1
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Gao F, Li P, Yin Y, Du X, Cao G, Wu S, Zhao Y. Molecular breeding of livestock for disease resistance. Virology 2023; 587:109862. [PMID: 37562287 DOI: 10.1016/j.virol.2023.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Animal infectious diseases pose a significant threat to the global agriculture and biomedicine industries, leading to significant economic losses and public health risks. The emergence and spread of viral infections such as African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and avian influenza virus (AIV) have highlighted the need for innovative approaches to develop resilient and disease-resistant animal populations. Gene editing technologies, such as CRISPR/Cas9, offer a promising avenue for generating animals with enhanced disease resistance. This review summarizes recent advances in molecular breeding strategies for generating disease-resistant animals, focusing on the development of disease-resistant livestock. We also highlight the potential applications of genome-wide CRISPR/Cas9 library screening and base editors in producing precise gene modified livestock for disease resistance in the future. Overall, gene editing technologies have the potential to revolutionize animal breeding and improve animal health and welfare.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Pan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ye Yin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Gengsheng Cao
- Henan Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yaofeng Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Söllner JH, Mettenleiter TC, Petersen B. Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses 2021; 13:1996. [PMID: 34696426 PMCID: PMC8539128 DOI: 10.3390/v13101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
The livestock industry is constantly threatened by viral disease outbreaks, including infections with zoonotic potential. While preventive vaccination is frequently applied, disease control and eradication also depend on strict biosecurity measures. Clustered regularly interspaced palindromic repeats (CRISPR) and associated proteins (Cas) have been repurposed as genome editors to induce targeted double-strand breaks at almost any location in the genome. Thus, CRISPR/Cas genome editors can also be utilized to generate disease-resistant or resilient livestock, develop vaccines, and further understand virus-host interactions. Genes of interest in animals and viruses can be targeted to understand their functions during infection. Furthermore, transgenic animals expressing CRISPR/Cas can be generated to target the viral genome upon infection. Genetically modified livestock can thereby reduce disease outbreaks and decrease zoonotic threats.
Collapse
Affiliation(s)
- Jenny-Helena Söllner
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| | | | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| |
Collapse
|
4
|
Hu W, Zheng H, Li Q, Wang Y, Liu X, Hu X, Liu W, Liu S, Chen Z, Feng W, Cai X, Li N. shRNA transgenic swine display resistance to infection with the foot-and-mouth disease virus. Sci Rep 2021; 11:16377. [PMID: 34385528 PMCID: PMC8361160 DOI: 10.1038/s41598-021-95853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most important animal pathogens in the world. FMDV naturally infects swine, cattle, and other cloven-hoofed animals. FMD is not adequately controlled by vaccination. An alternative strategy is to develop swine that are genetically resistant to infection. Here, we generated FMDV-specific shRNA transgenic cells targeting either nonstructural protein 2B or polymerase 3D of FMDV. The shRNA-positive transgenic cells displayed significantly lower viral production than that of the control cells after infection with FMDV (P < 0.05). Twenty-three transgenic cloned swine (TGCS) and nine non-transgenic cloned swine (Non-TGCS) were produced by somatic cell nuclear transfer (SCNT). In the FMDV challenge study, one TGCS was completely protected, no clinical signs, no viremia and no viral RNA in the tissues, no non-structural antibody response, another one TGCS swine recovered after showing clinical signs for two days, whereas all of the normal control swine (NS) and Non-TGCS developed typical clinical signs, viremia and viral RNA was determined in the tissues, the non-structural antibody was determined, and one Non-TGCS swine died. The viral RNA load in the blood and tissues of the TGCS was reduced in both challenge doses. These results indicated that the TGCS displayed resistance to the FMDV infection. Immune cells, including CD3+, CD4+, CD8+, CD21+, and CD172+ cells, and the production of IFN-γ were analyzed, there were no significant differences observed between the TGCS and NS or Non-TGCS, suggesting that the FMDV resistance may be mainly derived from the RNAi-based antiviral pathway. Our work provides a foundation for a breeding approach to preventing infectious disease in swine.
