1
|
Ruiz-Franco J, Giuntoli A. Inducing mechanical self-healing in polymer glasses. Nat Commun 2025; 16:4085. [PMID: 40312372 DOI: 10.1038/s41467-025-59426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 04/20/2025] [Indexed: 05/03/2025] Open
Abstract
Polymer glasses such as the plastics used in pipes, structural materials, and medical devices are ubiquitous in daily life. The nature of their low molecular mobility is still poorly understood and it leads to brittle mechanical behavior, damage, and fracture over time. It also prevents the design of self-healing mechanisms that expand the material's lifespan, as more commonly done in recent years for higher mobility amorphous polymers such as gels and rubbers. We demonstrate through numerical simulations that controlled oscillatory deformations enhance the local molecular mobility of glassy polymers without compromising their structural or mechanical stability. We apply this principle to increase the molecular mobility around the surface of a cylindrical crack, counterintuitively inducing fracture repair and recovering the mechanical properties of the pristine material. Our findings are a first step to establish a general physical mechanism of self-healing in glasses that may inspire the design and processing of new glassy materials.
Collapse
Affiliation(s)
- José Ruiz-Franco
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Andrea Giuntoli
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Ren Y, Wang Q, Xu W, Yang M, Guo W, He S, Liu W. Alginate-based hydrogels mediated biomedical applications: A review. Int J Biol Macromol 2024; 279:135019. [PMID: 39182869 DOI: 10.1016/j.ijbiomac.2024.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
With the development in the field of biomaterials, research on alternative biocompatible materials has been initiated, and alginate in polysaccharides has become one of the research hotspots due to its advantages of biocompatibility, biodegradability and low cost. In recent years, with the further understanding of microscopic molecular structure and properties of alginate, various physicochemical methods of cross-linking strategies, as well as organic and inorganic materials, have led to the development of different properties of alginate hydrogels for greatly expanded applications. In view of the potential application prospects of alginate-based hydrogels, this paper reviews the properties and preparation of alginate-based hydrogels and their major achievements in delivery carrier, dressings, tissue engineering and other applications are also summarized. In addition, the combination of alginate-based hydrogel and new technology such as 3D printing are also involved, which will contribute to further research and exploration.
Collapse
Affiliation(s)
- Yazhen Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wanlin Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Mingcheng Yang
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Wenhui Guo
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
3
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
4
|
Nguyen CT, Chow SKK, Nguyen HN, Liu T, Walls A, Withey S, Liebig P, Mueller M, Thierry B, Yang CT, Huang CJ. Formation of Zwitterionic and Self-Healable Hydrogels via Amino-yne Click Chemistry for Development of Cellular Scaffold and Tumor Spheroid Phantom for MRI. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36157-36167. [PMID: 38973633 PMCID: PMC11261563 DOI: 10.1021/acsami.4c06917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
In situ-forming biocompatible hydrogels have great potential in various medical applications. Here, we introduce a pH-responsive, self-healable, and biocompatible hydrogel for cell scaffolds and the development of a tumor spheroid phantom for magnetic resonance imaging. The hydrogel (pMAD) was synthesized via amino-yne click chemistry between poly(2-methacryloyloxyethyl phosphorylcholine-co-2-aminoethylmethacrylamide) and dialkyne polyethylene glycol. Rheology analysis, compressive mechanical testing, and gravimetric analysis were employed to investigate the gelation time, mechanical properties, equilibrium swelling, and degradability of pMAD hydrogels. The reversible enamine and imine bond mechanisms leading to the sol-to-gel transition in acidic conditions (pH ≤ 5) were observed. The pMAD hydrogel demonstrated potential as a cellular scaffold, exhibiting high viability and NIH-3T3 fibroblast cell encapsulation under mild conditions (37 °C, pH 7.4). Additionally, the pMAD hydrogel also demonstrated the capability for in vitro magnetic resonance imaging of glioblastoma tumor spheroids based on the chemical exchange saturation transfer effect. Given its advantages, the pMAD hydrogel emerges as a promising material for diverse biomedical applications, including cell carriers, bioimaging, and therapeutic agent delivery.
