1
|
Dorjgochoo A, Batbayar A, Tsend-Ayush A, Byambadorj B, Jav S, Yandag M. Identification of Staphylococcus aureus Causing Contamination in Raw Beef and Meat-Processing Environments in Ulaanbaatar, Mongolia. Int J Microbiol 2025; 2025:3806846. [PMID: 39949992 PMCID: PMC11824859 DOI: 10.1155/ijm/3806846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 02/16/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium capable of causing a range of infections and displaying significant antibiotic resistance. S. aureus can exhibit resistance to multi-antibiotics, particularly penicillin, methicillin, linezolid, and daptomycin. The prevalence of methicillin-resistant S. aureus (MRSA) ranges from 10%-50% in China and Russia, neighboring countries of Mongolia. This study aimed to assess S. aureus contamination in raw beef samples and surface swabs from meat-processing areas and markets, while detecting, as well as to detect virulence and resistance genes in the isolates. A total of 156 raw beef samples and 131 surface swabs were collected and analyzed using ISO 6888-1:2021 standards. The nucA gene specific to S. aureus was amplified by PCR, and antibiotic susceptibility was evaluated using the Kirby-Bauer disk diffusion method. Resistance genes (mecA, mecC, vanA, and vanB) and virulence genes (sea, sed, tsst, eta, and etb) were detected via PCR. The results showed contamination rates of 26.9% in raw beef and 15.3% in surface swabs. The isolates exhibited high resistance to oxacillin, ampicillin, and penicillin in meat samples and to oxacillin, tetracycline, azithromycin, and clindamycin in surface swabs. No resistance genes for vancomycin or methicillin (mecC, vanA, vanB) were detected. Virulence genes, including tsst (14.5%), sea and etb (9.7%), eta (3.2%), and sed (1.6%), were identified. Contamination was more prevalent in centers responsible for both transportation and sales, compared to meat-processing areas. These findings highlight the need for stricter hygiene and handling practices in meat transport and markets to reduce S. aureus contamination and limit the spread of resistant strains.
Collapse
Affiliation(s)
- Amgalanzaya Dorjgochoo
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
- Department of Biomedicine, Etugen University, Ulaanbaatar, Mongolia
| | - Anujin Batbayar
- Department of Medicine, Global Leadership University, Ulaanbaatar, Mongolia
| | - Altansukh Tsend-Ayush
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Bayarlakh Byambadorj
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sarantuya Jav
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Munkhdelger Yandag
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
2
|
Faraj R, Ramadan H, Bentum KE, Alkaraghulli B, Woube Y, Hassan Z, Samuel T, Adesiyun A, Jackson CR, Abebe W. Antimicrobial Resistance, Virulence Gene Profiling, and Spa Typing of Staphylococcus aureus Isolated from Retail Chicken Meat in Alabama, USA. Pathogens 2025; 14:107. [PMID: 40005484 PMCID: PMC11858072 DOI: 10.3390/pathogens14020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Antibiotic-resistant Staphylococcus aureus (S. aureus) in retail meat poses a public health threat requiring continuous surveillance. This study investigated the frequency of isolation, toxin genes, and antibiotic resistance profile of S. aureus recovered from retail poultry meat samples and presented results beneficial to public health interventions. Of 200 samples collected, 16% (32/200) tested positive for S. aureus, and these were recovered from thigh 37.5% (12/32), wing 34.4% (11/32), gizzard (15.6% (5/32), and liver 12.5% (4/32) samples. Findings of spa typing analysis revealed that 68.8% (22/32), 18.8% (6/32), 9.4% (3/32), and 3.0% (1/32) of the isolates belonged to the spa types t267, t160, t548, and t008, respectively. For antibiotic susceptibility testing, 12.5% (4/32) of the isolates were resistant to only penicillin, but one isolate (1/32; 3%) showed resistance to the antibiotics penicillin, erythromycin, ampicillin, and oxacillin. PCR analysis revealed that 9.4% (3/32) of the isolates carried the mecA gene associated with methicillin-resistant Staphylococcus aureus (MRSA) isolates. One MRSA isolate was identified as a t008 spa type, and harbored a 26,974 bp-sized plasmid, which was the source of its resistance to penicillin, ampicillin, erythromycin, and oxacillin. The staphylococcal enterotoxin (SE) genes seg, sei, sek, seb, selm, and seln were also identified among the isolates, and mostly the antimicrobial and enterotoxin genes were carried on plasmids of the isolates. This study raises awareness on the continuous circulation of pathogenic microbes like S. aureus in retail poultry meat.
Collapse
Affiliation(s)
- Rawah Faraj
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (R.F.); (K.E.B.); (B.A.); (Y.W.); (Z.H.); (T.S.)
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Kingsley E. Bentum
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (R.F.); (K.E.B.); (B.A.); (Y.W.); (Z.H.); (T.S.)
| | - Bilal Alkaraghulli
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (R.F.); (K.E.B.); (B.A.); (Y.W.); (Z.H.); (T.S.)
| | - Yilkal Woube
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (R.F.); (K.E.B.); (B.A.); (Y.W.); (Z.H.); (T.S.)
| | - Zakaria Hassan
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (R.F.); (K.E.B.); (B.A.); (Y.W.); (Z.H.); (T.S.)
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Temesgen Samuel
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (R.F.); (K.E.B.); (B.A.); (Y.W.); (Z.H.); (T.S.)
| | - Abiodun Adesiyun
- Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA;
| | - Woubit Abebe
- Center for Food Animal Health, Food Safety and Defense, Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; (R.F.); (K.E.B.); (B.A.); (Y.W.); (Z.H.); (T.S.)
| |
Collapse
|
3
|
Wiśniewski P, Trymers M, Chajęcka-Wierzchowska W, Tkacz K, Zadernowska A, Modzelewska-Kapituła M. Antimicrobial Resistance in the Context of Animal Production and Meat Products in Poland-A Critical Review and Future Perspective. Pathogens 2024; 13:1123. [PMID: 39770382 PMCID: PMC11676418 DOI: 10.3390/pathogens13121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of antimicrobial-resistant bacteria in meat and meat products is a significant public health challenge, largely driven by the excessive and inappropriate use of antimicrobials in animal husbandry. In Poland, a key meat producer in Europe, antibiotic-resistant pathogens such as Campylobacter spp., Staphylococcus spp., Enterococcus spp., Listeria monocytogenes, and Enterobacterales have been detected in meat, posing serious risks to consumers. This review examines the use of antimicrobial agents in meat production and the resulting antimicrobial resistance (AMR) in microorganisms isolated from meat products in Poland. The mechanisms of AMR, genetic factors, and prevalence in Poland are presented. It highlights key factors contributing to AMR, such as antibiotic misuse in livestock farming, and discusses the legal regulations governing veterinary drug residues in food. This review emphasizes the importance of monitoring and enforcement to safeguard public health and calls for further research on AMR in the meat industry. Antimicrobial resistance in meat and meat products in Poland is a huge challenge, requiring stricter antibiotic controls in animal husbandry and improved surveillance systems. Additionally, the impact of husbandry practices on the environment and food requires further research. Future efforts should focus on nationwide monitoring, alternative strategies to reduce antibiotic use, and stronger enforcement to combat antimicrobial resistance and protect public health.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (M.T.); (W.C.-W.); (K.T.); (A.Z.); (M.M.-K.)
| | | | | | | | | | | |
Collapse
|
4
|
Engku Abd Rahman ENS, Irekeola AA, Yamin D, Elmi AH, Chan YY. Charting the global footprint of borderline oxacillin-resistant Staphylococcus aureus (BORSA): the first systematic review and meta-analysis. PeerJ 2024; 12:e18604. [PMID: 39703916 PMCID: PMC11657201 DOI: 10.7717/peerj.18604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
Borderline oxacillin-resistant Staphylococcus aureus (BORSA) has been a persistent yet under-researched concern in the realm of antibiotic resistance, characterized by unique resistance mechanisms and potential for severe infections. This systematic review and meta-analysis consolidates data from 29 studies encompassing 18,781 samples, revealing a global BORSA prevalence of 6.6% (95% CI [4.0-10.7]). The highest prevalence was found in animals (46.3%), followed by food (8.9%), and humans (5.1%). Notably, significant regional disparities were observed, with Brazil exhibiting the highest prevalence at 70.0%, while The Netherlands reported just 0.5%. These findings underscore the multifaceted nature of BORSA epidemiology, influenced by local antibiotic usage practices and healthcare infrastructures. The analysis also reveals substantial heterogeneity (I2 = 96.802%), highlighting the need for improved reporting practices and tailored surveillance protocols that account for the specific contexts of each study. As antibiotic resistance continues to escalate, understanding BORSA's global footprint is crucial for informing targeted interventions and optimizing antibiotic stewardship programs. This study fills critical gaps in current knowledge of BORSA and highlights the need for coordinated efforts among researchers, healthcare providers, and policymakers to develop effective strategies for addressing the rising threat of antibiotic-resistant pathogens like BORSA, including further exploration of its genetic and phenotypic characteristics.