Collapse
Affiliation(s)
- Wenping Hu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qiuyan Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.,Beijing Genprotein Biotechnology Company, Beijing, China
| | - Yuhang Wang
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaoxiang Hu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Wenjie Liu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Shen Liu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Zhisheng Chen
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Wenhai Feng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
In Vivo Inhibition of Marek's Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4. Microorganisms 2021; 9:microorganisms9010164. [PMID: 33450980 PMCID: PMC7828426 DOI: 10.3390/microorganisms9010164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/28/2022] Open
Abstract
Marek’s disease (MD), caused by MD herpesvirus (MDV), is an economically important disease in chickens. The efficacy of the existing vaccines against evolving virulent stains may become limited and necessitates the development of novel antiviral strategies to protect poultry from MDV strains with increased virulence. The CRISPR/Cas9 system has emerged as a powerful genome editing tool providing an opportunity to develop antiviral strategies for the control of MDV infection. Here, we characterized Tol2 transposon constructs encoding Cas9 and guide RNAs (gRNAs) specific to the immediate early infected-cell polypeptide-4 (ICP4) of MDV. We generated transgenic chickens that constitutively express Cas9 and ICP4-gRNAs (gICP4) and challenged them via intraabdominal injection of MDV-1 Woodlands strain passage-19 (p19). Transgenic chickens expressing both gRNA/Cas9 had a significantly reduced replication of MDV in comparison to either transgenic Cas9-only or the wild-type (WT) chickens. We further confirmed that the designed gRNAs exhibited sequence-specific virus interference in transgenic chicken embryo fibroblast (CEF) expressing Cas9/gICP4 when infected with MDV but not with herpesvirus of turkeys (HVT). These results suggest that CRISPR/Cas9 can be used as an antiviral approach to control MDV infection in chickens, allowing HVT to be used as a vector for recombinant vaccines.
Collapse
|
6
|
Kannaki TR, Gowthaman V. Marek’s disease: time to review the emerging threat in Indian poultry. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T. R. Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus, Namakkal, India
| |
Collapse
|
7
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
8
|
Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017; 375:38. [PMID: 28324594 PMCID: PMC7100576 DOI: 10.1007/s41061-017-0127-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Viral diseases remain a major cause of death worldwide. Despite advances in vaccine and antiviral drug technology, each year over three million people die from a range of viral infections. Predominant viruses include human immunodeficiency virus, hepatitis viruses, and gastrointestinal and respiratory viruses. Now more than ever, robust, easily mobilised and cost-effective antiviral strategies are needed to combat both known and emerging disease threats. RNA interference and small interfering (si)RNAs were initially hailed as a “magic bullet”, due to their ability to inhibit the synthesis of any protein via the degradation of its complementary messenger RNA sequence. Of particular interest was the potential for attenuating viral mRNAs contributing to the pathogenesis of disease that were not able to be targeted by vaccines or antiviral drugs. However, it was soon discovered that delivery of active siRNA molecules to the infection site in vivo was considerably more difficult than anticipated, due to a number of physiological barriers in the body. This spurred a new wave of investigation into nucleic acid delivery vehicles which could facilitate safe, targeted and effective administration of the siRNA as therapy. Amongst these, cationic polymer delivery vehicles have emerged as a promising candidate as they are low-cost and easy to produce at an industrial scale, and bind to the siRNA by non-specific electrostatic interactions. These nanoparticles (NPs) can be functionally designed to target the infection site, improve uptake in infected cells, release the siRNA inside the endosome and facilitate delivery into the cell cytoplasm. They may also have the added benefit of acting as adjuvants. This chapter provides a background around problems associated with the translation of siRNA as antiviral treatments, reviews the progress made in nucleic acid therapeutics and discusses current methods and progress in overcoming these challenges. It also addresses the importance of combining physicochemical characterisation of the NPs with in vitro and in vivo data.
Collapse
|
9
|
Kokuryo T, Hibino S, Suzuki K, Watanabe K, Yokoyama Y, Nagino M, Senga T, Hamaguchi M. Nek2 siRNA therapy using a portal venous port-catheter system for liver metastasis in pancreatic cancer. Cancer Sci 2016; 107:1315-20. [PMID: 27316377 PMCID: PMC5021025 DOI: 10.1111/cas.12993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a serine-threonine kinase and human homolog of the mitotic regulator NIMA of Aspergillus nidulan. We reported the efficiency of Nek2 siRNA in several cancer xenograft models using cholangiocarcinoma, breast cancer and colorectal cancer. Pancreatic cancer is difficult to treat due to its rapid progression and resistance to chemotherapy. Novel treatments are urgently required to improve survival in pancreatic cancer, and siRNA are a promising therapeutic option. However, finding an in vivo drug delivery system of siRNA remains a major problem for clinical application. In this study, the overexpression of Nek2 was identified in pancreatic cancer cell lines. Nek2 siRNA inhibited tumor growth in a subcutaneous xenograft mouse model of pancreatic cancer, prolonged the survival time in an intraperitoneal xenograft mouse model and efficiently prevented the progression of liver metastasis using a portal venous port-catheter system. Taken together, Nek2 is an effective therapeutic target in pancreatic cancer. An adequate delivery system is considered important in treating advanced pancreatic cancer, such as peritoneal dissemination and liver metastasis. Further investigations are required on the safety and side effects of the portal venous port-catheter system. We hope that Nek2 siRNA will be a novel therapeutic strategy for pancreatic cancer with liver metastasis and peritoneal dissemination.
