1
|
Zeng W, Li H, Liu S, Luo Z, Chen J, Zhou J. Biosynthesis and bioactivities of triterpenoids from Centella asiatica: Challenges and opportunities. Biotechnol Adv 2025; 80:108541. [PMID: 39978422 DOI: 10.1016/j.biotechadv.2025.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Centella asiatica (L.) Urban is an herbaceous perennial plant that has long been widely used in traditional medicine, due to its diverse wound-healing, neuroprotection, antioxidant and anti-inflammatory properties. The major functional bioactive secondary metabolites are the triterpenoids asiatic acid, madecassic acid, asiaticoside and madecassoside, collectively known as centellosides. Current extraction methods for C. asiatica are unable to meet market demand for extracts and pure functional components. Biotechnological approaches based on synthetic biology and microbial cell factories are a promising alternative. This review summarises the major secondary metabolites and their biological activities, and the biosynthetic pathway of functional triterpenoids in C. asiatica. Biotechnological production of centellosides is also described, including in vitro plant cultures and construction of microbial cell factories. Finally, current challenges and future perspectives for sustainable production of centellosides are discussed, and guidelines for future engineering are proposed.
Collapse
Affiliation(s)
- Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongbiao Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Shike Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengshan Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Park YK, Studena L, Hapeta P, Haddouche R, Bell DJ, Torres-Montero P, Martinez JL, Nicaud JM, Botes A, Ledesma-Amaro R. Efficient biosynthesis of β-caryophyllene by engineered Yarrowia lipolytica. Microb Cell Fact 2025; 24:38. [PMID: 39910564 PMCID: PMC11800524 DOI: 10.1186/s12934-025-02660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND β-Caryophyllene, a sesquiterpenoid, holds considerable potential in pharmaceutical, nutraceutical, cosmetic, and chemical industries. In order to overcome the limitation of β-caryophyllene production by the extraction from plants or chemical synthesis, we aimed the microbial production of β-caryophyllene in non-conventional yeast Yarrowia lipolytica in this study. RESULTS Two genes, tHMG1 from S. cerevisiae to boost the mevalonate pool and QHS1 from Artemisia annua, were expressed under different promoters and copy numbers in Y. lipolytica. The co-expression of 8UAS pEYK1-QHS1 and pTEF-tHMG1 in the obese strain yielded 165.4 mg/L and 201.5 mg/L of β-caryophyllene in single and double copies, respectively. Employing the same combination of promoters and genes in wild-type-based strain with two copies resulted in a 1.36-fold increase in β-caryophyllene. The introduction of an additional three copies of 8UAS pEYK1-tHMG1 further augmented the β-caryophyllene, reaching 318.5 mg/L in flask fermentation. To maximize the production titer, we optimized the carbon source ratio between glucose and erythritol as well as fermentation condition that led to 798.1 mg/L of β-caryophyllene. CONCLUSIONS A biosynthetic pathway of β-caryophyllene was firstly investigated in Y. lipolytica in this study. Through the modulation of key enzyme expression, we successfully demonstrated an improvement in β-caryophyllene production. This strategy suggests its potential extension to studies involving the microbial production of various industrially relevant terpenes.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Lucie Studena
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Piotr Hapeta
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | | | - David J Bell
- SynbiCITE Innovation and Knowledge Centre, Imperial College London, London, UK
| | - Pablo Torres-Montero
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jose Luis Martinez
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | | | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Bezos Centre for Sustainable Protein, Imperial College London, London, UK.
- UKRI Mission Hub on Microbial Food, Imperial College London, London, UK.
| |
Collapse
|
3
|
Lee H, Song J, Seo SW. Engineering Yarrowia lipolytica for the production of β-carotene by carbon and redox rebalancing. J Biol Eng 2025; 19:6. [PMID: 39815368 PMCID: PMC11734496 DOI: 10.1186/s13036-025-00476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica. RESULTS The initial production level was increased by iterative overexpression of pathway genes with lycopene inhibition removal. For further improvement, two approaches that redirect the central carbon pathway were evaluated to increase NADPH regeneration and reduce ATP expenditure. Pushing flux through the pentose phosphate pathway and introducing NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase were found to be more effective than the phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Furthermore, flux to the lipid biosynthesis pathway was moderately increased to better accommodate the increased β-carotene pool, resulting in the production level of 809.2 mg/L. CONCLUSIONS The Y. lipolytica-based β-carotene production chassis was successfully developed through iterative overexpression of multiple pathways, central carbon pathway engineering and lipid pathway flux adjustment. The approach presented here provides insights into future endeavors to improve microbial terpenoid production capability.
Collapse
Affiliation(s)
- Hojun Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
| | - Jinwoo Song
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Institute of Bio Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Chen Y, Su L, Liu Q, Zhang G, Chen H, Wang Q, Jia K, Dai Z. Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica. Biotechnol J 2025; 20:e202400669. [PMID: 39817828 DOI: 10.1002/biot.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene. The strain Yarrowia lipolytica YL238, possessing a stronger capacity for (+)-valencene synthesis, was selected and utilized as the chassis for further modifications. By fine-tuning the mevalonate and squalene synthesis pathways we achieved a remarkable 13.2-fold increase in (+)-valencene titer compared to the original strain. Following directed evolution was employed to screen for efficient (+)-valencene synthase, which further enhanced (+)-valencene production by 138%. Consequently, the engineered strain overproduced 813 mg/L of (+)-valencene in shake flasks, marking the highest titer reported in microbials to date. Furthermore, in fed-batch fermentation, this engineered strain showed the capacity to produce 3.3 g/L of (+)-valencene. This study offers a successful model for the application of the "strain-pathway-enzyme" triune strategy in the metabolic engineering of Y. lipolytica, and these methodologies could be broadly utilized for the synthesis of other natural terpenes.