Collapse
Affiliation(s)
- Cao Tuong
Vi Nguyen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Steven Kwok Keung Chow
- Clinical
Research and Imaging Centre, South Australian
Health and Medical Research Institute, Adelaide 5001, Australia
| | - Hoang Nam Nguyen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Tesi Liu
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Angela Walls
- Clinical
Research and Imaging Centre, South Australian
Health and Medical Research Institute, Adelaide 5001, Australia
| | | | | | - Marco Mueller
- Advanced
Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne 1000, Switzerland
| | - Benjamin Thierry
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chih-Tsung Yang
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chun-Jen Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Road, Chung-Li City 32023, Taiwan
| |
Collapse
|
5
|
Mahmoudi C, Tahraoui Douma N, Mahmoudi H, Iurciuc (Tincu) CE, Popa M. Hydrogels Based on Proteins Cross-Linked with Carbonyl Derivatives of Polysaccharides, with Biomedical Applications. Int J Mol Sci 2024; 25:7839. [PMID: 39063081 PMCID: PMC11277554 DOI: 10.3390/ijms25147839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adding carbonyl groups into the hydrogel matrix improves the stability and biocompatibility of the hydrogels, making them suitable for different biomedical applications. In this review article, we will discuss the use of hydrogels based on polysaccharides modified by oxidation, with particular attention paid to the introduction of carbonyl groups. These hydrogels have been developed for several applications in tissue engineering, drug delivery, and wound healing. The review article discusses the mechanism by which oxidized polysaccharides can introduce carbonyl groups, leading to the development of hydrogels through cross-linking with proteins. These hydrogels have tunable mechanical properties and improved biocompatibility. Hydrogels have dynamic properties that make them promising biomaterials for various biomedical applications. This paper comprehensively analyzes hydrogels based on cross-linked proteins with carbonyl groups derived from oxidized polysaccharides, including microparticles, nanoparticles, and films. The applications of these hydrogels in tissue engineering, drug delivery, and wound healing are also discussed.
Collapse
Affiliation(s)
- Chahrazed Mahmoudi
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Naïma Tahraoui Douma
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
| | - Hacene Mahmoudi
- National Higher School of Nanosciences and Nanotechnologies, Algiers 16000, Algeria;
| | - Camelia Elena Iurciuc (Tincu)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| |
Collapse
|
6
|
Eufrásio-da-Silva T, Erezuma I, Dolatshahi-Pirouz A, Orive G. Enhancing regenerative medicine with self-healing hydrogels: A solution for tissue repair and advanced cyborganic healthcare devices. BIOMATERIALS ADVANCES 2024; 161:213869. [PMID: 38718714 DOI: 10.1016/j.bioadv.2024.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Considering the global burden related to tissue and organ injuries or failures, self-healing hydrogels may be an attractive therapeutic alternative for the future. Self-healing hydrogels are highly hydrated 3D structures with the ability to self-heal after breaking, this property is attributable to a variety of dynamic non-covalent and covalent bonds that are able to re-linking within the matrix. Self-healing ability specially benefits minimal invasive medical treatments with cell-delivery support. Moreover, those tissue-engineered self-healing hydrogels network have demonstrated effectiveness for myriad purposes; for instance, they could act as delivery-platforms for different cargos (drugs, growth factors, cells, among others) in tissues such as bone, cartilage, nerve or skin. Besides, self-healing hydrogels have currently found their way into new and novel applications; for example, with the development of the self-healing adhesive hydrogels, by merely aiding surgical closing processes and by providing biomaterial-tissue adhesion. Furthermore, conductive hydrogels permit the stimuli and monitoring of natural electrical signals, which facilitated a better fitting of hydrogels in native tissue or the diagnosis of various health diseases. Lastly, self-healing hydrogels could be part of cyborganics - a merge between biology and machinery - which can pave the way to a finer healthcare devices for diagnostics and precision therapies.
Collapse
Affiliation(s)
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
7
|
Serro AP, Silva DC, Fernandes AI. Hydrogel-Based Novel Biomaterials: Achievements and Prospects. Gels 2024; 10:436. [PMID: 39057459 PMCID: PMC11275420 DOI: 10.3390/gels10070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, hydrogels have garnered significant attention, thanks to their extensive biomedical and pharmaceutical applications [...].