Collapse
Affiliation(s)
- Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa, Kwara, Nigeria
| | - Dina Yamin
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
- Department of Clinical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Abdirahman Hussein Elmi
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Jamhuriya University of Science and Technology, Mogadishu, Somalia
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
- Health Campus, Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
5
|
González-Machado C, Alonso-Calleja C, Capita R. Prevalence and types of methicillin-resistant Staphylococcus aureus (MRSA) in meat and meat products from retail outlets and in samples of animal origin collected in farms, slaughterhouses and meat processing facilities. A review. Food Microbiol 2024; 123:104580. [PMID: 39038886 DOI: 10.1016/j.fm.2024.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of nosocomial and community infections, in some cases severe and difficult to treat. In addition, there are strains of MRSA that are specifically associated with food-producing animals. For this reason, in recent years special attention has been paid to the role played by foodstuffs of animal origin in infections by this microorganism. With the aim of gaining knowledge on the prevalence and types of MRSA in meat and meat products, a review was undertaken of work published on this topic since 2001, a total of 259 publications, 185 relating to meat samples from retail outlets and 74 to samples of animal origin collected in farms, slaughterhouses and meat processing facilities. Strains of MRSA were detected in 84.3% reports (156 out of 185) from retail outlets and 86.5% reports (64 out of 74) from farms, slaughterhouses and meat processing facilities, although in most of the research this microorganism was detected in under 20% of samples from retail outlets, and under 10% in those from farms, slaughterhouses and meat processing facilities. The meat and meat products most often contaminated with MRSA were pork and chicken. In addition to the mecA gene, it is crucial to take into consideration the mecB and mecC genes, so as to avoid misidentification of strains as MSSA (methicillin-susceptible Staphylococcus aureus). The great variety of methods used for the determination of MRSA highlights the need to develop a standardized protocol for the study of this microorganism in foods.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|
6
|
Silva V, Ribeiro J, Teixeira P, Pinto P, Vieira-Pinto M, Poeta P, Caniça M, Igrejas G. Genetic Complexity of CC5 Staphylococcus aureus Isolates Associated with Sternal Bursitis in Chickens: Antimicrobial Resistance, Virulence, Plasmids, and Biofilm Formation. Pathogens 2024; 13:519. [PMID: 38921816 PMCID: PMC11206601 DOI: 10.3390/pathogens13060519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Sternal bursitis, a common inflammatory condition in poultry, poses significant challenges to both animal welfare and public health. This study aimed to investigate the prevalence, antimicrobial resistance, and genetic characteristics of Staphylococcus aureus isolates associated with sternal bursitis in chickens. Ninety-eight samples were collected from affected chickens, and 24 S. aureus isolates were identified. Antimicrobial susceptibility testing revealed resistance to multiple agents, with a notable prevalence of aminoglycoside resistance genes. Whole genome sequencing elucidated the genetic diversity and virulence profiles of the isolates, highlighting the predominance of clonal complex 5 (CC5) strains. Additionally, biofilm formation assays demonstrated moderate biofilm production capacity among the isolates. These findings underscore the importance of vigilant monitoring and targeted interventions to mitigate the impact of sternal bursitis in poultry production systems.
Collapse
Affiliation(s)
- Vanessa Silva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jessica Ribeiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Pedro Teixeira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Pedro Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Wang Y, Zhang P, Wu J, Chen S, Jin Y, Long J, Duan G, Yang H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86521-86539. [PMID: 37418185 DOI: 10.1007/s11356-023-28532-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Peihua Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jian Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Blagojevic B, Van Damme I, Hempen M, Messens W, Bolton D. Microbiological safety of aged meat. EFSA J 2023; 21:e07745. [PMID: 36698487 PMCID: PMC9850206 DOI: 10.2903/j.efsa.2023.7745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The impact of dry-ageing of beef and wet-ageing of beef, pork and lamb on microbiological hazards and spoilage bacteria was examined and current practices are described. As 'standard fresh' and wet-aged meat use similar processes these were differentiated based on duration. In addition to a description of the different stages, data were collated on key parameters (time, temperature, pH and aw) using a literature survey and questionnaires. The microbiological hazards that may be present in all aged meats included Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, enterotoxigenic Yersinia spp., Campylobacter spp. and Clostridium spp. Moulds, such as Aspergillus spp. and Penicillium spp., may produce mycotoxins when conditions are favourable but may be prevented by ensuring a meat surface temperature of -0.5 to 3.0°C, with a relative humidity (RH) of 75-85% and an airflow of 0.2-0.5 m/s for up to 35 days. The main meat spoilage bacteria include Pseudomonas spp., Lactobacillus spp. Enterococcus spp., Weissella spp., Brochothrix spp., Leuconostoc spp., Lactobacillus spp., Shewanella spp. and Clostridium spp. Under current practices, the ageing of meat may have an impact on the load of microbiological hazards and spoilage bacteria as compared to standard fresh meat preparation. Ageing under defined and controlled conditions can achieve the same or lower loads of microbiological hazards and spoilage bacteria than the variable log10 increases predicted during standard fresh meat preparation. An approach was used to establish the conditions of time and temperature that would achieve similar or lower levels of L. monocytogenes and Yersinia enterocolitica (pork only) and lactic acid bacteria (representing spoilage bacteria) as compared to standard fresh meat. Finally, additional control activities were identified that would further assure the microbial safety of dry-aged beef, based on recommended best practice and the outputs of the equivalence assessment.
Collapse
|
9
|
Clonal distribution and antimicrobial resistance of methicillin-susceptible and -resistant Staphylococcus aureus strains isolated from broiler farms, slaughterhouses, and retail chicken meat. Poult Sci 2022; 101:102070. [PMID: 36041389 PMCID: PMC9449669 DOI: 10.1016/j.psj.2022.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
|
10
|
Thwala T, Madoroba E, Maliehe TS, Magwedere K, Basson AK, Butaye P. Antimicrobial Resistance, Enterotoxin and mec Gene Profiles of Staphylococcus aureus Associated with Beef-Based Protein Sources from KwaZulu-Natal Province, South Africa. Microorganisms 2022; 10:microorganisms10061211. [PMID: 35744729 PMCID: PMC9228960 DOI: 10.3390/microorganisms10061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Annually, approximately 23,000 cases of food poisoning by Staphylococcus aureus enterotoxins are reported worldwide. The aim of this study was to determine the occurrence and characterize S. aureus on beef and beef products in South Africa. Organ meats (n = 169), raw processed meat (n = 110), raw intact (n = 53), and ready-to-eat meats (n = 68) were obtained from 25 retail outlets. S. aureus was isolated and enumerated according to the ISO 6888-1 method. Identification of the strains was performed by MALDI-TOF MS. The antimicrobial resistance was determined using the disc diffusion test. The presence of methicillin-resistance genes and the staphylococcal enterotoxin genes was determined by PCR. Prevalence was low (13/400; CI 1.7–5) and all but one positive sample were from organ meats. Eight isolates were resistant to at least one antibiotic. Two isolates carried the mecC gene. All the isolates tested positive for seg, seh, sei, and sep, whilst 53.8% were positive for sea. None of the isolates was positive for ser, sej, seb, sec, or sed. The prevalence of S. aureus was low, with organ meats being the most contaminated. The presence of mecC-positive MRSA and of enterotoxins warrants further investigation and risk assessment.