Collapse
Affiliation(s)
- Ying Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Liqiu Su
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qi Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ge Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hongyang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Kaizhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
5
|
Liu SC, Xu L, Sun Y, Yuan L, Xu H, Song X, Sun L. Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. BIODESIGN RESEARCH 2024; 6:0051. [PMID: 39534575 PMCID: PMC11555184 DOI: 10.34133/bdr.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenes are natural secondary metabolites with isoprene as the basic structural unit; they are widely found in nature and have potential applications as advanced fuels, pharmaceutical ingredients, and agricultural chemicals. However, traditional methods are inefficient for obtaining terpenes because of complex processes, low yields, and environmental unfriendliness. The unconventional oleaginous yeast Yarrowia lipolytica, with a clear genetic background and complete gene editing tools, has attracted increasing attention for terpenoid synthesis. Here, we review the synthetic biology tools for Y. lipolytica, including promoters, terminators, selection markers, and autonomously replicating sequences. The progress and emerging trends in the metabolic engineering of Y. lipolytica for terpenoid synthesis are further summarized. Finally, potential future research directions are envisioned.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Longxing Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuejia Sun
- School of Nursing and Rehabilitation,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Hong Xu
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaoming Song
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Liangdan Sun
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
- School of Public Health,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
6
|
Wang G, Wu Z, Li M, Liang X, Wen Y, Zheng Q, Li D, An T. Microbial production of 5- epi-jinkoheremol, a plant-derived antifungal sesquiterpene. Appl Environ Microbiol 2024; 90:e0119124. [PMID: 39283105 PMCID: PMC11497823 DOI: 10.1128/aem.01191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. In the present study, we constructed a microbial platform for the high-level production of a sesquiterpene from Catharanthus roseus, 5-epi-jinkoheremol, which exhibits strong fungicidal activity. First, the mevalonate and sterol biosynthesis pathways were optimized in engineered yeast to increase the metabolic flux toward the biosynthesis of the precursor farnesyl pyrophosphate. Then, the transcription factor Hac1- and m6A writer Ime4-based metabolic engineering strategies were implemented in yeast to increase 5-epi-jinkoheremol production further. Next, protein engineering was performed to improve the catalytic activity and enhance the stability of the 5-epi-jinkoheremol synthase TPS18, resulting in the variant TPS18I21P/T414S, with the most improved properties. Finally, the titer of 5-epi-jinkoheremol was elevated to 875.25 mg/L in a carbon source-optimized medium in shake flask cultivation. To the best of our knowledge, this is the first study to construct an efficient microbial cell factory for the sustainable production of this antifungal sesquiterpene.IMPORTANCEBiofungicides represent a new and sustainable tool for the control of crop fungal diseases. However, hindered by the high cost of biofungicide production, their use is not as popular as expected. Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. We previously identified a promising sesquiterpenoid biofungicide, 5-epi-jinkoheremol. Here, we constructed a microbial platform for the high-level production of this chemical. The metabolic engineering of the terpene biosynthetic pathway was firstly employed to increase the metabolic flux toward 5-epi-jinkoheremol production. However, the limited catalytic activity of the key enzyme, TPS18, restricted the further yield of 5-epi-jinkoheremol. By using protein engineering, we improved its catalytic efficiency, and combined with the optimization of regulation factors, the highest production of 5-epi-jinkoheremol was achieved. Our work was useful for the larger-scale efficient production of this antifungal sesquiterpene.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Yiwei Wen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
Jiang W, Wang S, Avila P, Jørgensen TS, Yang Z, Borodina I. Combinatorial iterative method for metabolic engineering of Yarrowia lipolytica: Application for betanin biosynthesis. Metab Eng 2024; 86:78-88. [PMID: 39260817 DOI: 10.1016/j.ymben.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Combinatorial library-based metabolic engineering approaches allow lower cost and faster strain development. We developed a genetic toolbox EXPRESSYALI for combinatorial engineering of the oleaginous yeast Yarrowia lipolytica. The toolbox enables consecutive rounds of engineering, where up to three combinatorially assembled gene expression cassettes can be integrated into each yeast clone per round. The cassettes are integrated into distinct intergenic sites or an open reading frame of a target gene if a simultaneous gene knockout is desired. We demonstrate the application of the toolbox by optimizing the Y. lipolytica to produce the red beet color betanin via six consecutive rounds of genome editing and screening. The library size varied between 24 and 360. Library screening was facilitated by automated color-based colony picking. In the first round, betanin pathway genes were integrated, resulting in betanin titer of around 20 mg/L. Through the following five consecutive rounds, additional biosynthetic genes were integrated, and the precursor supply was optimized, resulting in a titer of 70 mg/L. Three beta-glucosidases were deleted to prevent betanin deglycosylation, which led to a betanin titer of 130 mg/L in a small scale and a titer of 1.4 g/L in fed-batch bioreactors. The EXPRESSYALI toolbox can facilitate metabolic engineering efforts in Y. lipolytica (available via AddGene Cat. Nr. 212682-212704, Addgene kit ID # 1000000245).
Collapse
Affiliation(s)
- Wei Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Shengbao Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Paulo Avila
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Park YK, Sellés Vidal L, Bell D, Zabret J, Soldat M, Kavšček M, Ledesma-Amaro R. Efficient synthesis of limonene production in Yarrowia lipolytica by combinatorial engineering strategies. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:94. [PMID: 38961416 PMCID: PMC11223395 DOI: 10.1186/s13068-024-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Limonene has a variety of applications in the foods, cosmetics, pharmaceuticals, biomaterials, and biofuels industries. In order to meet the growing demand for sustainable production of limonene at industry scale, it is essential to find an alternative production system to traditional plant extraction. A promising and eco-friendly alternative is the use of microbes as cell factories for the synthesis of limonene. RESULTS In this study, the oleaginous yeast Yarrowia lipolytica has been engineered to produce D- and L-limonene. Four target genes, l- or d-LS (limonene synthase), HMG (HMG-CoA reductase), ERG20 (geranyl diphosphate synthase), and NDPS1 (neryl diphosphate) were expressed individually or fused together to find the optimal combination for higher limonene production. The strain expressing HMGR and the fusion protein ERG20-LS was the best limonene producer and, therefore, selected for further improvement. By increasing the expression of target genes and optimizing initial OD, 29.4 mg/L of L-limonene and 24.8 mg/L of D-limonene were obtained. We also studied whether peroxisomal compartmentalization of the synthesis pathway was beneficial for limonene production. The introduction of D-LS and ERG20 within the peroxisome improved limonene titers over cytosolic expression. Then, the entire MVA pathway was targeted to the peroxisome to improve precursor supply, which increased D-limonene production to 47.8 mg/L. Finally, through the optimization of fermentation conditions, D-limonene production titer reached 69.3 mg/L. CONCLUSIONS In this work, Y. lipolytica was successfully engineered to produce limonene. Our results showed that higher production of limonene was achieved when the synthesis pathway was targeted to the peroxisome, which indicates that this organelle can favor the bioproduction of terpenes in yeasts. This study opens new avenues for the efficient synthesis of valuable monoterpenes in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lara Sellés Vidal
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - David Bell
- SynbiCITE Innovation and Knowledge Centre, Imperial College London, London, SW7 2AZ, UK
| | - Jure Zabret
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Mladen Soldat
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Martin Kavšček
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|
11
|
Li DX, Guo Q, Yang YX, Jiang SJ, Ji XJ, Ye C, Wang YT, Shi TQ. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth Biol 2024; 13:1647-1662. [PMID: 38860708 DOI: 10.1021/acssynbio.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.
Collapse
Affiliation(s)
- Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Shun-Jie Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
12
|
Jiang D, Yang M, Chen K, Jiang W, Zhang L, Ji XJ, Jiang J, Lu L. Exploiting synthetic biology platforms for enhanced biosynthesis of natural products in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 399:130614. [PMID: 38513925 DOI: 10.1016/j.biortech.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
With the rapid development of synthetic biology, researchers can design, modify, or even synthesize microorganisms de novo, and microorganisms endowed with unnatural functions can be considered "artificial life" and facilitate the development of functional products. Based on this concept, researchers can solve critical problems related to the insufficient supply of natural products, such as low yields, long production cycles, and cumbersome procedures. Due to its superior performance and unique physiological and biochemical characteristics, Yarrowia lipolytica is a favorable chassis cell used for green biomanufacturing by numerous researchers. This paper mainly reviews the development of synthetic biology techniques for Y. lipolytica and summarizes the recent research progress on the synthesis of natural products in Y. lipolytica. This review will promote the continued innovative development of Y. lipolytica by providing theoretical guidance for research on the biosynthesis of natural products.
Collapse
Affiliation(s)
- Dahai Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Manqi Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kai Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wenxuan Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Liangliang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jianchun Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, People's Republic of China
| | - Liming Lu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
13
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
14
|
Ning Y, Liu M, Ru Z, Zeng W, Liu S, Zhou J. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 395:130379. [PMID: 38281547 DOI: 10.1016/j.biortech.2024.130379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Squalene, a high-value acyclic triterpenoid compound, is broadly used in the food and medical industries. Although the large acetyl-CoA pool and hydrophobic space of Yarrowia lipolytica are suitable for the accumulation of squalene, the current production level in Y. lipolytica is still not sufficient for industrial production. In this study, two rounds of multicopy integration of genes encoding key enzymes were performed to enhance squalene anabolic flux in the cytoplasm. Furthermore, the mevalonate pathway was imported into peroxisomes through the compartmentalization strategy, and the production of squalene was significantly increased. By augmenting the acetyl-CoA supply in peroxisomes and the cytoplasm, the squalene was boosted to 2549.1 mg/L. Finally, the squalene production reached 51.2 g/L by fed-batch fermentation in a 5-L bioreactor. This is the highest squalene production reported to date for microbial production, and this study lays the foundation for the synthesis of steroids and squalene derivatives.