Collapse
Affiliation(s)
- Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Diana Cristina Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Isabel Fernandes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, 2829-511 Caparica, Portugal
| |
Collapse
|
8
|
Xie C, Liu G, Wang L, Yang Q, Liao F, Yang X, Xiao B, Duan L. Synthesis and Properties of Injectable Hydrogel for Tissue Filling. Pharmaceutics 2024; 16:430. [PMID: 38543325 PMCID: PMC10975320 DOI: 10.3390/pharmaceutics16030430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| |
Collapse
|
9
|
Cheng Y, Zhang H, Wei H, Yu CY. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater Sci 2024; 12:1151-1170. [PMID: 38319379 DOI: 10.1039/d3bm01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor therapy continues to be a prominent field within biomedical research. The development of various drug carriers has been propelled by concerns surrounding the side effects and targeting efficacy of various chemotherapeutic drugs and other therapeutic agents. These carriers strive to enhance drug concentration at tumor sites, minimize systemic side effects, and improve therapeutic outcomes. Among the reported delivery systems, injectable hydrogels have emerged as an emerging candidate for the in vivo delivery of chemotherapeutic drugs due to their minimal invasive drug delivery properties. This review systematically summarizes the composition and preparation methodologies of injectable hydrogels and further highlights the delivery mechanisms of diverse drugs using these hydrogels for tumor therapy, along with an in-depth discussion on the optimized therapeutic efficiency of drugs encapsulated within the hydrogels. The work concludes by providing a dynamic forward-looking perspective on the potential challenges and possible solutions of the in situ injectable hydrogels for non-surgical and real-time diagnostic applications.
Collapse
Affiliation(s)
- Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
10
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
11
|
Geng X, Liu K, Wang J, Su X, Shi Y, Zhao L. Preparation of Ultra-Small Copper Nanoparticles-Loaded Self-Healing Hydrogels with Antibacterial, Inflammation-Suppressing and Angiogenesis-Enhancing Properties for Promoting Diabetic Wound Healing. Int J Nanomedicine 2023; 18:3339-3358. [PMID: 37361387 PMCID: PMC10289105 DOI: 10.2147/ijn.s399933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Background Bacterial invasion, protracted inflammation, and angiogenesis inhibition are hallmarks of chronic diabetic wounds, bringing about patient morbidity and rising healthcare costs. For such wounds, there are currently few efficient therapies available. Methods We reported the development of carboxymethyl chitosan (CMCS)-based self-healing hydrogel loaded with ultra-small copper nanoparticles (Cunps) for local treatment of diabetic wound healing. The structure of Cunps was identified by XRD, TEM, XPS and other methods, and the characterization of the synthesized Cunps-loaded self-healing carboxymethyl chitosan (CMCS)-protocatechualdehyde (PCA) hydrogel (Cunps@CMCS-PCA hydrogel) was further investigated. The therapeutic effect of Cunps@CMCS-PCA hydrogel in diabetic wound healing was explored in vitro and in vivo. Results The findings showed that a kind of ultra-small size copper nanoparticles with excellent biocompatibility was prepared. CMCS was chemically conjugated to PCA to form self-healing hydrogels via the formation of an amide bond followed by the loading of ultra-small copper nanoparticles. The obtained Cunps@CMCS-PCA hydrogel showed a typical three-dimensional interlinked network structure with self-healing ability and porosity. It exhibited good biocompatibility in diabetic wounds. Furthermore, Cunps@CMCS-PCA hydrogel group significantly prevented bacterial growth in the skin wound of diabetic rats as compared to model group and CMCS-PCA hydrogel-treated group. After 3 days, no visible bacterial proliferation was observed. It also increased angiogenesis through Cunps mediated activation of ATP7A to prevent induction of autophagy. Furthermore, Cunps@CMCS-PCA hydrogel mainly depended on PCA-induced inhibition on inflammation of macrophage via JAK2/STAT3 signaling pathway. As a result, compared with delayed wound healing process with lower wound healing rate valued at 68.6% within 7 days in the model group, Cunps@CMCS-PCA significantly accelerated wound healing recovery and increased wound healing rate to 86.5%, suggesting that Cunps@CMCS-PCA hydrogel effectively accelerated wound healing. Conclusion Cunps@CMCS-PCA hydrogel offered a new therapeutic approach for quickening diabetic wound healing.