Collapse
Affiliation(s)
- Thembeka Thwala
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Tsolanku S. Maliehe
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Albert K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, Empangeni 3886, South Africa; (T.T.); (E.M.); (T.S.M.); (A.K.B.)
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
- Correspondence:
| |
Collapse
|
11
|
Javed S, McClure J, Syed MA, Obasuyi O, Ali S, Tabassum S, Ejaz M, Zhang K. Epidemiology and molecular characterization of Staphylococcus aureus causing bovine mastitis in water buffaloes from the Hazara division of Khyber Pakhtunkhwa, Pakistan. PLoS One 2022; 17:e0268152. [PMID: 35512008 PMCID: PMC9071125 DOI: 10.1371/journal.pone.0268152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Buffalo represent a major source of milk in Pakistan. However, production is impacted by the disease bovine mastitis. Mastitis causes significant economic losses, with Staphylococcus aureus (S. aureus) being one of its major causative agents. While much work has been done understanding the epidemiology of bovine mastitis in Pakistan, detailed molecular characterization of the associated S. aureus is unavailable. In the current study both the epidemiological and molecular characterization of S. aureus from bovine mastitis in the Hazara division of Pakistan are examined. S. aureus was isolated from 18.41% of the animals, and left quarters more prone to infection (69.6%) than right quarters (30.4%). Sub-clinical mastitis (75.31%) was more prevalent than clinical mastitis (24.69%), with infections evenly distributed amongst the eight districts. Molecular characterization revealed that only 19.6% of the isolates were methicillin-resistant, and four strains types identified, including ST9-t7867-MSSA, ST9-MSSA, ST101-t2078-MSSA, and ST22-t8934-MRSA-IVa. Antiseptic resistance genes were not detected in the isolates, and low levels of antibiotic resistance were also noted, however the methicillin-resistant strains had higher overall antibiotic resistance. This study represents the most complete molecular typing data for S. aureus causing bovine mastitis in the Hazara district of Pakistan, and the country as a whole.
Collapse
Affiliation(s)
- Salma Javed
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - JoAnn McClure
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, Alberta, Canada
| | - Muhammad Ali Syed
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Osahon Obasuyi
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shahzad Ali
- Department of Wildlife and Ecology, One Health Research Group, Discipline of Zoology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sadia Tabassum
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Mohammad Ejaz
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Kunyan Zhang
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Development and Validation of a New TaqMan Real-Time PCR for the Detection of Ornithobacterium rhinotracheale. Microorganisms 2022; 10:microorganisms10020341. [PMID: 35208796 PMCID: PMC8875355 DOI: 10.3390/microorganisms10020341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Ornithobacterium rhinotracheale (ORT) has been associated with poultry respiratory disease worldwide. The organism is fastidious and isolation is challenging. One TaqMan real-time PCR (qPCR) assay has been developed for the detection of ORT. However, during validating the ORT qPCR, the assay performance was suboptimal. During the in silico evaluation, deviations from the basic parameters for primers and probes designs (e.g., presence of stable undesirable primer-dimers) were observed. The suboptimal design led to low efficiency and low sensitivity of the assay. Initially, modification on the probe was carried out to improve the performance of the assay. However, the assay’s performance (efficiency and sensitivity) was still suboptimal. In this manuscript, we describe the development of a new qPCR assay and the comparison of its performance with the currently available assay. A highly efficient, sensitive, and specific qPCR assay was developed with approximately 1000-folds reduction in the limit of detection (from 3 × 106 plasmid DNA copies/mL to 1 × 103 plasmid DNA copies/mL). Additionally, the efficiency of the new assay (E = 98.70%) was significantly better than the current assay (E = 73.18%). The newly developed assay is an improved diagnostic tool for the sensitive and efficient diagnosis of ORT from clinical samples.
Collapse
|
13
|
Şanlıbaba P. Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. Int J Food Microbiol 2022; 361:109461. [PMID: 34742144 DOI: 10.1016/j.ijfoodmicro.2021.109461] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The main objective of this study was to isolate and identify Staphylococcus aureus from retail raw red meat samples and evaluate their enterotoxin gene and antibiotic resistance profiles. A total of 452 retail raw meat samples, including beef (n = 200), sheep (n = 125), and lamb (n = 127) randomly purchased from various supermarkets and butchers in Ankara between July 2019 and November 2020, were tested for the prevalence of S. aureus. The S. aureus strain was identified using morphological and molecular (16S rRNA and nuc gene) methods. Moreover, nine Staphylococcal enterotoxin (SE) genes were screened using polymerase chain reaction. Antibiotic resistance of S. aureus was determined using the phenotypic disc diffusion method. The overall prevalence of S. aureus among screened samples was 21.23%. Additionally, 65.62% of S. aureus strains contained SE gene regions. The predominant SEs in the S. aureus strains were sea (50.79%), followed by sed (25.39%) and seb (23.80%). However, sec, see, seg, seh, sei, and sej genes were never detected. A substantial proportion (40-100%) of the isolates were found resistant to kanamycin, telithromycin, penicillin G, streptomycin, erythromycin, cloxacillin, ampicillin, pristinamycin, nalidixic acid, azithromycin, and ciprofloxacin. Multi-drug resistance (MDR) was observed in 96.87% of the S. aureus strains. These results show a low prevalence of S. aureus in raw red meat samples in Turkey. However, a high rate of SEA raises serious health concerns. Due to the high levels of MDR observed in this study, there is a need to strictly control antibiotic use in animals in Turkey.
Collapse
Affiliation(s)
- Pınar Şanlıbaba
- Ankara University, Engineering Faculty, Department of Food Engineering, 50th Year Settlement, 06830 Gölbaşı, Ankara, Turkey.
| |
Collapse
|
14
|
Creutz I, Busche T, Layer F, Bednarz H, Kalinowski J, Niehaus K. Evaluation of virulence potential of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates from a German refugee cohort. Travel Med Infect Dis 2021; 45:102204. [PMID: 34785377 DOI: 10.1016/j.tmaid.2021.102204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) seem to be highly transmissible, often infect otherwise healthy humans and frequently occur in hospital outbreaks. METHODS Refugees, living in accommodations in Germany were screened for nasal carriage of S. aureus. The isolates were investigated regarding resistance and virulence, phenotypically and by whole genome data analysis. RESULTS 5.6% (9/161) of the refugees are carriers of S. aureus. 2.5% (4/161) are MRSA carriers. Among the refugees, spa-types t021, t084, t304, t991 and t4983 were detected, as well as the new spa-types t18794 and t18795. t304 and t991 are assumed to be local spa-types from the middle east. The isolates are less resistant and marginal biofilm formers. Each isolate has a remarkable set of virulence genes, although genes, encoding for proteins strongly associated with invasive S. aureus infections, like Panton-Valentine leucocidin, were not detected. CONCLUSION The detection of strains from the middle east, supports the assumption that strains co-travel with the refugees and persist despite a transition of the host's living conditions. Whole genome data analysis does not permit to finally evaluate a germ's virulence. Nevertheless, an impression of the virulence potential of the strains, regarding skills in colonization, resistance, immune evasion, and host cell damaging can be pictured.
Collapse
Affiliation(s)
- Ines Creutz
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany; FlüGe Graduate School, School of Public Heath, Bielefeld University, Bielefeld, Germany.
| | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Franziska Layer
- Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany.
| | - Hanna Bednarz
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
15
|
Hashish A, Sinha A, Mekky A, Sato Y, Macedo NR, El-Gazzar M. Development and Validation of Two Diagnostic Real-Time PCR (TaqMan) Assays for the Detection of Bordetella avium from Clinical Samples and Comparison to the Currently Available Real-Time TaqMan PCR Assay. Microorganisms 2021; 9:microorganisms9112232. [PMID: 34835358 PMCID: PMC8619015 DOI: 10.3390/microorganisms9112232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Bordetella avium (BA) is one of many pathogens that cause respiratory diseases in turkeys. However, other bacterial species can easily overgrow it during isolation attempts. This makes confirming the diagnosis of BA as the causative agent of turkey coryza more difficult. Currently, there are two PCR assays for the molecular detection of BA. One is conventional gel-based PCR and the other is TaqMan real-time PCR (qPCR) assay. However, multiple pitfalls were detected in both assays regarding their specificity, sensitivity, and efficiency, which limits their utility as diagnostic tools. In this study, we developed and validated two TaqMan qPCR assays and compared their performance to the currently available TaqMan qPCR. The two assays were able to correctly identify all BA isolates and showed negative results against a wide range of different microorganisms. The two assays were found to have high efficiency with a detection limit of approximately 1 × 103 plasmid DNA Copies/mL with high repeatability and reproducibility. In comparison to the currently available TaqMan qPCR assay, the newly developed assays showed significantly higher PCR efficiencies due to superior primers and probes design. The new assays can serve as a reliable tool for the sensitive, specific, and efficient diagnosis of BA.