Collapse
Affiliation(s)
- Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ziyun Ru
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Taratynova MO, Tikhonova EE, Fedyaeva IM, Dementev DA, Yuzbashev TV, Solovyev AI, Sineoky SP, Yuzbasheva EY. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica. Appl Biochem Biotechnol 2024; 196:1304-1315. [PMID: 37392322 DOI: 10.1007/s12010-023-04581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo. The (S)-linalool synthase (LIS) gene from Actinidia argute was overexpressed to convert geranyl diphosphate (GPP) into linalool. Flux was diverted from farnesyl diphosphate (FPP) synthesis to GPP by introducing a mutated copy of the native ERG20F88W-N119W gene, and CrGPPS gene from Catharanthus roseus on its own and as part of a fusion with LIS. Disruption of native diacylglycerol kinase enzyme, DGK1, by oligo-mediated CRISPR-Cas9 inactivation further increased linalool production. The resulting strain accumulated 109.6 mg/L of linalool during cultivation in shake flasks with sucrose as a carbon source. CrGPPS expression in Yarrowia lipolytica increased linalool accumulation more efficiently than the ERG20F88W-N119W expression, suggesting that the increase in linalool production was predominantly influenced by the level of GPP precursor supply.
Collapse
Affiliation(s)
- Maria O Taratynova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia.
| | - Ekaterina E Tikhonova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Iuliia M Fedyaeva
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Dmitry A Dementev
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Tigran V Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, West Common, UK
| | - Andrey I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Russian Ministry of Health, Gamaleya St. 18, Moscow, 123098, Russia
| | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Evgeniya Y Yuzbasheva
- BioMediCan Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
- BioKai Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
| |
Collapse
|
16
|
Shi TQ, Shen YH, Li YW, Huang ZY, Nie ZK, Ye C, Wang YT, Guo Q. Improving the productivity of gibberellic acid by combining small-molecule compounds-based targeting technology and transcriptomics analysis in Fusarium fujikuroi. BIORESOURCE TECHNOLOGY 2024; 394:130299. [PMID: 38185446 DOI: 10.1016/j.biortech.2024.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nancang 330031, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Yi-Hang Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zi-Yi Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| |
Collapse
|
17
|
Rywińska A, Tomaszewska-Hetman L, Lazar Z, Juszczyk P, Sałata P, Malek K, Kawecki A, Rymowicz W. Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol. Int J Mol Sci 2024; 25:1475. [PMID: 38338753 PMCID: PMC10855631 DOI: 10.3390/ijms25031475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Citric acid and erythritol are obtained on an industrial scale using biotechnological methods. Due to the growing market demand for these products, research is underway to improve the process economics by introducing new microorganisms, in particular of the species Yarrowia lipolytica. The aim of this study was to evaluate transformants of Y. lipolytica for growth and ability to overproduce citric acids and erythritol from glycerol. The transformants were constructed by overexpressing glycerol kinase, methylcitrate synthase and mitochondrial succinate-fumarate transporter in the mutant Wratislavia 1.31. Next, strains were assessed for biosynthesis of citrate (pH 5.5; nitrogen limitation) and erythritol (pH 3.0; high osmotic pressure) from glycerol. Regardless of culture conditions strains, 1.31.GUT1/6 and 1.31.GUT1/6.CIT1/3 exhibited high rates of substrate utilization. Under conditions favoring citrate biosynthesis, both strains produced several percent more citrates, accompanied by higher erythritol production compared to the parental strain. During erythritol biosynthesis, the strain 1.31.GUT1/6.CIT1/3.E34672g obtained as a result of co-expression of all three genes stood out, producing 84.0 g/L of erythritol with yield and productivity of 0.54 g/g and 0.72 g/Lh, respectively, which places it in the group of the highest-ranked producers of erythritol among Y. lipolytica species.
Collapse
Affiliation(s)
| | - Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-630 Wrocław, Poland; (A.R.); (Z.L.); (P.J.); (P.S.); (A.K.); (W.R.)
| | | | | | | | | | | | | |
Collapse
|
18
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
19
|
Dietrich D, Jovanovic-Gasovic S, Cao P, Kohlstedt M, Wittmann C. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability. Microb Cell Fact 2023; 22:199. [PMID: 37773137 PMCID: PMC10540379 DOI: 10.1186/s12934-023-02209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LC-PUFAs), such as docosahexaenoic acid (DHA), are essential for human health and have been widely used in the food and pharmaceutical industries. However, the limited availability of natural sources, such as oily fish, has led to the pursuit of microbial production as a promising alternative. Yarrowia lipolytica can produce various PUFAs via genetic modification. A recent study upgraded Y. lipolytica for DHA production by expressing a four-gene cluster encoding a myxobacterial PKS-like PUFA synthase, reducing the demand for redox power. However, the genetic architecture of gene expression in Y. lipolytica is complex and involves various control elements, offering space for additional improvement of DHA production. This study was designed to optimize the expression of the PUFA cluster using a modular cloning approach. RESULTS Expression of the monocistronic cluster with each gene under the control of the constitutive TEF promoter led to low-level DHA production. By using the minLEU2 promoter instead and incorporating additional upstream activating UAS1B4 sequences, 5' promoter introns, and intergenic spacers, DHA production was increased by 16-fold. The producers remained stable over 185 h of cultivation. Beneficially, the different genetic control elements acted synergistically: UAS1B elements generally increased expression, while the intron caused gene-specific effects. Mutants with UAS1B16 sequences within 2-8 kb distance, however, were found to be genetically unstable, which limited production performance over time, suggesting the avoidance of long repetitive sequence blocks in synthetic multigene clusters and careful monitoring of genetic stability in producing strains. CONCLUSIONS Overall, the results demonstrate the effectiveness of synthetic heterologous gene clusters to drive DHA production in Y. lipolytica. The combinatorial exploration of different genetic control elements allowed the optimization of DHA production. These findings have important implications for developing Y. lipolytica strains for the industrial-scale production of valuable polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Demian Dietrich
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Peng Cao
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
20
|
Chen L, Li K, Chen H, Li Z. Reviewing the Source, Physiological Characteristics, and Aroma Production Mechanisms of Aroma-Producing Yeasts. Foods 2023; 12:3501. [PMID: 37761210 PMCID: PMC10529235 DOI: 10.3390/foods12183501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Flavor is an essential element of food quality. Flavor can be improved by adding flavoring substances or via microbial fermentation to impart aroma. Aroma-producing yeasts are a group of microorganisms that can produce aroma compounds, providing a strong aroma to foods and thus playing a great role in the modern fermentation industry. The physiological characteristics of aroma-producing yeast, including alcohol tolerance, acid tolerance, and salt tolerance, are introduced in this article, beginning with their origins and biological properties. The main mechanism of aroma-producing yeast is then analyzed based on its physiological roles in the fermentation process. Functional enzymes such as proteases, lipases, and glycosidase are released by yeast during the fermentation process. Sugars, fats, and proteins in the environment can be degraded by these enzymes via pathways such as glycolysis, methoxylation, the Ehrlich pathway, and esterification, resulting in the production of various aromatic esters (such as ethyl acetate and ethyl caproate), alcohols (such as phenethyl alcohol), and terpenes (such as monoterpenes, sesquiterpenes, and squalene). Furthermore, yeast cells can serve as cell synthesis factories, wherein specific synthesis pathways can be introduced into cells using synthetic biology techniques to achieve high-throughput production. In addition, the applications of aroma yeast in the food, pharmaceutical, and cosmetic industries are summarized, and the future development trends of aroma yeasts are discussed to provide a theoretical basis for their application in the food fermentation industry.