Collapse
Affiliation(s)
- Toshio Kokuryo
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shigeru Hibino
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Suzuki
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutaka Watanabe
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Linke LM, Wilusz J, Pabilonia KL, Fruehauf J, Magnuson R, Olea-Popelka F, Triantis J, Landolt G, Salman M. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model. AMB Express 2016; 6:16. [PMID: 26910902 PMCID: PMC4766140 DOI: 10.1186/s13568-016-0187-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/18/2016] [Indexed: 01/24/2023] Open
Abstract
Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.
Collapse
|
11
|
Wei R, Ma X, Wang G, Guo H, Liu J, Fan L, Cheng Z. Synergistic inhibition of avian leukosis virus subgroup J replication by miRNA-embedded siRNA interference of double-target. Virol J 2015; 12:45. [PMID: 25889403 PMCID: PMC4376366 DOI: 10.1186/s12985-015-0277-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diseases caused by avian leukosis virus subgroup J (ALV-J) has become a serious problem in the poultry. Due to largely ineffective vaccines, new control measures are needed to be developed. RNA interference (RNAi) has been developed a promising measure for antivirus in poultry. METHODS In this study, miRNA-embedded siRNA interference was designed and used to inhibit ALV-J replication in vitro and in vivo. Each sequence of target siRNA derived from the gag (p15), pol (p32), env (gp85) and LTR (U3) gene of ALV-J was embedded into mouse miR-155 backbone as a pre-miRNA hairpin oligonucleotide sequence. After annealing, they were cloned into pcDNA6.2-GW/EmGFP-miR vector, respectively. For detecting the interference effect, recombinant vectors were introduced into DF-1 cells and day-old SPF chickens that infected with ALV-J. RESULTS In vitro, single target interference showed effective inhibition of reducing 74% ~ 85% mRNA of ALV-J. Double targets showed more efficient inhibition of reducing 96% ~ 98% mRNA of ALV-J. In vivo, chicks were inoculated with each recombinant plasmid in peritoneal cavity at day of hatch, and monitored infection status at interval 1 day postinfection for 4 weeks. Delivery of single target or double targets miRNA significantly reduced viremia and pathogenicity caused by ALV-J in vivo, especially the double targets. CONCLUSIONS These data demonstrated that the miRNA-embedded siRNA interference is an efficient method for inhibition of ALV-J replication, especially double targets.
Collapse
Affiliation(s)
- Rongrong Wei
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Xiaoqian Ma
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Huijun Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lingxiao Fan
- Xiangya School of Medicine, Changsha, 410013, China.
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
12
|
Haq K, Schat KA, Sharif S. Immunity to Marek's disease: where are we now? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:439-446. [PMID: 23588041 DOI: 10.1016/j.dci.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Marek's disease (MD) in chickens was first described over a century ago and the causative agent of this disease, Marek's disease virus (MDV), was first identified in the 1960's. There has been extensive and intensive research over the last few decades to elucidate the underlying mechanisms of the interactions between the virus and its host. We have also made considerable progress in terms of developing efficacious vaccines against MD. The advent of the chicken genetic map and genome sequence as well as development of approaches for chicken transcriptome and proteome analyses, have greatly facilitated the process of illuminating underlying genetic mechanisms of resistance and susceptibility to disease. However, there are still major gaps in our understanding of MDV pathogenesis and mechanisms of host immunity to the virus and to the neoplastic events caused by this virus. Importantly, vaccines that can disrupt virus transmission in the field are lacking. The current review explores mechanisms of host immunity against Marek's disease and makes an attempt to identify the areas that are lacking in this field.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | | |
Collapse
|
13
|
Abstract
Since the first report of a polyneuritis in chickens by Joseph Marek in 1907, the clinical nature of the disease has changed. Over the last five decades, the pathogenicity of the Marek's disease virus (MDV) has continued to evolve from the relatively mild strains observed in the 1960s to the more severe strains labeled very virulent plus currently observed in today's outbreaks. To understand the influence of host genetics, specifically the major histocompatibility complex (MHC), on virus evolution, a bacterial artificial chromosome-derived MDV (Md5B40BAC) was passed in vivo through resistant (MHC-B21) and susceptible (MHC-B13) Line 0 chickens. Criteria for selecting virus isolates for in vivo passage were based on virus replication in white blood cells 21 days after challenge and evaluation of MD pathology at necropsy. In the MHC-B13-susceptible line the Md5B40BAC virulence consistently increased from 18% Marek's disease (MD) after in vivo passage 1 (B13-IVP1 Md5B40BAC) to 94% MD after B13-IVP5 Md5B40BAC challenge. In the MHC-B21-resistant line MD virulence fluctuated from 28% at B21-IVP1 Md5B40BAC to a high of 65% in B21-IVP2 Md5B40BAC back to a low of 23% in B21-IVP5 Md5B40BAC-challenged chicks. Although the B21-IVP5 Md5B40BAC isolates were relatively mild in the MHC-B21 chicken line (56% MDV), they were highly virulent in the MHC-B13 line (100% MDV). From this series of experiments it would appear that MDV evolution toward greater virulence occurs in both susceptible and resistant MHC haplotypes, but the resulting increase in pathogenicity is constrained by the resistant MHC haplotype.