Collapse
Affiliation(s)
- Amro Hashish
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.H.); (A.S.); (Y.S.); (N.R.M.)
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt;
| | - Avanti Sinha
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.H.); (A.S.); (Y.S.); (N.R.M.)
| | - Amr Mekky
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt;
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.H.); (A.S.); (Y.S.); (N.R.M.)
| | - Nubia R. Macedo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.H.); (A.S.); (Y.S.); (N.R.M.)
| | - Mohamed El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (A.H.); (A.S.); (Y.S.); (N.R.M.)
- Correspondence: ; Tel.: +1-706-540-3037
| |
Collapse
|
16
|
Tamendjari S, Bouzebda FA, Chaib L, Aggad H, Ramdani M, Bouzebda Z. Antibiotic resistance of Staphylococcus aureus isolated from raw cow and goat milk produced in the Tiaret and Souk Ahras areas of Algeria. Vet World 2021; 14:1929-1934. [PMID: 34475719 PMCID: PMC8404117 DOI: 10.14202/vetworld.2021.1929-1934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Staphylococcus aureus is a leading cause of infection in both humans and animals. Most livestock strains have shown antibiotic resistance to the many molecules used in veterinary therapeutics. This study aimed to assess the resistance patterns of these bacteria, we carried out our study in the Tiaret and Souk Ahras areas of Algeria. Materials and Methods: We collected 116 samples of bovine and goat milk to detect S. aureus. We used a selective media to isolate the strains, followed by biochemically identifying the isolates. We determined the susceptibility of the strains to antibiotic molecules using the disk diffusion method and confirmed the methicillin-resistant S. aureus (MRSA) with oxacillin minimum inhibitory concentration (MIC). Results: Our results showed that 26.72% of the samples were contaminated with S. aureus, and we recovered 31 isolates from the positive samples. We ascribed a high resistance profile to penicillin G (96.77%), fusidic acid (67.74%), and tobramycin (45.16%) and isolated 4MRSA strains. Conclusion: The presence of S. aureus, including MRSA strains in raw milk, can present a public health hazard, because these strains can cause widespread food poisoning. This finding will be useful to the veterinarians to choose an adequate treatment and to sensitize livestock breeders and milk producers to ensure the health of consumers.
Collapse
Affiliation(s)
- Sofiane Tamendjari
- Department of Veterinary Science, Institute of Agronomic and Veterinary Sciences, University of Souk Ahras, Algeria.,Laboratory of Animal Productions, Biotechnologies and Health, University of Souk Ahras, Algeria
| | - Farida Afri Bouzebda
- Department of Veterinary Science, Institute of Agronomic and Veterinary Sciences, University of Souk Ahras, Algeria.,Laboratory of Animal Productions, Biotechnologies and Health, University of Souk Ahras, Algeria
| | - Lina Chaib
- Department of Veterinary Science, Institute of Agronomic and Veterinary Sciences, University of Souk Ahras, Algeria
| | - Hebib Aggad
- Laboratory of Hygiene and Animal Pathology, University of Tiaret, Algeria
| | - Mohammed Ramdani
- Department of Zoology and Animal Ecology, Scientific Institute, University Mohammed V of Rabat, Morocco
| | - Zoubir Bouzebda
- Department of Veterinary Science, Institute of Agronomic and Veterinary Sciences, University of Souk Ahras, Algeria.,Laboratory of Animal Productions, Biotechnologies and Health, University of Souk Ahras, Algeria
| |
Collapse
|
17
|
Tegegne HA, Koláčková I, Florianová M, Gelbíčová T, Madec JY, Haenni M, Karpíšková R. Detection and molecular characterisation of methicillin-resistant Staphylococcus aureus isolated from raw meat in the retail market. J Glob Antimicrob Resist 2021; 26:233-238. [PMID: 34271219 DOI: 10.1016/j.jgar.2021.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES This study aimed to detect and characterise methicillin-resistant Staphylococcus aureus (MRSA) from retail meat in the Czech Republic. METHODS Isolates were identified by PCR detection of the S. aureus-specific fragment Sa442 and mecA gene. spa typing, MLST, detection of genes encoding staphylococcal enterotoxins, Panton-Valentine leukocidin (pvl), exfoliative toxins A and B (eta and etb), toxic shock syndrome toxin (tst) and staphylokinase (sak), detection of φSa3 prophage and antimicrobial susceptibility testing were performed. RESULTS Of 65 raw meat samples examined (poultry, beef, pork and rabbit), 23 (35.4%) were positive for MRSA. Twelve positive samples originated from poultry (12/33; 36.4%), while the remaining eleven came from pork (9/9; 100%) and pork/beef mixed minced meat (2/5; 40.0%). Eight spa types belonging to five different sequence types (STs) were identified. ST398 was the most frequent (28/36; 77.8%), presenting spa types t011, t034, t2576, t4132, t588 and t899. Other livestock-associated MRSA STs (ST9-t899, ST5-t002, ST692-t8646 or the newly described ST4034-t899) were also sporadically identified. In seven isolates (19.4%), one or more staphylococcal enterotoxin genes were detected, with sea, seg and sei prevailing. Three isolates from turkey [ST398-t899 (n = 2) and ST398-t011] harboured the sak gene, and the latter also harboured the sea gene. Seven isolates from poultry harboured the φSa3 prophage and were resistant to tetracycline. CONCLUSION Specific kinds of meat appear to be a possible source of MRSA, although the risk to humans is hard to define. Therefore, surveillance of MRSA in meat as well as hygienic practices should be improved.
Collapse
Affiliation(s)
- Henok Ayalew Tegegne
- Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic; Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; Unité Antibiorésistance et Virulence Bactériennes, University of Lyon-ANSES, Lyon, France.
| | - Ivana Koláčková
- Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
| | - Martina Florianová
- Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
| | - Tereza Gelbíčová
- Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, University of Lyon-ANSES, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, University of Lyon-ANSES, Lyon, France
| | - Renáta Karpíšková
- Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic; Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
18
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
19
|
Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Int J Food Microbiol 2020; 328:108669. [PMID: 32497922 DOI: 10.1016/j.ijfoodmicro.2020.108669] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/11/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for several difficult-to-treat infections and staphylococcal food poisoning (SFP). This study was conducted to investigate the prevalence and enterotoxigenicity of MRSA in broiler chicken meat and giblets. A total of 5.5% (8/144) of the examined samples were contaminated with mecA positive/mecC negative MRSA, with staphylococcal counts of approximately 102 colony forming units (CFU)/g in breast, leg and gizzard samples and approximately 3.3 × 103 CFU/g in frozen liver samples. Most MRSA isolates (75%, 6/8) harboured the staphylococcal enterotoxin B (seb) gene. Reverse transcription-PCR (RT-PCR) showed that MRSA isolates initiated SEB production in experimentally contaminated chicken livers within 24 h of storage at temperatures over 8 °C. SEB was maximally produced at 24 °C when the MRSA counts reached 7.3 × 103 ± 1.2 × 103 CFU/g sample homogenate. The current study concludes that the main broiler chicken MRSA isolates in Egypt harbour the seb gene. To mitigate possible SEB production, especially in broiler chicken livers, a maximum "out of refrigeration" time limit should be implemented for cold chain poultry products.