Collapse
Affiliation(s)
- Li Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Huitai Chen
- Hunan Guoyuan Liquor Industry Co., Ltd., Yueyang 414000, China;
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| |
Collapse
|
21
|
Xu M, Xie W, Luo Z, Li CX, Hua Q, Xu J. Improving solubility and copy number of taxadiene synthase to enhance the titer of taxadiene in Yarrowia lipolytica. Synth Syst Biotechnol 2023; 8:331-338. [PMID: 37215159 PMCID: PMC10196790 DOI: 10.1016/j.synbio.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Taxadiene is an important precursor for the biosynthesis of highly effective anticancer drug paclitaxel, but its microbial biosynthesis yield is very low. In this study, we employed Yarrowia lipolytica as a microbial host to produce taxadiene. First, a "push-pull" strategy was adopted to increase taxadiene production by 234%. Then taxadiene synthase was fused with five solubilizing tags respectively, leading a maximum increase of 62.3% in taxadiene production when fused with SUMO. Subsequently, a multi-copy iterative integration method was used to further increase taxadiene titer, achieving the maximum titer of 23.7 mg/L in shake flask culture after three rounds of integration. Finally, the taxadiene titer was increased to 101.4 mg/L by optimization of the fed-batch fermentation conditions. This is the first report of taxadiene biosynthesis accomplished in Y. lipolytica, serving as a good example for the sustainable production of taxadiene and other terpenoids in this oleaginous yeast.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenliang Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
22
|
Li J, Chen Y, Gao A, Wei L, Wei D, Wang W. Simultaneous Production of Cellulase and β-Carotene in the Filamentous Fungus Trichoderma reesei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6358-6365. [PMID: 37042195 DOI: 10.1021/acs.jafc.3c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
β-Carotene is an indispensable additive in beverage, cosmetic, feed, and pharmaceutical production. The fermentation industry annually generates abundant waste mycelia from Trichoderma reesei (T. reesei), a pivotal industrial strain for cellulase and heterologous protein production. In this study, we constructed a T. reesei cell factory for β-carotene production for the first time. Four key enzymes, CarRP, CarB, GGS1/CrtE, and HMG1, were overexpressed in T. reesei. The concentrations of medium components, including tryptone and glucose, were optimized. The modified strain accumulated β-carotene at a titer of 218.8 mg/L in flask culture. We achieved cellulase production (FPase, 22.33 IU/mL) with the concomitant production of β-carotene (286.63 mg/L) from T. reesei in a jar. Overall, this study offers a novel and unique approach to address the costly waste mycelium management process using T. reesei industrial strains that simultaneously produce proteins and carotenoids.
Collapse
Affiliation(s)
- Jing Li
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ao Gao
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liujing Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
24
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
25
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
26
|
Qiu S, Blank LM. Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2197-2210. [PMID: 36696911 DOI: 10.1021/acs.jafc.2c06888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant natural products are a seemingly endless resource for novel chemical structures. However, their extraction often results in high prices, fluctuation in both quantity and quality, and negative environmental impact. The latter might result from the extraction procedure but more often from the high amount of plant biomass required. With the advent of synthetic biology, producing natural plant products in large quantities using yeasts as hosts has become possible. Here, we focus on the recent advances in metabolic engineering of the yeasts species Saccharomyces cerevisiae and Yarrowia lipolytica for the synthesis of ginsenoside triterpenoids, namely, dammarenediol-II, protopanaxadiol, protopanaxatriol, compound K, ginsenoside Rh1, ginsenoside Rh2, ginsenoside Rg3, and ginsenoside F1. A discussion is provided on advanced synthetic biology, bioprocess strategies, and current challenges for the biosynthesis of ginsenoside triterpenoids. Finally, future directions in metabolic and process engineering are summarized and may help reify sustainable ginsenoside production.
Collapse
Affiliation(s)
- Shangkun Qiu
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
27
|
Bidirectional hybrid erythritol-inducible promoter for synthetic biology in Yarrowia lipolytica. Microb Cell Fact 2023; 22:7. [PMID: 36635727 PMCID: PMC9835291 DOI: 10.1186/s12934-023-02020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The oleaginous yeast Yarrowia lipolytica is increasingly used as a chassis strain for generating bioproducts. Several hybrid promoters with different strengths have been developed by combining multiple copies of an upstream activating sequence (UAS) associated with a TATA box and a core promoter. These promoters display either constitutive, phase-dependent, or inducible strong expression. However, there remains a lack of bidirectional inducible promoters for co-expressing genes in Y. lipolytica. RESULTS This study built on our previous work isolating and characterizing the UAS of the erythritol-induced genes EYK1 and EYD1 (UAS-eyk1). We found an erythritol-inducible bidirectional promoter (BDP) located in the EYK1-EYL1 intergenic region. We used the BDP to co-produce YFP and RedStarII fluorescent proteins and demonstrated that the promoter's strength was 2.7 to 3.5-fold stronger in the EYL1 orientation compared to the EYK1 orientation. We developed a hybrid erythritol-inducible bidirectional promoter (HBDP) containing five copies of UAS-eyk1 in both orientations. It led to expression levels 8.6 to 19.2-fold higher than the native bidirectional promoter. While the BDP had a twofold-lower expression level than the strong constitutive TEF promoter, the HBDP had a 5.0-fold higher expression level when oriented toward EYL1 and a 2.4-fold higher expression level when oriented toward EYK1. We identified the optimal media for BDP usage by exploring yeast growth under microbioreactor conditions. Additionally, we constructed novel Golden Gate biobricks and a destination vector for general use. CONCLUSIONS In this research, we developed novel bidirectional and hybrid bidirectional promoters of which expression can be fine-tuned, responding to the need for versatile promoters in the yeast Y. lipolytica. This study provides effective tools that can be employed to smoothly adjust the erythritol-inducible co-expression of two target genes in biotechnology applications. BDPs developed in this study have potential applications in the fields of heterologous protein production, metabolic engineering, and synthetic biology.
Collapse
|
28
|
El-Sharoud WM, Zalma SA, Rios-Solis L, Ledesma-Amaro R. Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 4:14-19. [PMID: 39416911 PMCID: PMC11446348 DOI: 10.1016/j.biotno.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 10/19/2024]
Abstract
Yarrowia lipolytica is a modern workhorse for biotechnology that is amenable to genetic manipulations and can produce high levels of various enzymes. The present study was designed to engineer Y. lipolytica for the overexpression of α-bisabolene, a valuable biofuel precursor and pharmaceutical, making use of this yeast's ability to accumulate lipids, and with the use of a golden gate DNA assembly (GG) toolbox. By transforming Y. lipolytica with a GG genetic construct involving truncated 3-hydroxy-3-methyl-glutaryle coenzyme A reductase (tHMG) and α-bisabolene synthase (Bis) genes controlled by the strong TEF promoter and Lip2 terminator, the engineered yeast was able to produce 489 mg l-1 of α-bisabolene. This was increased to 816 mg l-1 by transforming a lipid-over-accumulating Y. lipolytica strain with the same genetic construct. Higher production titers of up to 1243 mg l-1 could be also achieved by varying the culture conditions of the transformed strains.