Collapse
Affiliation(s)
- Xinrong Geng
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Jinlei Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| |
Collapse
|
12
|
Huysecom AS, Thielemans W, Moldenaers P, Cardinaels R. A Generalized Mechano-statistical Transient Network Model for Unravelling the Network Topology and Elasticity of Hydrophobically Associating Multiblock Copolymers in Aqueous Solutions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- An-Sofie Huysecom
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500Kortrijk, Belgium
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
- Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Yao H, Wu M, Lin L, Wu Z, Bae M, Park S, Wang S, Zhang W, Gao J, Wang D, Piao Y. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Mater Today Bio 2022; 16:100429. [PMID: 36164504 PMCID: PMC9508611 DOI: 10.1016/j.mtbio.2022.100429] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
The wound healing process is usually susceptible to different bacterial infections due to the complex physiological environment, which significantly impairs wound healing. The topical application of antibiotics is not desirable for wound healing because the excessive use of antibiotics might cause bacteria to develop resistance and even the production of super bacteria, posing significant harm to human well-being. Wound dressings based on adhesive, biocompatible, and multi-functional hydrogels with natural antibacterial agents have been widely recognized as effective wound treatments. Hydrogels, which are three-dimensional (3D) polymer networks cross-linked through physical interactions or covalent bonds, are promising for topical antibacterial applications because of their excellent adhesion, antibacterial properties, and biocompatibility. To further improve the healing performance of hydrogels, various modification methods have been developed with superior biocompatibility, antibacterial activity, mechanical properties, and wound repair capabilities. This review summarizes hundreds of typical studies on various ingredients, preparation methods, antibacterial mechanisms, and internal antibacterial factors to understand adhesive hydrogels with natural antibacterial agents for wound dressings. Additionally, we provide prospects for adhesive and antibacterial hydrogels in biomedical applications and clinical research.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Ming Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Minjun Bae
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shuli Wang
- Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| |
Collapse
|
14
|
Han S, Hu Z, Zhang W, Hu J, Yang L. Flexible segments regulating the gelation behaviours of aliphatic polycarbonate gels with excellent shape memory and self-healing properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Pardeshi S, Damiri F, Zehravi M, Joshi R, Kapare H, Prajapati MK, Munot N, Berrada M, Giram PS, Rojekar S, Ali F, Rahman MH, Barai HR. Functional Thermoresponsive Hydrogel Molecule to Material Design for Biomedical Applications. Polymers (Basel) 2022; 14:polym14153126. [PMID: 35956641 PMCID: PMC9371082 DOI: 10.3390/polym14153126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels’ minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Al-Kharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision Nanosystems Inc., Vancouver, BC V6P 6T7, Canada;
| | - Harshad Kapare
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur 425405, Maharashtra, India;
| | - Neha Munot
- Department of Pharmaceutics, School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Faraat Ali
- Laboratory Services, Department of Licensing and Enforcement, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| |
Collapse
|
16
|
Çeper EB, Su E, Okay O, Güney O. Surface modification of graphene oxide for preparing self‐healing nanocomposite hydrogels. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ezgi B. Çeper
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Esra Su
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Oguz Okay
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Orhan Güney
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| |
Collapse
|
17
|
Choi C, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022; 11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/26/2021] [Indexed: 12/12/2022]
Abstract
Considerable progress has been made in synthesizing "intelligent", biodegradable hydrogels that undergo rapid changes in physicochemical properties once exposed to external stimuli. These advantageous properties of stimulus-triggered materials make them highly appealing to diverse biomedical applications. Of late, research on the incorporation of light-triggered nanoparticles (NPs) into polymeric hydrogel networks has gained momentum due to their ability to remotely tune hydrogel properties using facile, contact-free approaches, such as adjustment of wavelength and intensity of light source. These multi-functional NPs, in combination with tissue-mimicking hydrogels, are increasingly being used for on-demand drug release, preparing diagnostic kits, and fabricating smart scaffolds. Here, the authors discuss the atomic behavior of different NPs in the presence of light, and critically review the mechanisms by which NPs convert light stimuli into heat energy. Then, they explain how these NPs impact the mechanical properties and rheological behavior of NPs-impregnated hydrogels. Understanding the rheological behavior of nanocomposite hydrogels using different sophisticated strategies, including computer-assisted machine learning, is critical for designing the next generation of drug delivery systems. Next, they highlight the salient strategies that have been used to apply light-induced nanocomposites for diverse biomedical applications and provide an outlook for the further improvement of these NPs-driven light-responsive hydrogels.