Collapse
|
20
|
Bernier-Lachance J, Arsenault J, Usongo V, Parent É, Labrie J, Jacques M, Malouin F, Archambault M. Prevalence and characteristics of Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) isolated from chicken meat in the province of Quebec, Canada. PLoS One 2020; 15:e0227183. [PMID: 31923238 PMCID: PMC6953868 DOI: 10.1371/journal.pone.0227183] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/14/2019] [Indexed: 01/12/2023] Open
Abstract
This study was conducted to estimate the prevalence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) in retail chicken meat and broiler chickens from the Province of Quebec, Canada, and to characterize LA-MRSA isolates. A total of 309 chicken drumsticks and thighs were randomly selected in 2013 from 43 retail stores in the Monteregie. In addition, nasal swabs and caeca samples were collected in 2013-2014 from 200 broiler chickens of 38 different flocks. LA-MRSA was not detected in broiler chickens. Fifteen LA-MRSA isolates were recovered from four (1.3%) of the 309 chicken meat samples. Multi-Locus Sequence Typing (MLST) and SCCmec typing revealed two profiles (ST398-MRSA-V and ST8-MRSA-IVa), which were distinct using pulse-field gel electrophoresis (PFGE) and microarray (antimicrobial resistance and virulence genes) analyses. In addition to beta-lactam resistance, tetracycline and spectinomycin resistance was detected in all isolates from the 3 positive samples of the ST398 profile. Southern blot hybridization revealed that the resistance genes aad(D) and lnu(A), encoding resistances to aminoglycosides and lincosamides respectively, were located on plasmid. All isolates were able to produce biofilms, but biofilm production was not correlated with hld gene expression. Our results show the presence of two separate lineages of MRSA in retail chicken meat in Quebec, one of which is likely of human origin.
Collapse
Affiliation(s)
- Jocelyn Bernier-Lachance
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Julie Arsenault
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Valentine Usongo
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Éric Parent
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Josée Labrie
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Mario Jacques
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - François Malouin
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de biologie, Faculté des sciences, Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie Archambault
- Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Cuny C, Layer F, Hansen S, Werner G, Witte W. Nasal Colonization of Humans with Occupational Exposure to Raw Meat and to Raw Meat Products with Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus. Toxins (Basel) 2019; 11:toxins11040190. [PMID: 30935022 PMCID: PMC6521318 DOI: 10.3390/toxins11040190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is widely disseminated as a nasal colonizer of conventionally raised livestock and of humans subjected to occupational exposure. Reports on contamination of raw meat raise the question as to whether occupationally exposed food handlers are at particular risk of nasal colonization by LA-MRSA. Here, we report the results from a cross-sectional study on nasal S. aureus/MRSA colonization of butchers, meat sellers, and cooks in Germany. We sampled 286 butchers and meat sellers in 26 butcheries and 319 cooks handling meat in 16 professional canteen kitchens. Swabs were processed on both blood agar plates and MRSA-selective plates. MRSA were confirmed by PCR for mec genes and by broth microdilution. All isolates were subjected to molecular typing. PCR for markers useful to differentiate human-adapted and animal-adapted subpopulations was performed due to the presence of clonal complexes known to occur in both livestock and humans (CC5, CC7, CC8, CC9, and CC398). Only two participants (0.33%) were colonized by MRSA (Hospital-associated MRSA ST22). Nasal colonization by methicillin-susceptible S. aureus (MSSA) was detected in 16.6% of cooks and in 26.2% of butchers and meat sellers. Among 16 of the isolates attributed to CC7, three were negative for the immune evasion gene cluster, suggesting an animal origin. Isolates attributed to CC5, CC8, and CC398 were negative for markers typical of animal-adapted subpopulations. The occupational handling of raw meat and raw meat products was not associated with nasal colonization by LA-MRSA.
Collapse
Affiliation(s)
- Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer
- Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Sonja Hansen
- Institute of Hygiene and Environmental Medicine, Charité, 12203 Berlin, Germany.
| | - Guido Werner
- Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Wolfgang Witte
- Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany.
| |
Collapse
|
22
|
Tegegne HA, Florianová M, Gelbíčová T, Karpíšková R, Koláčková I. Detection and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Bulk Tank Milk of Cows, Sheep, and Goats. Foodborne Pathog Dis 2018; 16:68-73. [PMID: 30481051 DOI: 10.1089/fpd.2018.2511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study is aimed at detecting and characterizing methicillin-resistant Staphylococcus aureus (MRSA) from bulk tank milk samples of cows, sheep, and goats collected from dairy farms in the Czech Republic. All MRSA isolates were identified using PCR detection of the Staphylococcus aureus-specific fragment SA442 and mecA gene. The staphylococcal chromosomal cassettes mec (SCCmec), spa, and multilocus sequence types (MLST) were determined. The presence of genes encoding enterotoxins (ses), Panton-Valentine leukocidin (pvl), exfoliative toxins A, B (eta, etb), and toxic shock syndrome toxin (tst) were assessed. To differentiate human and animal origin, the presence of staphylokinase (sak) gene, ϕSa3 prophage, and susceptibility to tetracycline was tested. Out of 49 bulk tank milk samples examined, 14 (28.6%) were MRSA-positive. Eleven positive samples came from cow's milk (38%) and the remaining three from goat's milk (33%). All samples of ewe's milk were negative. In MRSA isolates three sequence types containing seven spa types were identified. Twelve isolates (85.7%) belonged to ST398 spa types t011/SCCmec IVa, t011/SCCmec V, t034/SCCmec V, t1456/SCCmec IVa, t1255/SCCmec V, and t2346/SCCmec V. Another two isolates belonged to ST5/t3598/SCCmec IVa and ST8/t064/SCCmec IVNT. In six isolates, one or more ses genes (seb, sed, seg, sei, and sej) were confirmed. One isolate from cow's milk harbored the tst gene. Another two isolates (ST398/t1456/SCCmec IVa and ST5/t3598/SCCmec IVa) harbored the sak gene and ϕSa3 prophage, and the latter was the only tetracycline-susceptible isolate in this study. However, none of the isolates was positive for pvl or eta, etb. These results suggest that there is the wide geographical spread of ST398 across different regions of the Czech Republic with no host preference among dairy cattle and goats. Therefore, when evaluating the occupational and foodborne risks, MRSA carriage and infection should be taken into account.
Collapse
Affiliation(s)
- Henok Ayalew Tegegne
- 1 Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic.,2 Department of Milk Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Martina Florianová
- 1 Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
| | - Tereza Gelbíčová
- 1 Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
| | - Renáta Karpíšková
- 1 Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
| | - Ivana Koláčková
- 1 Department of Bacteriology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
23
|
Kanaan MHG. Antibacterial effect of ozonated water against methicillin-resistant Staphylococcus aureus contaminating chicken meat in Wasit Province, Iraq. Vet World 2018; 11:1445-1453. [PMID: 30532500 PMCID: PMC6247883 DOI: 10.14202/vetworld.2018.1445-1453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/21/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIM Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most recognized "superbugs" and a common cause of community-associated and nosocomial infections; furthermore, when chicken meat is considered a good growth medium for S. aureus to make a plausible vehicle to propagate MRSA, then this study was conducted to evaluate the efficiency of ozonated water (0.5 ppm) in the elimination or reduction of MRSA contaminating fresh and frozen chicken meat sold in local markets in the Wasit Province. MATERIALS AND METHODS A total of 72 samples of fresh and frozen chicken meat were randomly collected from dissimilar native markets: Fresh chicken meat (n=32) and frozen chicken meat (n=40). Isolation and identification of MRSA isolates were conducted using standard bacteriological, biochemical, RapID™ Staph Plus System (Remel, R8311009), and latex agglutination tests such as Dry SPOT Staphytect Plus (Oxoid, DR0100M) and PBP2' Test Kit (Oxoid, DR0900A). The generation of ozone (O3) was carried out using O3 generator (A2Z/AQUA-6, USA), and its concentration (ppm) in water was determined using CHE-Mets®-Kit, USA. RESULTS A total of 39 (54.2%) of 72 fresh and frozen chicken meat were positive for S. aureus; of those 39 positive samples, 13 (33.3%) were identified as MRSA. The antibiotic sensitivity test results revealed that all MRSA isolates had multiple resistance to at least four antimicrobial agents for which these isolates had 12 antibiotic resistance patterns. Results of O3 treatment in MRSA isolate contaminating 13 of both fresh and frozen chicken meat samples showed that, after treatment with ozonated water (0.5 ppm/4°C), the overall negative samples were 23.1% and 69.2% for 30 and 45 min, respectively. The decrease in the percentage of positive samples was very significant from a public health perspective. Furthermore, the antimicrobial efficacy of ozonated water (0.5 ppm) on the reduction of the MRSA count (log10 colony-forming units [CFU]/ml) was assessed in four positive samples of fresh and frozen chicken meat, and the results revealed that, after treatments, the overall reduction was 2-4 log10 (CFU/ml) after 45 min. This reduction is highly significant from a public health perspective. CONCLUSION From the data obtained from this study, it can be concluded that fresh and frozen chicken meat sold in the different markets of Wasit Province was highly contaminated by S. aureus during the study period with a total prevalence of 54.2%; among those, 33.3% were recognized as MRSA. Under the conditions described in the present study, O3 at the concentration of 0.5 ppm is highly effective in reducing the number of MRSA-positive samples and the number decreased with increased exposure time to ozonated water at the same concentration. These findings indicated that O3 treatment might constitute the basis for an alternative method to reduce meat contamination with foodborne pathogens such as MRSA.