Collapse
Affiliation(s)
- Walid M. El-Sharoud
- Synthetic Biology Laboratory, Faculty of Agriculture, Mansoura University, Egypt
| | - Samar A. Zalma
- Synthetic Biology Laboratory, Faculty of Agriculture, Mansoura University, Egypt
| | - Leonardo Rios-Solis
- Institute for Bioengineering and Centre for Synthetic and Systems Biology, University of Edinburgh, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Imperial College London, UK
| |
Collapse
|
29
|
Arnesen JA, Borodina I. Engineering of Yarrowia lipolytica for terpenoid production. Metab Eng Commun 2022; 15:e00213. [PMID: 36387772 PMCID: PMC9663531 DOI: 10.1016/j.mec.2022.e00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast Yarrowia lipolytica demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing Y. lipolytica terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Panda S, Zhou K. Engineering microbes to overproduce natural products as agrochemicals. Synth Syst Biotechnol 2022; 8:79-85. [PMID: 36514486 PMCID: PMC9731846 DOI: 10.1016/j.synbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
Current agricultural practices heavily rely on the excessive application of synthetic pesticides and fertilizers to meet the food demands of the increasing global population. This practice has several drawbacks including its negative impact on the environment and human health. Recently, the use of natural products has gained interest as alternatives to these synthetic agrochemicals due to their selective working mechanisms and biodegradability. In order to efficiently produce these natural agrochemicals, engineering microorganisms is emerging as an increasingly viable approach, and it is anticipated that it will have a significant market share in the near future. This approach manipulates the metabolism of microbes to manufacture the desired natural compounds from low-cost starting materials. This review discusses recent examples of this approach. The produced natural products can serve as biopesticides or plant growth regulators for the sustainable improvement of plant growth and disease control. The challenges in further developing these strategies are also discussed.
Collapse
|
31
|
Nonconventional Yeasts Engineered Using the CRISPR-Cas System as Emerging Microbial Cell Factories. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the petroleum-based chemical synthesis of industrial products causes serious environmental and societal issues, biotechnological production using microorganisms is an alternative approach to achieve a more sustainable economy. In particular, the yeast Saccharomyces cerevisiae is widely used as a microbial cell factory to produce biofuels and valuable biomaterials. However, product profiles are often restricted due to the Crabtree-positive nature of S. cerevisiae, and ethanol production from lignocellulose is possibly enhanced by developing alternative stress-resistant microbial platforms. With desirable metabolic pathways and regulation in addition to strong resistance to diverse stress factors, nonconventional yeasts (NCY) may be considered an alternative microbial platform for industrial uses. Irrespective of their high industrial value, the lack of genetic information and useful gene editing tools makes it challenging to develop metabolic engineering-guided scaled-up applications using yeasts. The recently developed clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system is a powerful gene editing tool for NCYs. This review describes the current status of and recent advances in promising NCYs in terms of industrial and biotechnological applications, highlighting CRISPR-Cas9 system-based metabolic engineering strategies. This will serve as a basis for the development of novel yeast applications.
Collapse
|
32
|
Guo H, Wang H, Chen T, Guo L, Blank LM, Ebert BE, Huo YX. Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2685-2696. [PMID: 35921601 DOI: 10.1021/acssynbio.2c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triterpenoids are a subgroup of terpenoids and have wide applications in the food, cosmetics, and pharmaceutical industries. The heterologous production of various triterpenoids in Saccharomyces cerevisiae, as well as other microbes, has been successfully implemented as these production hosts not only produce the precursor of triterpenoids 2,3-oxidosqualene by the mevalonate pathway but also allow simple expression of plant membrane-anchored enzymes. Nevertheless, 2,3-oxidosqualene is natively converted to lanosterol catalyzed by the endogenous lanosterol synthase (Erg7p), causing low production of recombinant triterpenoids. While simple deletion of ERG7 was not effective, in this study, the critical amino acid residues of Erg7p were engineered to lower this critical enzyme activity. The engineered S. cerevisiae indeed accumulated 2,3-oxidosqualene up to 180 mg/L. Engineering triterpenoid synthesis into the ERG7-modified strain resulted in 7.3- and 3-fold increases in the titers of dammarane-type and lupane-type triterpenoids, respectively. This study presents an efficient inducer-free strategy for lowering Erg7p activity, thereby providing 2,3-oxidosqualene for the enhanced production of various triterpenoids.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Huiyang Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Tongtong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Lars M Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University Worringer Weg 1, 52074 Aachen, Germany
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Cnr College Rd & Cooper Rd, St Luci a, QLD 4072, Australia
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| |
Collapse
|
33
|
Ramos-Viana V, Møller-Hansen I, Kempen P, Borodina I. Modulation of the cell wall protein Ecm33p in yeast Saccharomyces cerevisiae improves the production of small metabolites. FEMS Yeast Res 2022; 22:6654878. [PMID: 35922083 PMCID: PMC9440718 DOI: 10.1093/femsyr/foac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
The cell wall is a dynamic organelle that determines the shape and provides the cell with mechanical strength. This study investigated whether modulation of cell wall composition can influence the production or secretion of small metabolites by yeast cell factories. We deleted and upregulated several cell wall-related genes KRE2, CWP1, CWP2, ECM33, PUN1, and LAS21 in yeast Saccharomyces cerevisiae engineered for p-coumaric acid or β-carotene production. Deletions of las21∆ and ecm33∆ impaired the yeast growth on medium with cell wall stressors, calcofluor white, and caffeine. Both overexpression and deletion of ECM33 significantly improved the specific yield of p-coumaric acid and β-carotene. We observed no change in secretion in any cell wall altered mutants, suggesting the cell wall is not a limiting factor for small molecule secretion at the current production levels. We evaluated the cell wall morphology of the ECM33 mutant strains using transmission electron microscopy. The ecm33∆ mutants had an increased chitin deposition and a less structured cell wall, while the opposite was observed in ECM33-overexpressing strains. Our results point at the cell wall-related gene ECM33 as a potential target for improving production in engineered yeast cell factories.