Collapse
Affiliation(s)
- Cho‐E Choi
- Department of Chemical and Biochemical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Ali Coyle
- School of Biomedical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Yasmeen Shamiya
- Department of Chemistry The University of Western Ontario London ON N6A 5B9 Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering School of Biomedical Engineering Department of Chemistry The Centre for Advanced Materials and Biomaterials Research The University of Western Ontario London ON N6A 5B9 Canada
| |
Collapse
|
18
|
|
19
|
Su J, Li J, Liang J, Zhang K, Li J. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life (Basel) 2021; 11:life11101016. [PMID: 34685387 PMCID: PMC8540918 DOI: 10.3390/life11101016] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Wounds have become one of the causes of death worldwide. The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds that bring great pain to patients, and there is currently no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal dressing candidate because of its 3D structure, good permeability, excellent biocompatibility, and ability to provide a moist environment for wound repair, which overcomes the shortcomings of traditional dressings. This article first briefly introduces the skin wound healing process, then the preparation methods of hydrogel dressings and the characteristics of hydrogel wound dressings made of natural biomaterials and synthetic materials are introduced. Finally, the development prospects and challenges of hydrogel wound dressings are discussed.
Collapse
Affiliation(s)
- Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| |
Collapse
|
20
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Heidarian P, Kaynak A, Paulino M, Zolfagharian A, Varley RJ, Kouzani AZ. Dynamic nanocellulose hydrogels: Recent advancements and future outlook. Carbohydr Polym 2021; 270:118357. [PMID: 34364602 DOI: 10.1016/j.carbpol.2021.118357] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Nanocellulose is of great interest in material science nowadays mainly because of its hydrophilic, renewable, biodegradable, and biocompatible nature, as well as its excellent mechanical strength and tailorable surface ready for modification. Currently, nanocellulose is attracting attention to overcome the current challenges of dynamic hydrogels: robustness, autonomous self-healing, and self-recovery (SELF) properties simultaneously occurring in one system. In this regard, this review aims to explore current advances in design and fabrication of dynamic nanocellulose hydrogels and elucidate how incorporating nanocellulose with dynamic motifs simultaneously improves both SELF and robustness of hydrogels. Finally, current challenges and prospects of dynamic nanocellulose hydrogels are discussed.
Collapse
Affiliation(s)
- Pejman Heidarian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Akif Kaynak
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Mariana Paulino
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
22
|
Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2,2':6',2″-terpyridine Ligand: Kinetic Studies and Mechanical Properties. Polymers (Basel) 2021; 13:polym13111760. [PMID: 34072063 PMCID: PMC8199432 DOI: 10.3390/polym13111760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
We report here our successful attempt to obtain self-healing supramolecular hydrogels with new metal-containing monomers (MCMs) with pendent 4-phenyl-2,2′:6′,2″-terpyridine metal complexes as reversible moieties by free radical copolymerization of MCMs with vinyl monomers, such as acrylic acid and acrylamide. The resulting metal-polymer hydrogels demonstrate a developed system of hydrogen, coordination and electron-complementary π–π stacking interactions, which play a critical role in achieving self-healing. Kinetic data show that the addition of a third metal-containing comonomer to the system decreases the initial polymerization rate, which is due to the specific effect of the metal group located in close proximity of the active center on the growth of radicals.