Collapse
Affiliation(s)
- Manal H. G. Kanaan
- Department of Nursing, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
24
|
Moreno-Grúa E, Pérez-Fuentes S, Muñoz-Silvestre A, Viana D, Fernández-Ros AB, Sanz-Tejero C, Corpa JM, Selva L. Characterization of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates Obtained From Commercial Rabbitries Located in the Iberian Peninsula. Front Microbiol 2018; 9:1812. [PMID: 30154765 PMCID: PMC6102366 DOI: 10.3389/fmicb.2018.01812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/19/2018] [Indexed: 11/24/2022] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have been a growing problem in human medicine since the 1960s, and more recently in veterinary medicine with the appearance of livestock-associated MRSA (LA-MRSA). Nevertheless, information about the presence of MRSA in rabbits is quite scarce since only one LA-MRSA identification has been previously reported. The present study aimed to determine genotypic characterization by verifying the presence of resistance determinants, virulence, and toxin genes of different S. aureus strains that cause lesions in rabbits, and their phenotypic traits based on the antimicrobial susceptibility profile. The analysis of 240 S. aureus isolates obtained from different lesion types collected from 89 Spanish and Portuguese rabbit commercial farms in the last 4 years (2014-2017) was performed. The methicillin-resistant gene mecA was found in 11.25% of the studied isolates (27 of 240) from 19 farms (13 Spanish and 6 Portuguese). Staphylococcal cassette chromosome mec (SCCmec) typing predominantly revealed type III (n = 15). Additionally, three MRSA isolates carrying the mecC gen were detected in samples from three different farms (two Spanish and one Portuguese). None of the 30 MRSA isolates was PVL-positive or tst-positive. After the multilocus sequence typing (MLST) procedure, 16 belonged to ST2855, 6 to ST146, 6 to ST398, and 2 ST4774. No ST121 isolate was mec-positive. ST398 and ST4774 isolates lacked the immune-evasion-cluster (IEC) genes. ST2855 strains were associated with the presence only of the sak gene, and ST146 isolates were ascribed to IEC type E. Therefore, this is the first description of LA-MRSA from rabbits belonging to ST2855. Interestingly, one ST2855 and two ST4774 isolates were mecC-positive, which could act as a mecC-MRSA reservoir. More studies are needed to further characterize these isolates and their relationship with humans and other animal species.
Collapse
Affiliation(s)
- Elena Moreno-Grúa
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Sara Pérez-Fuentes
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Asunción Muñoz-Silvestre
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - David Viana
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | | | - Juan M. Corpa
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Laura Selva
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
25
|
Ribeiro CM, Stefani LM, Lucheis SB, Okano W, Cruz JCM, Souza GV, Casagrande TAC, Bastos PAS, Pinheiro RR, Arruda MM, Afreixo V. Methicillin-Resistant Staphylococcus aureus in Poultry and Poultry Meat: A Meta-Analysis. J Food Prot 2018; 81:1055-1062. [PMID: 29877733 DOI: 10.4315/0362-028x.jfp-17-445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that colonizes and infects various host species and has been found in the poultry production chain, raising concerns about possible transmission from farm to fork. The objective of this study was to use meta-analytical methods to estimate the pooled prevalence of MRSA in chickens, turkeys, chicken meat, and turkey meat. Three electronic databases (PubMed, LILACS, and SciELO) were searched to establish MRSA prevalence from 51 studies published from 2003 through May 2017. The heterogeneity was assessed, and the pooled MRSA prevalence was calculated by using the random effects model according to the method of DerSimonian and Laird. Pooled MRSA prevalence (95% confidence interval [CI]) in turkeys, turkey meat, broilers, and chicken meat was 36% (1 to 78%), 13% (1 to 28%), 5% (2 to 9%), and 5% (3 to 8%), respectively. South America had the highest MRSA prevalence (27%; 95% CI, 17 to 37%), and North America had the lowest (1%; 95% CI, 0 to 2%). Livestock-associated MRSA has been isolated from poultry and poultry meat, indicating that this variant can spread from farm to fork. The presence of MRSA in poultry and poultry meat poses risks to public health, and steps should be taken to mitigate the contamination and spread of this bacterium along the poultry production chain.
Collapse
Affiliation(s)
- Claudia M Ribeiro
- 1 Faculdade de Ciências Sociais e Agrárias de Itapeva, São Paulo, Brazil
| | - Lenita M Stefani
- 2 Universidade do Estado de Santa Catarina, Santa Catarina, Brazil
| | - Simone B Lucheis
- 3 Agência Paulista de Tecnologia dos Agronegócios, São Paulo, Brazil
| | | | | | | | | | | | | | - Mauro M Arruda
- 6 Centro Universitário Barriga Verde, Santa Catarina, Brazil
| | - Vera Afreixo
- 10 Departamento de Matemática, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Kim YB, Seo KW, Jeon HY, Lim SK, Lee YJ. Characteristics of the antimicrobial resistance of Staphylococcus aureus isolated from chicken meat produced by different integrated broiler operations in Korea. Poult Sci 2018; 97:962-969. [DOI: 10.3382/ps/pex357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 12/13/2022] Open
|
27
|
Johler S, Macori G, Bellio A, Acutis PL, Gallina S, Decastelli L. Short communication: Characterization of Staphylococcus aureus isolated along the raw milk cheese production process in artisan dairies in Italy. J Dairy Sci 2018; 101:2915-2920. [PMID: 29397175 DOI: 10.3168/jds.2017-13815] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/09/2017] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a common cause of food-borne intoxications. Several staphylococcal food poisoning outbreaks have been linked to consumption of raw milk cheeses and artisanal cheese production. However, information on Staph. aureus isolated from artisanal raw milk cheeses and small-scale dairy production environments is very limited. Therefore, we aimed to characterize Staph. aureus isolated along the artisanal raw milk production chain by determining (1) the population structure, and (2) the presence/absence of enterotoxin genes, mecA/C, and pvl. We collected 276 samples from different production stages (raw milk, whey, curd, brine, drying worktops, and cheese) at 36 artisan dairies in Italy. A total of 102 samples from 25 dairies tested positive for Staph. aureus, with 80% positive samples among the tested artisan cheeses. All isolates were further characterized by spa typing and PCR screening for staphylococcal enterotoxin genes, the mecA/mecC genes characteristic for methicillin-resistant Staph. aureus, and the pvl gene encoding Panton-Valentine leukocidin. The 102 isolates represented 15 different spa types and were assigned to 32 different Staph. aureus strains. The spa type most frequently detected was t2953 (30%), which is associated with genotype B strains causing high within-herd levels of bovine mastitis. In addition, 3 novel spa types (t13269, t13277, and t13278) were identified. Although none of the strains harbored mecA/mecC or pvl, 55% of the isolates exhibited at least one enterotoxin gene. Many strains were present in samples from multiple dairies from different regions and years, highlighting the spread of Staph. aureus in small-scale cheese production plants. Our findings demonstrate that enterotoxigenic Staph. aureus and in particular t2953 (genotype B) isolates commonly occur in artisanal dairies and raw milk cheeses in Italy. It is particularly alarming that 80% of the artisan cheeses sampled in our study were positive for Staph. aureus. These findings stress the need for effective measures preventing staphylococcal food poisoning by limiting Staph. aureus growth and enterotoxin formation along the production chain and in the final product.