Collapse
Affiliation(s)
- Verónica Ramos-Viana
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark.,National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
34
|
Guo Q, Li YW, Yan F, Li K, Wang YT, Ye C, Shi TQ, Huang H. Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:2819-2830. [PMID: 35798689 DOI: 10.1002/bit.28176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
The sesquiterpene α-humulene is an important plant natural product, which has been used in pharmaceutical industry due to the anti-inflammatory and anticancer activities. Although phytoextraction and chemical synthesis have previously been applied into α-humulene production, the low efficiency and high costs limit the development. In this study, Y. lipolytica was engineered as the robust cell factory for sustainable α-humulene production. First, a chassis with high α-humulene output in the cytoplasm was constructed by integrating α-humulene synthases with high catalytic activity, optimizing the flux of MVA and acetyl-CoA pathways. Subsequently, the strategy of dual cytoplasmic-peroxisomal engineering was adopted in Y. lipolytica, the best strain GQ3006 generated by introducing 31 copies of 12 different genes could produce 2280.3 ± 38.2 mg/L (98.7 ± 4.2 mg/g DCW) α-humulene, a 100-fold improvement relative to the baseline strain. In order to further improve the titer, a novel strategy for downregulation of squalene biosynthesis based on Cu2+ -repressible promoters was firstly established, which significantly improved the α-humulene titer by 54.2 % to 3516.6 ± 34.3 mg/L. Finally, the engineered strain could produce 21.7 g/L α-humulene in 5-L bioreactor, 6.8-fold higher than the highest α-humulene titer reported prior to this study. Overall, system metabolic engineering strategies used in this study provide a valuable reference for highly sustainable production of terpenoids in Y. lipolytica. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China.,College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
35
|
Arnesen JA, Belmonte Del Ama A, Jayachandran S, Dahlin J, Rago D, Andersen AJC, Borodina I. Engineering of Yarrowia lipolytica for the production of plant triterpenoids: Asiatic, madecassic, and arjunolic acids. Metab Eng Commun 2022; 14:e00197. [PMID: 35433265 PMCID: PMC9011116 DOI: 10.1016/j.mec.2022.e00197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Several plant triterpenoids have valuable pharmaceutical properties, but their production and usage is limited since extraction from plants can burden natural resources, and result in low yields and purity. Here, we engineered oleaginous yeast Yarrowia lipolytica to produce three valuable plant triterpenoids (asiatic, madecassic, and arjunolic acids) by fermentation. First, we established the recombinant production of precursors, ursolic and oleanolic acids, by expressing plant enzymes in free or fused versions in a Y. lipolytica strain previously optimized for squalene production. Engineered strains produced up to 11.6 mg/g DCW ursolic acid or 10.2 mg/g DCW oleanolic acid. The biosynthetic pathway from ursolic acid was extended by expressing the Centella asiatica cytochrome P450 monoxygenases CaCYP716C11p, CaCYP714E19p, and CaCYP716E41p, resulting in the production of trace amounts of asiatic acid and 0.12 mg/g DCW madecassic acid. Expressing the same C. asiatica cytochromes P450 in oleanolic acid-producing strain resulted in the production of oleanane triterpenoids. Expression of CaCYP716C11p in the oleanolic acid-producing strain yielded 8.9 mg/g DCW maslinic acid. Further expression of a codon-optimized CaCYP714E19p resulted in 4.4 mg/g DCW arjunolic acid. Lastly, arjunolic acid production was increased to 9.1 mg/g DCW by swapping the N-terminal domain of CaCYP714E19p with the N-terminal domain from a Kalopanax septemlobus cytochrome P450. In summary, we have demonstrated the production of asiatic, madecassic, and arjunolic acids in a microbial cell factory. The strains and fermentation processes need to be further improved before the production of these molecules by fermentation can be industrialized.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Arian Belmonte Del Ama
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Sidharth Jayachandran
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Aaron John Christian Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts plads 221, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Microbial pathways for advanced biofuel production. Biochem Soc Trans 2022; 50:987-1001. [PMID: 35411379 PMCID: PMC9162456 DOI: 10.1042/bst20210764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023]
Abstract
Decarbonisation of the transport sector is essential to mitigate anthropogenic climate change. Microbial metabolisms are already integral to the production of renewable, sustainable fuels and, building on that foundation, are being re-engineered to generate the advanced biofuels that will maintain mobility of people and goods during the energy transition. This review surveys the range of natural and engineered microbial systems for advanced biofuels production and summarises some of the techno-economic challenges associated with their implementation at industrial scales.
Collapse
|
37
|
Arnesen JA, Jacobsen IH, Dyekjær JD, Rago D, Kristensen M, Klitgaard AK, Randelovic M, Martinez JL, Borodina I. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res 2022; 22:foac015. [PMID: 35274684 PMCID: PMC8992728 DOI: 10.1093/femsyr/foac015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone with applications in agriculture and human health. ABA can be produced by Botrytis cinerea, a plant pathogenic filamentous fungus. However, the cultivation process is lengthy and strain improvement by genetic engineering is difficult. Therefore, we engineered the oleaginous yeast Yarrowia lipolytica as an alternative host for ABA production. First, we expressed five B. cinerea genes involved in ABA biosynthesis (BcABA1,BcABA2,BcABA3,BcABA4 and BcCPR1) in a Y. lipolytica chassis with optimized mevalonate flux. The strain produced 59.2 mg/L of ABA in small-scale cultivation. Next, we expressed an additional copy of each gene in the strain, but only expression of additional copy of BcABA1 gene increased the ABA titer to 168.5 mg/L. We then integrated additional copies of the mevalonate pathway and ABA biosynthesis encoding genes, and we expressed plant ABA transporters resulting in an improved strain producing 263.5 mg/L and 9.1 mg/g dry cell weight (DCW) ABA. Bioreactor cultivation resulted in a specific yield of 12.8 mg/g DCW ABA; however, surprisingly, the biomass level obtained in bioreactors was only 10.5 g DCW/L, with a lower ABA titer of 133.6 mg/L. While further optimization is needed, this study confirms Y. lipolytica as a potential alternative host for the ABA production.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs Lyngby, Denmark
| | - Jane Dannow Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Andreas Koedfoed Klitgaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Milica Randelovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - José Luis Martinez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
38
|
Liu Y, Wang Z, Cui Z, Qi Q, Hou J. Progress and perspectives for microbial production of farnesene. BIORESOURCE TECHNOLOGY 2022; 347:126682. [PMID: 35007732 DOI: 10.1016/j.biortech.2022.126682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Farnesene is increasingly used in industry, agriculture, and other fields due to its unique and excellent properties, necessitating its efficient synthesis. Microbial synthesis is an ideal farnesene production method. Recently, researchers have used several strategies to optimize the production performance of microorganisms. This review summarized these strategies, including regulation of farnesene synthesis pathways, and proposed some emerging tools and methods in stain engineering. Meanwhile, new farnesene biosynthetic pathways and effective farnesene production from cheap or waste substrates were emphatically introduced. Finally, future farnesene biosynthesis challenges were discussed.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
39
|
Li S, Rong L, Wang S, Liu S, Lu Z, Miao L, Zhao B, Zhang C, Xiao D, Pushpanathan K, Wong A, Yu A. Enhanced limonene production by metabolically engineered Yarrowia lipolytica from cheap carbon sources. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Carruthers DN, Lee TS. Diversifying Isoprenoid Platforms via Atypical Carbon Substrates and Non-model Microorganisms. Front Microbiol 2021; 12:791089. [PMID: 34925299 PMCID: PMC8677530 DOI: 10.3389/fmicb.2021.791089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Isoprenoid compounds are biologically ubiquitous, and their characteristic modularity has afforded products ranging from pharmaceuticals to biofuels. Isoprenoid production has been largely successful in Escherichia coli and Saccharomyces cerevisiae with metabolic engineering of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways coupled with the expression of heterologous terpene synthases. Yet conventional microbial chassis pose several major obstacles to successful commercialization including the affordability of sugar substrates at scale, precursor flux limitations, and intermediate feedback-inhibition. Now, recent studies have challenged typical isoprenoid paradigms by expanding the boundaries of terpene biosynthesis and using non-model organisms including those capable of metabolizing atypical C1 substrates. Conversely, investigations of non-model organisms have historically informed optimization in conventional microbes by tuning heterologous gene expression. Here, we review advances in isoprenoid biosynthesis with specific focus on the synergy between model and non-model organisms that may elevate the commercial viability of isoprenoid platforms by addressing the dichotomy between high titer production and inexpensive substrates.