Collapse
Affiliation(s)
- Henry D Hunt
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, 3606 E. Mount Hope Road, East Lansing, MI 48823, USA.
| | | |
Collapse
|
14
|
Haq K, Wootton SK, Barjesteh N, St Paul M, Golovan S, Bendall AJ, Sharif S. Small interfering RNA-mediated knockdown of chicken interferon-γ expression. J Interferon Cytokine Res 2013; 33:319-27. [PMID: 23458611 DOI: 10.1089/jir.2012.0141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon (IFN)-γ is a cytokine with a variety of functions, including direct antiviral activities and the capacity to polarize T-cells. However, there is limited information available about the function of this cytokine in the avian immune system. To gain a better understanding of the biological relevance of IFN-γ in chicken immunity, gain-of-function (upregulation) and loss-of-function (downregulation) studies need to be conducted. RNA interference (RNAi), a technique employed for downregulating gene expression, is mediated by small interfering RNA (siRNA), which can trigger sequence-specific gene silencing. In this regard, sequence specificity and delivery of siRNA molecules remain critical issues, especially to cells of the immune system. Various direct and indirect approaches have been employed to deliver siRNA, including the use of viral vectors. The objectives of the present study were to determine whether RNAi could effectively downregulate expression of chicken IFN-γ in vitro, and investigate the feasibility of recombinant adeno-associated virus to deliver siRNA in vitro as well. Three 27-mer Dicer substrate RNAs were selected based on the chicken IFN-γ coding sequence and transfected into cells or delivered using a recombinant avian adeno-associated virus (rAAAV) into a chicken fibroblast cell line expressing chIFN-γ. The expression of chIFN-γ transcripts was significantly downregulated when a cocktail containing all three siRNAs was used. Expression of endogenous IFN-γ was also significantly downregulated in primary cells after stimulation with a peptide. Further, significant suppression of IFN-γ transcript was also observed in vitro in cells that were treated with rAAAV, expressing siRNA targeting IFN-γ. Off-target effects in the form of triggering IFN responses by RNAi, including expression of chicken 2',5'-oligoadenylate synthetase and IFN-α, were also examined. Our results suggest that siRNAs selected were effective at downregulating IFN-γ in vitro both when delivered directly as well as when expressed by an rAAAV-based vector.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Daniel-Carlier N, Sawafta A, Passet B, Thépot D, Leroux-Coyau M, Lefèvre F, Houdebine LM, Jolivet G. Viral infection resistance conferred on mice by siRNA transgenesis. Transgenic Res 2012; 22:489-500. [PMID: 22961198 DOI: 10.1007/s11248-012-9649-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/28/2012] [Indexed: 11/25/2022]
Abstract
RNA interference is an attractive strategy to fight against viral diseases by targeting the mRNA of viral genes. Most studies have reported the transient delivery of small interfering RNA or small hairpin (shRNA) expression constructs. Here, we present the production of transgenic mice stably expressing shRNA or miRNA targeting the IE180 mRNA (immediate early gene) of the pseudorabies virus (PRV) which infects mice and farm animals. We firstly designed non-retroviral shRNA or miRNA expression vectors. Secondly, we selected the most efficient shRNA construct that targeted either the 5'part or 3'UTR of the IE mRNA and was able to knockdown the target gene expression in cultured cells, by measuring systematically the shRNA content and comparing this with the interfering effects. We then produced four lines of transgenic mice expressing different amounts of shRNA or miRNA in the brain but without signs of stimulation of innate immunity. Lastly, we tested their resistance to PRV infection. In all transgenic lines, we observed a significant resistance to viral challenge, the best being achieved with the shRNA construct targeting the 3'UTR of the IE gene. Viral DNA levels in the brains of infected mice were always lower in transgenic mice, even in animals that did not survive. Finally, this work reports an effective strategy to generate transgenic animals producing shRNA from non-retroviral expression vectors. Moreover, these mice are the first transgenic animal models producing shRNA with a significant antiviral effect but without any apparent shRNA toxicity.