Collapse
|
23
|
Nik Md Noordin Kahar NNF, Osman AF, Alosime E, Arsat N, Mohammad Azman NA, Syamsir A, Itam Z, Abdul Hamid ZA. The Versatility of Polymeric Materials as Self-Healing Agents for Various Types of Applications: A Review. Polymers (Basel) 2021; 13:1194. [PMID: 33917177 PMCID: PMC8067859 DOI: 10.3390/polym13081194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/24/2022] Open
Abstract
The versatility of polymeric materials as healing agents to prevent any structure failure and their ability to restore their initial mechanical properties has attracted interest from many researchers. Various applications of the self-healing polymeric materials are explored in this paper. The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites. This paper also presents the different types of self-healing polymeric materials applied in various applications, which include electronics, coating, aerospace, medicals, and construction fields. It is expected that this review gives a significantly broader idea of self-healing polymeric materials and their healing mechanisms in various types of applications.
Collapse
Affiliation(s)
- Nik Nur Farisha Nik Md Noordin Kahar
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.N.F.N.M.N.K.); (N.A.)
| | - Azlin Fazlina Osman
- Faculty of Chemical Engineering Technology, University Malaysia Perlis (UniMAP), Arau 02600, Malaysia;
- Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Eid Alosime
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Najihah Arsat
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.N.F.N.M.N.K.); (N.A.)
| | | | - Agusril Syamsir
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Selangor 43000, Malaysia;
| | - Zarina Itam
- Department of Civil Engineering, Universiti Tenaga Nasional, Selangor 43000, Malaysia;
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.N.F.N.M.N.K.); (N.A.)
| |
Collapse
|
24
|
Pourjavadi A, Heydarpour R, Tehrani ZM. Multi-stimuli-responsive hydrogels and their medical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02260a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review highlights the medical applications of multi-stimuli-responsive hydrogels as self-healing hydrogels, antibacterial materials and drug-delivery systems.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9516, Tehran, Iran
| | - Rozhin Heydarpour
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9516, Tehran, Iran
| | - Zahra Mazaheri Tehrani
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9516, Tehran, Iran
| |
Collapse
|
25
|
Xu L, Shen Q, Huang L, Xu X, He H. Charge-Mediated Co-assembly of Amphiphilic Peptide and Antibiotics Into Supramolecular Hydrogel With Antibacterial Activity. Front Bioeng Biotechnol 2020; 8:629452. [PMID: 33425884 PMCID: PMC7785866 DOI: 10.3389/fbioe.2020.629452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria are the most common pathogens to cause infection of surgical sites, which usually induce severe postoperative morbidity and more healthcare costs. Inhibition of bacteria adhesion and colonization is an effective strategy to prevent the spread of infection at the surgical sites. Hydrogels have been widely used as promising antibacterial materials, due to their unique porous structure that could accommodate various antibacterial agents (e.g., antibiotics and cationic polymers with inherent antibacterial activity). Herein, inspired by the natural protein self-assembly, an amphiphilic peptide comprised of a hydrophobic naphthyl (Nap) acetyl tail and a hydrophilic peptide backbone was employed to construct supramolecular hydrogel for sustained release of the antibiotic polymyxin B. At neutral pH, the negatively charged amphiphilic peptide could form electrostatic attraction interaction with the positively charged polymyxin B, which could thus drive the ionized peptide molecules to get close to each other and subsequently trigger the self-assembly of the amphiphilic peptide into supramolecular hydrogel via intermolecular hydrogen bonding interaction among the peptide backbones and π-stacking of the hydrophobic Nap tails. More importantly, the electrostatic attraction interaction between polymyxin B and the amphiphilic peptide could ensure the sustained release of polymyxin B from the supramolecular hydrogel, leading to an effective inhibition of Gram-negative bacteria Escherichia coli growth. Combining the good biocompatibility of the amphiphilic peptide, the supramolecular hydrogel developed in this work shows a great potential for the surgical site infection application.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Clinical Pharmacy, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyan He
- Central Sterile Supply Department (CSSD), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020; 25:molecules25245795. [PMID: 33302592 PMCID: PMC7764781 DOI: 10.3390/molecules25245795] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.
Collapse
|