetramethylthiuram disulfide (thiram) for 1, 2, and 6 days and determined DEGs with chicken Affymetrix GeneChip assays. The identified DEGs were verified by quantitative polymerase chain reaction (qPCR) assays. Results We identified 1630 DEGs, with 82, 1385, and 429 exhibiting at least 2.0-fold changes (P < 0.05) at days 1, 2, and 6, respectively. These DEGs participate in a variety of biological processes, including cytokine production, oxidation reduction, and cell surface receptor linked signal transduction on day 1; lipid biosynthesis, regulation of growth, cell cycle, positive and negative gene regulation, transcription and transcription regulation, and anti-apoptosis on day 2; and regulation of cell proliferation, transcription, dephosphorylation, catabolism, proteolysis, and immune responses on day 6. The identified DEGs were associated with the following pathways: neuroactive ligand-receptor interaction on day 1; synthesis and degradation of ketone bodies, terpenoid backbone biosynthesis, ether lipid metabolism, JAK-STAT, GnRH signaling pathway, ubiquitin mediated proteolysis, TGF-β signaling, focal adhesion, and Wnt signaling on day 2; and arachidonic acid metabolism, mitogen-activated protein kinase (MAPK) signaling, JAK-STAT, insulin signaling, and glycolysis on day 6. We validated seven DEGs by qPCR. Conclusions Our findings demonstrate previously unrecognized changes in gene transcription associated with early stage TD. The DEGs we identified by microarray analysis will be used in future studies to clarify the molecular pathogenic mechanisms of TD. From these findings, potential pathways involved in early stage TD warrant further investigation.
Collapse
Affiliation(s)
- Wen-xia Tian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gogate SS, Fujita N, Skubutyte R, Shapiro IM, Risbud MV. Tonicity enhancer binding protein (TonEBP) and hypoxia-inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: role of Hsp70 in HIF-1α degradation. J Bone Miner Res 2012; 27:1106-17. [PMID: 22322648 PMCID: PMC3330204 DOI: 10.1002/jbmr.1571] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The objective of our study was to examine the regulation of hypoxic expression of heat shock protein 70 (Hsp70) in nucleus pulposus cells and to determine if Hsp70 promoted hypoxia-inducible factor (HIF)-1α degradation. Rat nucleus pulposus cells were maintained in culture in either 21% or 1% oxygen. To determine the regulation of Hsp70 expression by tonicity enhancer binding protein (TonEBP) and HIF-1/2, loss-of-function and gain-of-function experiments and mutational analysis of the Hsp70 promoter were performed. Hypoxia increased Hsp70 expression in nucleus pulposus cells. Noteworthy, hypoxia increased TonEBP transactivation and mutation of TonE motifs blocked hypoxic induction of the Hsp70 promoter. In contrast, mutation of hypoxia response element (HRE) motifs coupled with loss-of-function experiments suggested that HIF-1 and HIF-2 suppressed Hsp70 promoter activity and transcription. Interestingly, HIF-α interferes with TonEBP function and suppresses the inductive effect of TonEBP on the Hsp70 promoter. In terms of Hsp70 function, when treated with Hsp70 transcriptional inhibitor, KNK437, there was an increase in HIF-1α protein stability and transcriptional activity. Likewise, when Hsp70 was overexpressed, the stability of HIF-1α and its transcriptional activity decreased. Hsp70 interacted with HIF-1α under hypoxic conditions and evidenced increased binding when treated with MG132, a proteasomal inhibitor. These results suggest that Hsp70 may promote HIF-1α degradation through the proteasomal pathway in nucleus pulposus cells. In hypoxic and hyperosmolar nucleus pulposus cells, Hsp70, TonEBP, and HIFs form a regulatory loop. We propose that the positive regulation by TonEBP and negative regulation of Hsp70 by HIF-1 and HIF-2 may serve to maintain Hsp70 levels in these cells, whereas Hsp70 may function in controlling HIF-1α homeostasis.