Collapse
Affiliation(s)
- David N Carruthers
- Joint BioEnergy Institute, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
41
|
Lu R, Cao L, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce advanced biofuels: Current status and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125877. [PMID: 34523574 DOI: 10.1016/j.biortech.2021.125877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Energy security and global climate change have necessitated the development of renewable energy with net-zero emissions. As alternatives to traditional fuels used in heavy-duty vehicles, advanced biofuels derived from fatty acids and terpenes have similar properties to current petroleum-based fuels, which makes them compatible with existing storage and transportation infrastructures. The fast development of metabolic engineering and synthetic biology has shown that microorganisms can be engineered to convert renewable feedstocks into these advanced biofuels. The oleaginous yeast Yarrowia lipolytica is rapidly emerging as a valuable chassis for the sustainable production of advanced biofuels derived from fatty acids and terpenes. Here, we provide a summary of the strategies developed in recent years for engineering Y. lipolytica to synthesize advanced biofuels. Finally, efficient biotechnological strategies for the production of these advanced biofuels and perspectives for future research are also discussed.
Collapse
Affiliation(s)
- Ran Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lizhen Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
42
|
van der Hoek SA, Rusnák M, Jacobsen IH, Martínez JL, Kell DB, Borodina I. Engineering ergothioneine production in Yarrowia lipolytica. FEBS Lett 2021; 596:1356-1364. [PMID: 34817066 PMCID: PMC9299812 DOI: 10.1002/1873-3468.14239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/25/2023]
Abstract
Ergothioneine is a naturally occurring antioxidant that has shown potential in ameliorating neurodegenerative and cardiovascular diseases. In this study, we investigated the potential of the Crabtree‐negative, oleaginous yeast Yarrowia lipolytica as an alternative host for ergothioneine production. We expressed the biosynthetic enzymes EGT1 from Neurospora crassa and EGT2 from Claviceps purpurea to obtain 158 mg·L−1 of ergothioneine in small‐scale cultivation, with an additional copy of each gene improving the titer to 205 mg·L−1. The effect of phosphate limitation on ergothioneine production was studied, and finally, a phosphate‐limited fed‐batch fermentation in 1 L bioreactors yielded 1.63 ± 0.04 g·L−1 ergothioneine in 220 h, corresponding to an overall volumetric productivity of 7.41 mg·L−1·h−1, showing that Y. lipolytica is a promising host for ergothioneine production.
Collapse
Affiliation(s)
- Steven A van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matej Rusnák
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José L Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas B Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
43
|
Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T, Goldfarb M, Karri S, Rocha J, Shahinian M, Yazadi A, Poudel S, Subramani R. Phytochemicals as an Alternative or Integrative Option, in Conjunction with Conventional Treatments for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13225753. [PMID: 34830907 PMCID: PMC8616323 DOI: 10.3390/cancers13225753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is globally ranked as the sixth most diagnosed cancer, and the second most deadly cancer. To worsen matters, there are only limited therapeutic options currently available; therefore, it is necessary to find a reservoir from which new HCC treatments may be acquired. The field of phytomedicine may be the solution to this problem, as it offers an abundance of plant-derived molecules, which show capabilities of being effective against HCC proliferation, invasion, migration, and metastasis. In our review, we collect and analyze current evidence regarding these promising phytochemical effects on HCC, and delve into their potential as future chemotherapies. Additionally, information on the signaling behind these numerous phytochemicals is provided, in an attempt to understand their mechanisms. This review makes accessible the current body of knowledge pertaining to phytochemicals as HCC treatments, in order to serve as a reference and inspiration for further research into this subject. Abstract Hepatocellular carcinoma (HCC) is the most abundant form of liver cancer. It accounts for 75–85% of liver cancer cases and, though it ranks globally as the sixth most common cancer, it ranks second in cancer-related mortality. Deaths from HCC are usually due to metastatic spread of the cancer. Unfortunately, there are many challenges and limitations with the latest HCC therapies and medications, making it difficult for patients to receive life-prolonging care. As there is clearly a high demand for alternative therapy options for HCC, it is prudent to turn to plants for the solution, as their phytochemicals have long been used and revered for their many medicinal purposes. This review explores the promising phytochemical compounds identified from pre-clinical and clinical trials being used either independently or in conjunction with already existing cancer therapy treatments. The phytochemicals discussed in this review were classified into several categories: lipids, polyphenols, alkaloids, polysaccharides, whole extracts, and phytochemical combinations. Almost 80% of the compounds failed to progress into clinical studies due to lack of information regarding the toxicity to normal cells and bioavailability. Although large obstacles remain, phytochemicals can be used either as an alternative or integrative therapy in conjunction with existing HCC chemotherapies. In conclusion, phytochemicals have great potential as treatment options for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheryl Rodriguez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Kristy Skeet
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Shri Karri
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Jackelyn Rocha
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Mark Shahinian
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Abdallah Yazadi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
- Correspondence: ; Tel.: +1-915-215-6851
| |
Collapse
|
44
|
Xie Y, Chen S, Xiong X. Metabolic Engineering of Non-carotenoid-Producing Yeast Yarrowia lipolytica for the Biosynthesis of Zeaxanthin. Front Microbiol 2021; 12:699235. [PMID: 34690947 PMCID: PMC8529107 DOI: 10.3389/fmicb.2021.699235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
Zeaxanthin is vital to human health; thus, its production has received much attention, and it is also an essential precursor for the biosynthesis of other critical carotenoids such as astaxanthin and crocetin. Yarrowia lipolytica is one of the most intensively studied non-conventional yeasts and has been genetically engineered as a cell factory to produce carotenoids such as lycopene and β-carotene. However, zeaxanthin production by Y. lipolytica has not been well investigated. To fill this gap, β-carotene biosynthesis pathway has been first constructed in this study by the expression of genes, including crtE, crtB, crtI, and carRP. Three crtZ genes encoding β-carotene hydroxylase from different organisms were individually introduced into β-carotene-producing Y. lipolytica to evaluate their performance for producing zeaxanthin. The expression of crtZ from the bacterium Pantoea ananatis (formerly Erwinia uredovora, Eu-crtZ) resulted in the highest zeaxanthin titer and content on the basis of dry cell weight (DCW). After verifying the function of Eu-crtZ for producing zeaxanthin, the high-copy-number integration into the ribosomal DNA of Y. lipolytica led to a 4.02-fold increase in the titer of zeaxanthin and a 721% increase in the content of zeaxanthin. The highest zeaxanthin titer achieved 21.98 ± 1.80 mg/L by the strain grown on a yeast extract peptone dextrose (YPD)-rich medium. In contrast, the highest content of DCW reached 3.20 ± 0.11 mg/g using a synthetic yeast nitrogen base (YNB) medium to culture the cells. Over 18.0 g/L of citric acid was detected in the supernatant of the YPD medium at the end of cultivation. Furthermore, the zeaxanthin-producing strains still accumulated a large amount of lycopene and β-carotene. The results demonstrated the potential of a cell factory for zeaxanthin biosynthesis and opened up an avenue to engineer this host for the overproduction of carotenoids.
Collapse
Affiliation(s)
| | | | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
45
|
Zhu K, Kong J, Zhao B, Rong L, Liu S, Lu Z, Zhang C, Xiao D, Pushpanathan K, Foo JL, Wong A, Yu A. Metabolic engineering of microbes for monoterpenoid production. Biotechnol Adv 2021; 53:107837. [PMID: 34555428 DOI: 10.1016/j.biotechadv.2021.107837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Monoterpenoids are an important class of natural products that are derived from the condensation of two five‑carbon isoprene subunits. They are widely used for flavouring, fragrances, colourants, cosmetics, fuels, chemicals, and pharmaceuticals in various industries. They can also serve as precursors for the production of many industrially important products. Currently, monoterpenoids are produced predominantly through extraction from plant sources. However, the small quantity of monoterpenoids in nature renders this method of isolation non-economically viable. Similarly impractical is the chemical synthesis of these compounds as they suffer from high energy consumption and pollutant discharge. Microbial biosynthesis, however, exists as a potential solution to these hindrances, but the transformation of cells into efficient factories remains a major impediment. Here, we critically review the recent advances in engineering microbes for monoterpenoid production, with an emphasis on categorized strategies, and discuss the challenges and perspectives to offer guidance for future engineering.