Collapse
Affiliation(s)
- S Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, 8057 Zurich, Switzerland
| | - G Macori
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | - A Bellio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - P L Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - S Gallina
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - L Decastelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| |
Collapse
|
28
|
Hryniewicz MM, Garbacz K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA) – a more common problem than expected? J Med Microbiol 2017; 66:1367-1373. [DOI: 10.1099/jmm.0.000585] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Maria M. Hryniewicz
- Department of Oral Microbiology, Medical University of Gdansk, Dębowa 25, 80-204 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical University of Gdansk, Dębowa 25, 80-204 Gdansk, Poland
| |
Collapse
|
29
|
Rouger A, Tresse O, Zagorec M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms 2017; 5:E50. [PMID: 28841156 PMCID: PMC5620641 DOI: 10.3390/microorganisms5030050] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
With the constant increase in poultry meat consumption worldwide and the large variety of poultry meat products and consumer demand, ensuring the microbial safety of poultry carcasses and cuts is essential. In the present review, we address the bacterial contamination of poultry meat from the slaughtering steps to the use-by-date of the products. The different contamination sources are identified. The contaminants occurring in poultry meat cuts and their behavior toward sanitizing treatments or various storage conditions are discussed. A list of the main pathogenic bacteria of concern for the consumer and those responsible for spoilage and waste of poultry meat is established.
Collapse
Affiliation(s)
- Amélie Rouger
- Secalim, INRA, LUNAM Université, 44307 Nantes, France.
| | - Odile Tresse
- Secalim, INRA, LUNAM Université, 44307 Nantes, France.
| | | |
Collapse
|
30
|
El-Adawy H, Ahmed M, Hotzel H, Monecke S, Schulz J, Hartung J, Ehricht R, Neubauer H, Hafez HM. Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Healthy Turkeys and Broilers Using DNA Microarrays. Front Microbiol 2016; 7:2019. [PMID: 28066346 PMCID: PMC5165244 DOI: 10.3389/fmicb.2016.02019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major human health problem and recently, domestic animals are described as carriers and possible reservoirs. Twenty seven S. aureus isolates from five turkey farms (n = 18) and two broiler farms (n = 9) were obtained by culturing of choana and skin swabs from apparently healthy birds, identified by Taqman-based real-time duplex nuc-mecA-PCR and characterized by spa typing as well as by a DNA microarray based assay which covered, amongst others, a considerable number of antibiotic resistance genes, species controls, and virulence markers. The antimicrobial susceptibility profiles were tested by agar diffusion assays and genotypically confirmed by the microarray. Five different spa types (3 in turkeys and 2 in broilers) were detected. The majority of MRSA isolates (24/27) belonged to clonal complex 398-MRSA-V. The most frequently occurring spa types were accordingly t011, t034, and t899. A single CC5-MRSA-III isolated from turkey and CC398-MRSA with an unidentified/truncated SCCmec element in turkey and broiler were additionally detected. The phenotypic antimicrobial resistance profiles of S. aureus isolated from both turkeys and broilers against 14 different antimicrobials showed that all isolates were resistant to ampicillin, cefoxitin, oxacillin, doxycycline, and tetracycline. Moreover, all S. aureus isolated from broilers were resistant to erythromycin and azithromycin. All isolates were susceptible to gentamicin, chloramphenicol, sulphonamides, and fusidic acid. The resistance rate against ciprofloxacin was 55.6% in broiler isolates and 42.1% in turkey isolates. All tetracycline resistant isolates possessed genes tetK/M. All erythromycin-resistant broiler isolates carried ermA. Only one broiler isolate (11.1%) carried genes ermA, ermB, and ermC, while 55.6% of turkey isolates possessed ermA and ermB genes. Neither PVL genes (lukF/S-PV), animal-associated leukocidin (lukM and luk-P83) nor the gene encoding the toxic shock syndrome toxin (tst1) were found in turkey and broiler isolates. In conclusion, the detection of MRSA in healthy turkeys and broilers with even additional antibiotic resistance markers is of major public health concern. The difference in antibiotic resistance and virulence markers between MRSA isolates from turkeys and broilers was addressed.
Collapse
Affiliation(s)
- Hosny El-Adawy
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and ZoonosesJena, Germany; Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh UniversityKafr El-Sheikh, Egypt
| | - Marwa Ahmed
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, FoundationHannover, Germany; Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura UniversityMansoura, Egypt
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses Jena, Germany
| | - Stefan Monecke
- Alere Technologies GmbHJena, Germany; InfectoGnostics Research Campus Jena e. V.Jena, Germany; Medical Faculty Carl Gustav Carus, Institute for Medical Microbiology and Hygiene, Technische Universität DresdenDresden, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation Hannover, Germany
| | - Joerg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation Hannover, Germany
| | - Ralf Ehricht
- Alere Technologies GmbHJena, Germany; InfectoGnostics Research Campus Jena e. V.Jena, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses Jena, Germany
| | - Hafez M Hafez
- Institute for Poultry Diseases, Free University Berlin Berlin, Germany
| |
Collapse
|
31
|
Kizerwetter-Świda M, Chrobak-Chmiel D, Rzewuska M, Pławińska-Czarnak J, Binek M. Characterisation of Staphylococcus aureus isolated from meat processing plants – a preliminary study. J Vet Res 2016. [DOI: 10.1515/jvetres-2016-0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Introduction: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) belonging to the clonal complex 398 (CC398) emerged recently in livestock as a new type of MRSA, which may cause zoonotic infections. This study presents data on the characterisation of S. aureus isolated from the meat processing plants. Material and Methods: S. aureus was isolated from 90 samples collected in the raw meat warehouse, from devices and surfaces of meat processing plants, and from finished meat products. The isolates were subjected to molecular analysis in order to investigate the presence of enterotoxin genes, the mecA gene, and to verify whether they belong to the clonal complex 398. The genetic relatedness of the isolates was determined using pulsed-field electrophoresis. Likewise, antimicrobial susceptibility was tested. Results: From 21 S. aureus strains isolated, five belonged to the CC398, two of which were recognised as MRSA and three as methicillin-sensitive Staphylococcus aureus (MSSA). The most prevalent enterotoxin genes were seg and sei. Two MRSA CC398 isolates, three MSSA CC398, and one MSSA were classified as multidrug-resistant. Conclusion: The first isolation of MSSA CC398 from beef in Poland indicates contamination of beef by strains belonging to this clonal complex. The occurrence of multidrug-resistant enterotoxigenic S. aureus isolates in the finished meat products constitutes a potential risk for the consumers.
Collapse
Affiliation(s)
- Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
| | - Joanna Pławińska-Czarnak
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Marian Binek
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
| |
Collapse
|
32
|
Ge B, Mukherjee S, Hsu CH, Davis JA, Tran TTT, Yang Q, Abbott JW, Ayers SL, Young SR, Crarey ET, Womack NA, Zhao S, McDermott PF. MRSA and multidrug-resistant Staphylococcus aureus in U.S. retail meats, 2010-2011. Food Microbiol 2016; 62:289-297. [PMID: 27889161 DOI: 10.1016/j.fm.2016.10.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been detected in retail meats, although large-scale studies are scarce. We conducted a one-year survey in 2010-2011 within the framework of the National Antimicrobial Resistance Monitoring System. Among 3520 retail meats collected from eight U.S. states, 982 (27.9%) contained S. aureus and 66 (1.9%) were positive for MRSA. Approximately 10.4% (107/1032) of S. aureus isolates, including 37.2% (29/78) of MRSA, were multidrug-resistant (MDRSA). Turkey had the highest MRSA prevalence (3.5%), followed by pork (1.9%), beef (1.7%), and chicken (0.3%). Whole-genome sequencing was performed for all 66 non-redundant MRSA. Among five multilocus sequence types identified, ST8 (72.7%) and ST5 (22.7%) were most common and livestock-associated MRSA ST398 was assigned to one pork isolate. Eleven spa types were represented, predominately t008 (43.9%) and t2031 (22.7%). All four types of meats harbored t008, whereas t2031 was recovered from turkey only. The majority of MRSA (84.8%) possessed SCCmec IV and 62.1% harbored Panton-Valentine leukocidin. Pulsed-field gel electrophoresis showed that all ST8 MRSA belonged to the predominant human epidemic clone USA300, and others included USA100 and USA200. We conclude that a diverse MRSA population was present in U.S. retail meats, albeit at low prevalence.