Collapse
Affiliation(s)
- Shilpa S Gogate
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
19
|
Herzog A, Genin O, Hasdai A, Shinder D, Pines M. Hsp90 and angiogenesis in bone disorders—lessons from the avian growth plate. Am J Physiol Regul Integr Comp Physiol 2011; 301:R140-7. [DOI: 10.1152/ajpregu.00134.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiram-induced tibial dyschondroplasia (TD) and vitamin-D deficiency rickets are avian bone disorders of different etiologies characterized by abnormal chondrocyte differentiation, enlarged and unvascularized growth plates, and lameness. Heat-shock protein 90 (Hsp90) is a proangiogenic factor in mammalian tissues and in tumors; therefore, Hsp90 inhibitors were developed as antiangiogenic factors. In this study, we evaluated the association between Hsp90, hypoxia, and angiogenesis in the chick growth plate. Administration of the Hsp90 inhibitor to TD- and rickets-afflicted chicks at the time of induction resulted in reduction in growth-plate size and, contrary to its antiangiogenic effect in tumors, a major invasion of blood vessels occurred in the growth plates. This was the result of upregulation of the VEGF receptor Flk-1, the major rate-limiting factor of vascularization in TD and rickets. In addition, the abnormal chondrocyte differentiation, as characterized by collagen type II expression and alkaline phosphatase activity, and the changes in hypoxia-inducible factor-1α (HIF-1α) in both disorders were restored. All these changes resulted in prevention of lameness. Inhibition of Hsp90 activity reduced growth-plate size, increased vascularization, and mitigated lameness also in TD chicks with established lesions. In summary, this is the first reported demonstration of involvement of Hsp90 in chondrocyte differentiation and growth-plate vascularization. In contrast to the antiangiogenic effect of Hsp90 inhibitors observed in mammals, inhibition of Hsp90 activity in the unvascularized TD- and rickets-afflicted chicks resulted in activation of the angiogenic switch and reinstated normal growth-plate morphology.
Collapse
Affiliation(s)
- Ayelet Herzog
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| | - Olga Genin
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| | - Ahron Hasdai
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| | - Dima Shinder
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| | - Mark Pines
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
20
|
Tian WX, Zhang WP, Li JK, Bi DR, Guo DZ, Pan SY, Zhang YH, Qin P. Identification of differentially expressed genes in the growth plate of broiler chickens with thiram-induced tibial dyschondroplasia. Avian Pathol 2009; 38:161-6. [PMID: 19322716 DOI: 10.1080/03079450902737789] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tibial dyschondroplasia (TD) is characterized by expansion of the proximal growth plates of the tibiotarsus that fail to form bone, lack blood vessels, and contain non-viable cells. Thiram (a carbamate pesticide), when fed to young broiler chicks, induces TD with high regularity and precision. We used this experimental model to understand the cause of the defects associated with TD by selecting and identifying the genes differentially expressed in the TD growth plate of broiler chickens. Broiler chicks at 7 days of age were randomly divided into two groups. After fasting overnight, they were fed with regular diet (control) or the same diet containing 100 mg/kg thiram for 96 h to induce TD (thiram-fed). mRNA was purified from the growth plates of control and thiram-fed broilers. Forward and reverse-subtracted cDNA libraries were generated by suppression subtractive hybridization technology. Ten selected genes from cDNA libraries were identified by real-time quantitative polymerase chain reaction. All were differentially expressed in TD growth plates (P<0.05 or P<0.01). The levels of collagen type X (Col X), pro-alpha-1 collagen type I (Col I alpha1), collagen type IX (Col IX), NADH dehydrogenase (NADH DH), cytochrome C oxidase subunit III (COX III), enolase 1, alpha (ENO1), carbonic anhydrase II (CA2) and heat shock protein 90 (Hsp90) mRNA transcripts were up-regulated, while the expression levels of Matrilin 3 (MATN3) and chondromodulin-I (ChM-I) were down-regulated. Col I and Hsp90 were detected by immunohistochemistry at different stages. Given that these genes are involved in matrix formation, endochondral ossification, developmental regulation, electron transport in the mitochondrial respiratory chain and vascularization, our findings may provide new insights into understanding the pathogenesis of TD.
Collapse
Affiliation(s)
- W X Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|