Collapse
Affiliation(s)
- Kun Zhu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Jing Kong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Lanxin Rong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Krithi Pushpanathan
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore.
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Adison Wong
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore.
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| |
Collapse
|
46
|
Perli T, Borodina I, Daran JM. Engineering of molybdenum-cofactor-dependent nitrate assimilation in Yarrowia lipolytica. FEMS Yeast Res 2021; 21:6370176. [PMID: 34519821 PMCID: PMC8456426 DOI: 10.1093/femsyr/foab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Engineering a new metabolic function in a microbial host can be limited by the availability of the relevant cofactor. For instance, in Yarrowia lipolytica, the expression of a functional nitrate reductase is precluded by the absence of molybdenum cofactor (Moco) biosynthesis. In this study, we demonstrated that the Ogataea parapolymorpha Moco biosynthesis pathway combined with the expression of a high affinity molybdate transporter could lead to the synthesis of Moco in Y. lipolytica. The functionality of Moco was demonstrated by expression of an active Moco-dependent nitrate assimilation pathway from the same yeast donor, O. parapolymorpha. In addition to 11 heterologous genes, fast growth on nitrate required adaptive laboratory evolution which, resulted in up to 100-fold increase in nitrate reductase activity and in up to 4-fold increase in growth rate, reaching 0.13h-1. Genome sequencing of evolved isolates revealed the presence of a limited number of non-synonymous mutations or small insertions/deletions in annotated coding sequences. This study that builds up on a previous work establishing Moco synthesis in S. cerevisiae demonstrated that the Moco pathway could be successfully transferred in very distant yeasts and, potentially, to any other genera, which would enable the expression of new enzyme families and expand the nutrient range used by industrial yeasts.
Collapse
Affiliation(s)
- Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
47
|
Mai J, Li W, Ledesma-Amaro R, Ji XJ. Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9498-9510. [PMID: 34376044 DOI: 10.1021/acs.jafc.1c03864] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sesquiterpenes are natural compounds composed of three isoprene units. They represent the largest class of terpene compounds found in plants, and many have remarkable biological activities. Furthermore, sesquiterpenes have broad applications in the flavor, pharmaceutical and biofuel industries due to their complex structures. With the development of metabolic engineering and synthetic biology, the production of different sesquiterpenes has been realized in various chassis microbes. The microbial production of sesquiterpenes provides a promising alternative to plant extraction and chemical synthesis, enabling us to meet the increasing market demand. In this review, we summarized the heterologous production of different plant sesquiterpenes using the eukaryotic yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, followed by a discussion of common metabolic engineering strategies used in this field.
Collapse
Affiliation(s)
- Jie Mai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wenjuan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
48
|
Zhang G, Wang H, Zhang Z, Verstrepen KJ, Wang Q, Dai Z. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Crit Rev Biotechnol 2021; 42:618-633. [PMID: 34325575 DOI: 10.1080/07388551.2021.1947183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Terpenoids are a large family of natural products with diversified structures and functions that are widely used in the food, pharmaceutical, cosmetic, and agricultural fields. However, the traditional methods of terpenoids production such as plant extraction and chemical synthesis are inefficient due to the complex processes, high energy consumption, and low yields. With progress in metabolic engineering and synthetic biology, microbial cell factories provide an interesting alternative for the sustainable production of terpenoids. The non-conventional yeast, Yarrowia lipolytica, is a promising host for terpenoid biosynthesis due to its inherent mevalonate pathway, high fluxes of acetyl-CoA and NADPH, and the naturally hydrophobic microenvironment. In this review, we highlight progress in the engineering of Y. lipolytica as terpenoid biomanufacturing factories, describing the different terpenoid biosynthetic pathways and summarizing various metabolic engineering strategies, including progress in genetic manipulation, dynamic regulation, organelle engineering, and terpene synthase variants.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huan Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Kevin J Verstrepen
- TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.,VIB-KU Leuven Center for Microbiology and KU Leuven Laboratory for Genetics and Genomics, Department M2S, Leuven, Belgium
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
49
|
Shi T, Li Y, Zhu L, Tong Y, Yang J, Fang Y, Wang M, Zhang J, Jiang Y, Yang S. Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction. Biotechnol J 2021; 16:e2100097. [PMID: 33938153 DOI: 10.1002/biot.202100097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022]
Abstract
β-farnesene is a sesquiterpenoid with various industrial applications which is now commercially produced by a Saccharomyces cerevisiae strain obtained by random mutagenesis and genetic engineering. We rationally designed a genetically defined Yarrowia lipolytica through recovery of L-leucine biosynthetic route, gene dosage optimization of β-farnesene synthase and disruption of the competition pathway. The resulting β-farnesene titer was improved from 8 to 345 mg L-1 . Finally, the strategy for decreasing the lipid accumulation by individually and iteratively knocking out four acyltransferases encoding genes was adopted. The result displayed that β-farnesene titer in the engineered strain CIBT6304 in which acyltransferases (DGA1 and DGA2) were deleted increased by 45% and reached 539 mg L-1 (88 mg g-1 DCW). Using fed-batch fermentation, CIBT6304 could produce the highest β-farnesene titer (22.8 g L-1 ) among the genetically defined strains. This study will provide the foundation of engineering Y. lipolytica to produce other terpenoids more cost-efficiently.
Collapse
Affiliation(s)
- Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yawen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Li Zhu
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Yangyang Tong
- Key Laboratory of Synthetic Biology, CAS Center for Excellence of Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence of Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunming Fang
- The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Meng Wang
- The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yu Jiang
- Shanghai Taoyusheng Biotechnology Co., Ltd, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence of Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, China
| |
Collapse
|
50
|
Li ZJ, Wang YZ, Wang LR, Shi TQ, Sun XM, Huang H. Advanced Strategies for the Synthesis of Terpenoids in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2367-2381. [PMID: 33595318 DOI: 10.1021/acs.jafc.1c00350] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoids are an important class of secondary metabolites that play an important role in food, agriculture, and other fields. Microorganisms are rapidly emerging as a promising source for the production of terpenoids. As an oleaginous yeast, Yarrowia lipolytica contains a high lipid content which indicates that it must produce high amounts of acetyl-CoA, a necessary precursor for the biosynthesis of terpenoids. Y. lipolytica has a complete eukaryotic mevalonic acid (MVA) pathway but it has not yet seen commercial use due to its low productivity. Several metabolic engineering strategies have been developed to improve the terpenoids production of Y. lipolytica, including developing the orthogonal pathway for terpenoid synthesis, increasing the catalytic efficiency of terpenoids synthases, enhancing the supply of acetyl-CoA and NADPH, expressing rate-limiting genes, and modifying the branched pathway. Moreover, most of the acetyl-CoA is used to produce lipid, so it is an effective strategy to strike a balance of precursor distribution by rewiring the lipid biosynthesis pathway. Lastly, the latest developed non-homologous end-joining strategy for improving terpenoid production is introduced. This review summarizes the status and metabolic engineering strategies of terpenoids biosynthesis in Y. lipolytica and proposes new insights to move the field forward.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|