Collapse
Affiliation(s)
- Beilei Ge
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Sampa Mukherjee
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Chih-Hao Hsu
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Johnnie A Davis
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Thu Thuy T Tran
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Qianru Yang
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jason W Abbott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Sherry L Ayers
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Shenia R Young
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Emily T Crarey
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Niketta A Womack
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Patrick F McDermott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
33
|
Bierowiec K, Płoneczka-Janeczko K, Rypuła K. Is the Colonisation of Staphylococcus aureus in Pets Associated with Their Close Contact with Owners? PLoS One 2016; 11:e0156052. [PMID: 27227897 PMCID: PMC4882014 DOI: 10.1371/journal.pone.0156052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
In human beings and animals, staphylococci constitute part of the normal microbial population. Staphylococcus aureus could be classified as an opportunistic pathogen because the bacteria are noted in clinically healthy individuals, but when the immune system becomes compromised, they can also cause a wide range of infections. The objective of this study was to test the hypothesis that cats who are in close contact with their owners are at the greatest risk of being colonised with S. aureus. Two groups of cats were investigated: single, pet (domestic) cats that do not have outdoor access; and a local population of feral cats living in urban areas. The prevalence of S. aureus in domestic cats was 19.17%, while it's prevalence in the feral cat population was only 8.3%; which was statistically significant. Analysis of antibiotic resistance, at the genotypic as well as phenotypic level, showed that S. aureus isolates from pet cats were more likely to harbour antibiotic resistant determinants. The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in households was 10.21%, while in feral cats it was only 1.4%. In conclusion, this study has revealed a correlation between close contact with humans and a higher risk of the cats being colonised with S. aureus and harbouring the antibiotic resistant determinants.
Collapse
Affiliation(s)
- Karolina Bierowiec
- Division of Infectious Diseases and Veterinary Administration, Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Płoneczka-Janeczko
- Division of Infectious Diseases and Veterinary Administration, Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Rypuła
- Division of Infectious Diseases and Veterinary Administration, Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
34
|
Mehraj J, Witte W, Akmatov MK, Layer F, Werner G, Krause G. Epidemiology of Staphylococcus aureus Nasal Carriage Patterns in the Community. Curr Top Microbiol Immunol 2016; 398:55-87. [PMID: 27370344 DOI: 10.1007/82_2016_497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive opportunistic pathogen that colonizes frequently and asymptomatically the anterior nares of humans and animals. It can cause different kinds of infections and is considered to be an important nosocomial pathogen. Nasal carriage of S. aureus can be permanent or intermittent and may build the reservoir for autogenous infections and cross-transmission to other individuals. Most of the studies on the epidemiology of S. aureus performed in the past were focused on the emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) in healthcare settings. There are, however, a number of more recent epidemiological studies have aimed at analysing carriage patterns over time in the community settings providing new insights on risk factors for colonization and important data for the development of strategies to prevent infections. This chapter aims to give a review of current epidemiological studies on S. aureus carriage patterns in the general community and put them into perspective with recent, yet unpublished, investigations on the S. aureus epidemiology in the general population in northern Germany.
Collapse
Affiliation(s)
- Jaishri Mehraj
- Department of Epidemiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,Hannover Medical School, Hannover, Germany
| | - Wolfgang Witte
- The Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Manas K Akmatov
- Department of Epidemiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Franziska Layer
- The Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Guido Werner
- The Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany. .,Hannover Medical School, Hannover, Germany.
| |
Collapse
|
35
|
Bortolaia V, Espinosa-Gongora C, Guardabassi L. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect 2015; 22:130-140. [PMID: 26706616 DOI: 10.1016/j.cmi.2015.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 10/24/2022]
Abstract
Enterococci and staphylococci are frequent contaminants on poultry meat. Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are also well-known aetiological agents of a wide variety of infections resulting in major healthcare costs. This review provides an overview of the human health risks associated with the occurrence of these opportunistic human pathogens on poultry meat with particular focus on the risk of food-borne transmission of antimicrobial resistance. In the absence of conclusive evidence of transmission, this risk was inferred using data from scientific articles and national reports on prevalence, bacterial load, antimicrobial resistance and clonal distribution of these three species on poultry meat. The risks associated with ingestion of antimicrobial-resistant enterococci of poultry origin comprise horizontal transfer of resistance genes and transmission of multidrug-resistant E. faecalis lineages such as sequence type ST16. Enterococcus faecium lineages occurring in poultry meat products are distantly related to those causing hospital-acquired infections but may act as donors of quinupristin/dalfopristin resistance and other resistance determinants of clinical interest to the human gut microbiota. Ingestion of poultry meat contaminated with S. aureus may lead to food poisoning. However, antimicrobial resistance in the toxin-producing strains does not have clinical implications because food poisoning is not managed by antimicrobial therapy. Recently methicillin-resistant S. aureus of livestock origin has been reported on poultry meat. In theory handling or ingestion of contaminated meat is a potential risk factor for colonization by methicillin-resistant S. aureus. However, this risk is presently regarded as negligible by public health authorities.
Collapse
Affiliation(s)
- V Bortolaia
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - C Espinosa-Gongora
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - L Guardabassi
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies.
| |
Collapse
|
36
|
Genotyping and DNA microarray based characterization of Staphylococcus aureus isolates from rabbit carcasses. Meat Sci 2015; 112:86-9. [PMID: 26555564 DOI: 10.1016/j.meatsci.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/03/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus can cause staphylococcal food poisoning. Although the organism is frequently detected on rabbit carcasses, little is known about the characteristics of S. aureus strains contaminating rabbit meat. In this study, 137 S. aureus isolates originating from 137 rabbit carcasses were spa typed and characterized by DNA microarray. The isolates were assigned to CC5, CC7, CC8, CC15, CC96, CC101, CC121, and ST890, and to 13 spa types (t056, t085, t091, t160, t179, t681, t741, t745, t1190, t1773, t4770, t8456, t14871). Enterotoxin genes detected included sea, sed, sej, and ser. In addition, the egc operon, encoding the newly described staphylococcal enterotoxins SEG/SEI/SElM/SElN/SElO/SElU, was found in all isolates except those of t091. While none of the examined isolates presented genes conferring methicillin, vancomycin, or aminoglycoside resistance, we frequently detected blaZ/I/R conferring resistance to penicillin. The isolates represented a heterogeneous group assigned to clonal lineages detected among humans and animals, with two spa types exclusively associated with rabbit meat (t4770, t8456).
Collapse
|
37
|
Distribution of toxin genes among different spa types and phage types of animal Staphylococcus aureus. Arch Microbiol 2015; 197:935-40. [PMID: 26108193 PMCID: PMC4536260 DOI: 10.1007/s00203-015-1127-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 01/07/2023]
Abstract
We analyzed distribution of toxin genes (sea-seo, eta, etb, tst, lukS/lukF-PV) among spa types and phage types of 39 Staphylococcus aureus (S. aureus) isolates from healthy and diseased animals. All isolates turned out to be mecA negative (MSSA). Nine spa types were identified: t144 and t723 (dogs), t084 (dogs and pigs), t5447 (cat), t1491 and t008 (pigs), t002, t127 and t3478 (poultry). Seven phage types were detected, enclosed within four phage groups: I (cat), II (dogs), III (pigs) and mixed group (dogs and pigs). Three poultry spa types proved to be non-typeable by phages. Toxin genes were detected in 33 out of the 39 animal isolates. Our analysis revealed that the incidence of some toxin genes in S. aureus is host specific. Canine isolates t144 of phage group II harbored exfoliative toxin gene (eta), and porcine isolates type t1491 representing phage group III showed enterotoxin A gene (sea). The enterotoxin gene cluster (egc1) and enterotoxin gene seh were found in non-typeable isolates from chicken and in one feline isolate type t5447.
Collapse
|