Collapse
|
16
|
Ramirez-Carvajal L, Long CR. Down-regulation of viral replication by lentiviral-mediated expression of short-hairpin RNAs against vesicular stomatitis virus ribonuclear complex genes. Antiviral Res 2012; 95:150-8. [DOI: 10.1016/j.antiviral.2012.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/03/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
|
17
|
Dodgson JB, Delany ME, Cheng HH. Poultry genome sequences: progress and outstanding challenges. Cytogenet Genome Res 2011; 134:19-26. [PMID: 21335957 DOI: 10.1159/000324413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
The first build of the chicken genome sequence appeared in March, 2004 - the first genome sequence of any animal agriculture species. That sequence was done primarily by whole genome shotgun Sanger sequencing, along with the use of an extensive BAC contig-based physical map to assemble the sequence contigs and scaffolds and align them to the known chicken chromosomes and linkage groups. Subsequent sequencing and mapping efforts have improved upon that first build, and efforts continue in search of missing and/or unassembled sequence, primarily on the smaller microchromosomes and the sex chromosomes. In the past year, a draft turkey genome sequence of similar quality has been obtained at a much lower cost primarily due to the development of 'next-generation' sequencing techniques. However, assembly and alignment of the sequence contigs and scaffolds still depended on a detailed BAC contig map of the turkey genome that also utilized comparison to the existing chicken sequence. These 2 land fowl (Galliformes) genomes show a remarkable level of similarity, despite an estimated 30-40 million years of separate evolution since their last common ancestor. Among the advantages offered by these sequences are routine re-sequencing of commercial and research lines to identify the genetic correlates of phenotypic change (for example, selective sweeps), a much improved understanding of poultry diversity and linkage disequilibrium, and access to high-density SNP typing and association analysis, detailed transcriptomic and proteomic studies, and the use of genome-wide marker- assisted selection to enhance genetic gain in commercial stocks.
Collapse
Affiliation(s)
- J B Dodgson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA.
| | | | | |
Collapse
|
18
|
Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens. Vet Immunol Immunopathol 2010; 138:292-302. [PMID: 21067815 DOI: 10.1016/j.vetimm.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
19
|
Long CR, Tessanne KJ, Golding MC. Applications of RNA interference-based gene silencing in animal agriculture. Reprod Fertil Dev 2010; 22:47-58. [DOI: 10.1071/rd09211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classical genetic selection, recently aided by genomic selection tools, has been successful in achieving remarkable progress in livestock improvement. However, genetic selection has led to decreased genetic diversity and, in some cases, acquisition of undesirable traits. In order to meet the increased demands of our expanding population, new technologies and practices must be developed that contend with zoonotic and animal disease, environmental impacts of large farming operations and the increased food and fibre production needed to feed and clothe our society. Future increases in productivity may be dependent upon the acquisition of genetic traits not currently encoded by the genomes of animals used in standard agricultural practice, thus making classical genetic selection impossible. Genetic engineering of livestock is commonly used to produce pharmaceuticals or to impart enhanced production characteristics to animals, but has also demonstrated its usefulness in producing animals with disease resistance. However, significant challenges remain because it has been more difficult to produce animals in which specific genes have been removed. It is now possible to modify livestock genomes to block expression of endogenous and exogenous genes (such as those expressed following virus infection). In the present review, we discuss mechanisms of silencing gene expression via the biology of RNA interference (RNAi), the technology of activating the RNAi pathway and the application of this technology to enhance livestock production through increased production efficiency and prevention of disease. An increased demand for sustainable food production is at the forefront of scientific challenges and RNAi technology will undoubtedly play a key role.
Collapse
|